Archiv
für
Mikroskopische Anatomie
herausgegeben
von
v. la Valette St. George in Bonn
und
W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Dreissigster Band.
Mit 38 Tafeln und 1 Holzschnitt.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1887.
Inhalt.

Das Schicksal der embryonalen Schlundspalten bei Säugethieren. (Zur Entwicklungsgeschichte des mittleren und äusseren Ohres, der Thyreoidea und der Thymus. Carotidenanlage.) Von Dr. med. N. Kastschenko, Privat-Dozent an der Universität zu Char'kow. Hierzu Tafel I und II. (Aus dem anatomischen Institut zu Berlin.) 1

Ueber Thalassicolla caerulea. Von C. J. Eberth in Halle. Hierzu Tafel III. 27

Beiträge zur Kenntniss der Entwicklung des elastischen Gewebes im Ligamentum Nuchae und im Netzknoorpel. Von Dr. N. Kuskow aus St. Petersburg. Hierzu Tafel IV. (Aus dem anatomischen Institut in Berlin.) 32

Ueber weitere Versuche, Farben auf dem Gewebe zu erzeugen und die chemische Theorie der Färbung. Von P. G. Unna 38

Untersuchungen über den Bau des funktionirenden Samenkästchens einiger Säugethiere und Folgerungen für die Spermatogenese dieser Wirbeltierklasse. Von Dr. Carl Benda, Assistenten am physiologischen Institut zu Berlin. Hierzu Tafel V. VI. VII 49

Neue Untersuchungen über die Copulation der Geschlechtsprodukte und den Befruchtungsvorgang bei Ascaris megocephala. Von Dr. Otto Zacharias in Hirschberg i. Schl. Hierzu Tafel VIII. IX. X 111

Untersuchungen über die Horngebilde der Säugethierhaut. Von Friedrich Reinke, Assistent am anatomischen Institut in Kiel. Hierzu Tafel XI. (Aus dem anatomischen Institut in Kiel.) 181

Ueber Theilungsvorgänge an den Wanderzellen, ihre progressiven und regressiven Metamorphosen. Von Professor Dr. Julius Arnold in Heidelberg. Hierzu Tafel XII—XVI 205

Bemerkungen über den Bau der Bindegewebe. Von K. Zaluskowski. (Aus dem anatomischen Institut zu Berlin.) 311
Die grüne Drüse des Flusskrebses. Von Professor Dr. Carl Grobben in Wien .. 323
Ueber die Entwicklung der Samenkörperchen bei den Beutelthieren. Von Dr. Carl M. Fürst in Lund. Hierzu Tafel XVIII—XX .. 336
Enchytraeiden-Studien. Von Dr. W. Michaelsen in Hamburg. Hierzu Tafel XXI .. 366
Spermatologische Beiträge. Fünfte Mittheilung. Von v. la Valette St. George. Hierzu Tafel XXV .. 426
Beiträge zur Kenntniss des Bau's der Nervenfasern. Von Dr. P. Schieffer-decker. Hierzu Tafel XXVI .. 435
Beiträge zur Anatomie der Oberhaut. Von Dr. A. Blaschko in Berlin. Hierzu Tafel XXVII—XXX. (Aus dem anatomischen Institut zu Berlin.) ... 495
Zwei junge menschliche Embryonen. Von Prof. Dr. J. Janošik an der böhm. Universität in Prag. Hierzu Tafel XXXIV und XXXV ... 559
Die Entstehung des Blutes bei Knochenfischesembryonen. Von Dr. H. Ernst Ziegler, Privatdocent in Freiburg i. Br. Hierzu Tafel XXXVI—XXXVIII ... 596
Einfacher Apparat zur Erwärmung und Abkühlung von Objecten unter dem Mikroskop. Von Dr. H. Dewitz in Berlin. Mit 1 Holzschnitt 666
Das Schicksal der embryonalen Schlundspalten bei Säugethieren.

(Zur Entwicklungsgeschichte des mittleren und äusseren Ohres, der Thyreoidea und der Thymus. Carotidenanlage.)

Von

Dr. med. N. Kastschenko,
Privat-Docent an der Universität zu Charkow.

Hierzu Tafel I und II.

Allgemeines. Ausgangsstadium.

Das Schicksal der embryonalen Schlundspalten und ihres Epithels gehört zu den interessantesten Fragen in der Embryologie. Indessen finden wir in der Literatur noch sehr viele Lücken und Widersprüche darüber. Das wird vielleicht durch die zurückhaltende Stellung der meisten Forscher zu den Reconstructionsmethoden erklärt, weil die blosse Untersuchung der successiven Schnitte für die Lösung der embryologischen Fragen nicht genügt, und die letzteren nur durch eine graphische oder plastische Wiederherstellung der Gesamtform des Objectes gelöst werden können. Nachdem ich eine neue Reconstructionsmethode gefunden hatte (10), habe ich die oben erwähnte Frage als Prüfstein für meine Methode ausgewählt und betrachte den Versuch als gelungen, soviel wenigstens es das mir zur Verfügung stehende Material gestattete.

Um jede Verwechslung zu vermeiden, habe ich für systematische Untersuchung nur eine einzige Thierart ausgewählt, nämlich Schweineembryonen von 11 bis 95 mm. Nackensteisslänge (NL. Die His'sche Längenberechnung). Es ist mir leider nicht gelungen,
noch jüngere Embryonen zu beschaffen. Deshalb habe ich noch einige ergänzende Beobachtungen an Hühnerembryonen gemacht.

Die Hauptstämme der Kopfnerven können mit grossem Erfolg

1) Siehe meine Mittheilung (10).
Das Schicksal der embryonalen Schlundspalten bei Säugethieren.

Bei den jüngsten Schweineembryonen, zu deren Untersuchung ich Gelegenheit hatte, kann man noch deutlich drei vordere Schlundbogen mit den entsprechenden Nerven: Trigeminus, Facialis und Glossopharyngeus unterscheiden. Bei der Seitenansicht von aussen können jedoch nur der erste und der zweite Schlundbogen gesehen werden, weil der dritte nach innen, gegen die Schlundhöhle, hineingeschoben und von aussen durch den zweiten fast vollständig bedeckt ist (Taf. I, Fig. 1 und Taf. II, Fig. 10). Diese Verhältnisse treten sehr scharf an den Querschnitten, welche bei den Embryonen dieses Entwickelungsstadiums den Schlund der Länge nach treffen, und noch besser an den reconstruirten optischen Frontalschnitten des Schlundes hervor (Taf. II, Fig 13). Was den vierten Schlundbogen betrifft, so kann derselbe als ein begrenztes Gebilde in dieser Entwickelungsperiode nicht mehr unterschieden werden, obgleich für das Aequivalent desselben die nach innen und hinter der dritten Schlundspalte gelegene Gegend angenommen werden muss. Die letztere Annahme wird durch das Durchlaufen eines kleinen Aestchens des N. Vagus gerade in jener Gegend, welches mit der Zeit in den N. Laryngeus superior übergeht, bestätigt. Wir wissen nämlich aus den Untersuchungen von His (5) und Froiiep (3), dass der N. Laryngeus sup. als Nerv des vierten Schlundbogeins betrachtet werden muss.

Was die Schlundspalten betrifft, so können wir bei jeder eine epidermoidale und eine epitheliale Tasche unterscheiden. Die Zahl der unbestreitbaren Schlundspalten beschränkt sich auf drei. Bemerkenswerth ist, dass die epidermoidale Tasche der zweiten Schlundspalte sich in eine zwischen dem zweiten Schlundbogen und der Brustwand gelagerte, nach aussen offene, seitliche Grube öffnet. Es ist klar, dass diese Grube nichts anderes ist, als der von His beschriebene Sinus praecervicalis (5, 6 und 7). Derselbe entsteht in Folge der Hineinschiebung der hinteren Schlundbogen
N. Kastschenko:
nach innen, gegen die Schlundhöhle. Ausser der zweiten epidermoidalen Tasche hat der Sinus praecervicalis noch einen zweiten hohlen Vorsprung, welcher sich zuerst bogenförmig nach innen und dann nach hinten kehrt und bald sein Ende erreicht (Fig. 13, ed 4). Um die Bedeutung dieses Vorsprunges richtig zu beurteilen, wollen wir unser Object mit den Schlundspalten eines Hühnerembryo vom dritten Tage der Bebrütung vergleichen. In diesem Entwicklungsstadium finde ich beim Hühnchen fünf Schlundspalten, von denen wenigstens die vier letzten nicht durchbrochen sind, also aus getrennten epithelialen und epidermoidalen Taschen bestehen (Taf. I, Fig. 8). Die beiderlei Arten der Taschen sind um so weniger entwickelt und deshalb ist der Abstand zwischen je zwei entsprechenden Taschen desto bedeutender, je weiter dieselben nach hinten gelagert sind. Die schwache Entwicklung der hinteren Taschen ist besonders an den epidermoidalen Taschen bemerkbar. Von den letzteren ist schon die dritte bedeutend schwächer als die zweite ausgeprägt und die beiden letzten sind noch schwächer entwickelt. Am vierten Tage der Bebrütung beginnt schon die Hineinschiebung der hinteren Schlundbogen gegen die Schlundhöhle und die Bildung des Sinus praecervicalis. Damit erscheint die hinterste epidermoidale Tasche als der tiefste und der hinterste Theil desselben. Ähnliche Vorstellungen bekommen wir auch nach der Beschreibung und den Zeichnungen von His (vergl. besonders 7, Fig. 2 b und 4). Wenn wir alle diese Umstände und die Thatsache, dass bei Säugethieren überhaupt nur vier Schlundspalten existiren, berücksichtigen, so finden wir uns berechtigt, bei meinem Untersuchungsobject den hinteren blinden Vorsprung des Sinus praecervicalis für den tiefsten Theil des Sinus selbst und zu gleicher Zeit für die gemeinsame Höhle der dritten und der vierten epidermoidalen Tasche anzusehen. Das tiefste Ende des Vorsprunge entspricht augenscheinlich der hintersten, also in unserem Falle der vierten epidermoidalen Tasche. Die im vorderen Theile desselben gelagerte Verdickung des Epithels (Taf. I, Fig. 6 ed 3) müssen wir für die ausserordentlich schwach ausgeprägte dritte epidermoidale Tasche ansehen.

Von der Seite des Schlundes her bemerken wir hinter der dritten epithelialen Tasche auch noch einen vierten epithelialen hohlen Schlauch, welcher weit nach unten und zum Theil nach vorn hervorgewachsen ist und an den beiden Seiten der Trachea
Das Schicksal der embryonalen Schlundspalten bei Säugethieren.

blind endigt (Fig. 1 und 13, 1. Tr.). Dieser Schlauch ist schon nach den Untersuchungen von Born (1), Froërief (3), His (5), de Mennon (12) u. a. m. bekannt. Die beiden ersten Forscher sehen diesen Schlauch für die vierte epitheliale Tasche an. Die zwei letzten, auf Grund eingehender Beobachtungen, betrachten denselben für den abgeschnürten unteren seitlichen Theil des Schlundbodens, indem sie die vierte epitheliale Tasche mit dem Anfangstheile des Schlanches zusammenfließen lassen. Es gibt eigentlich zwischen diesen beiden Anschauungen keinen grossen Unterschied, wie das schon His (5) ausgesprochen hat. Bei meinen Objekten finde ich immer an dem nach hinten und lateralwärts gerichteten Winkel (Knie) des Schlanches einen kurzen Vorsprung (Fig. 1 et*), welcher wahrscheinlich die schwach entwickelte vierte epitheliale Tasche darstellt. Die beiden blinden gegenüberstehenden, von einander aber weit getrennten Taschen, welche ich als vermutlich epidermoidale und epitheliale Taschen der vierten Schlundspalte dargestellt habe, sind hinter und unter dem N. Laryngens sup. gelagert.

Die nähere Beschreibung der Schlundspalten belasse ich für das entsprechende Capitel.

Das Schicksal der ersten epidermoidalen und der beiden ersten epithelialen Taschen

(Entwicklungsgeschichte des äusseren und mittleren Ohres).

Das Schicksal der beiden ersten Schlundspalten ist so innig mit den Formveränderungen des angrenzenden Theiles des embryonalen Schlundes verbunden, dass auch die letzteren hier beschrieben werden müssen. Bei den jüngsten von mir benutzten Embryonen bemerkt man an den beiden Seiten der Schlundhöhle eine Ausbuchtung derselben nach aussen (Fig. 1 p. P. vergl. mit Fig. 13). Die letztere ist dadurch entstanden, dass der innere Rand des zweiten Schlundbogens mehr nach aussen gelagert ist, als der des ersten und dritten. Diese Ausbuchtung will ich als primäre Paukenhöhle bezeichnen, weil gerade dieser Theil des embryonalen Schlundes mit der Zeit, wie ich gleich zu beweisen hoffe, in die definitive Paukenhöhle nebst Tuba Eustachii übergeht. Die primäre Paukenhöhle ist von vorn durch die hintere Fläche des ersten Schlundbogens, von hinten durch die vordere Fläche des
dritten und von aussen durch die innere Fläche des zweiten Schlundbogens begrenzt. Von innen hat sie keine scharfe Begrenzung gegen die gemeinsame Schlundhöhle. In ihren äusseren (vorderen und hinteren) Ecken befinden sich die erste und die zweite Schlundspalte.

Die epidermoidale Tasche der ersten Schlundspalte ist noch in ihrer ganzen Länge in Form einer unregelmässigen Furché sichtbar (Taf. II, Fig. 10). In ihrem Verlaufe zeigt dieselbe drei erweiterte und vertiefte Stellen, welche ich als oberes, mittleres und unteres Ohrgrübchen bezeichnen will. Das untere Ohrgrübchen ist von dem mittleren durch die Tubercula 2 und 4 von His getrennt. Tuberculum 3 liegt hinterwärts von der oberen Verlängerung der Furché, so dass das obere Ohrgrübchen dorsalwärts von denselben gelagert ist. Weiter ventralwärts von dem unteren Ohrgrübchen verlängert sich die erste epidermoidale Tasche in Form einer schmalen und scharfen Rinne bis zum ventralen Rande der Schlundbogen. Die epitheliale Tasche der ersten Schlundspalte ist nur in ihrer obersten Theilstrecke, entsprechend der Lage des oberen Ohrgrübchen, deutlich zu sehen (Fig. 1 und 13 et^1). Hier schmilzt ihr Epithel mit dem des oberen Ohrgrübchen zusammen und somit erscheinen die Lumina der beiden Taschen der ersten Schlundspalte nur durch eine einfache Epithelschicht getrennt. In der ganzen übrigen Strecke ist die erste epitheliale Tasche abgeflacht und durch das indifferentes Gewebe des Mesoblasts von der epidermoidalen Tasche vollkommen getrennt.

Die zweite Schlundspalte kann nur an Schnitten gesehen werden. Sie stellt in diesem Entwickelungsstadium keine eigentliche Spalte, sondern nur einen schmalen epithelialen Zellstrang dar, welcher in dem grössten Theile seines Verlaufs, ausgenommen die kurze mittlere Theilstrecke, ein gut bemerkbares Lumen besitzt. Somit können wir auch bei der zweiten Schlundspalte eine epitheliale und eine epidermoidale Tasche unterscheiden.

Im weiteren Verlaufe der Entwicklung werden die beiden Taschen der ersten Schlundspalte auch in dem obersten Theile der letzteren, d. h. an der Stelle des oberen Ohrgrübchens, durch die von der Dorsalseite sich hineinschiebende Bildungsmasse vollkommen getrennt, das obere Ohrgrübchen selbst wird abgeflacht und schwindet, ohne irgend einen Rest zu lassen (Taf. II, Fig. 11 und 12). Ebenso spurlos schwindet die ventralwärts von dem unteren
Das Schicksal der embryonalen Schlundspalten bei Säugethieren.

Ohrgrübchen verlaufende Theilstrecke der ersten epidermoidalen Tasche. Das untere aber und das mittlere Ohrgrübchen bleiben während des ganzen Lebens des Thieres bestehen, obgleich ihr Schicksal ganz verschieden ist. Das mittlere bewahrt immer seine oberflächliche Lage, indem es durch das mehr und mehr nach unten sich herunterschiebende knorpelige Labyrinth von der Paukenhöhle weit entfernt wird, und geht schliesslich in die zwischen den Crura furcata des Anthelix gelagerte Fossa intercruralis und deren Verlängerung nach unten über (vergl. Fig. 11 und 12 mit Fig. 3 und 4). Das untere dagegen bleibt in fast derselben Beziehung zu der Paukenhöhle, wie im oben beschriebenen Stadium. Weil aber alle dasselbe umgebenden Theile fortwährend an Masse zunehmen, so erhält jenes Grübchen relativ zu der äusseren Oberfläche des Kopfes eine immer tiefere Lage. Vorwiegend wird das untere Ohrgrübchen von vorn und von der Ventralseite durch die rasch an Umfang zunehmenden und sich nach hinten verbreitern den Derivate des ersten Schlundbogens umgewandelt und überdeckt. Deshalb erhält es die Form einer dorsal- und rückwärts offenen Tasche (Taf. I, Fig. 2 und 3; Taf. II, Fig. 14 ed 1, 15, 16 und 17 ä. G.). Der anfangs ganz oberflächlich gelegene und von aussen sichtbare Boden des unteren Ohrgrübchens wird zum Trommelfell, und der durch den Auswuchs der umgebenden Theile entstandene Kanal wird zum äusseren Gehörgang. Später verschließt sich die äussere Gehöröffnung etwas nach unten, wodurch die Richtung des äusseren Gehörganges entsprechenderweise verändert wird (Taf. I, Fig. 4).

Wir können also den äusseren Gehörgang als Derivat der ersten epidermoidalen Tasche betrachten, weil er wirklich aus der Verlängerung der Wandungen der letzteren entsteht; aber wir müssen keinesfalls diese zwei Bildungen identificiren, weil der äussere Gehörgang eine seconndäre Bildung ist. Die wirklichen Reste der ersten epidermoidalen Tasche stellen die nach vorn gerichtete innere Spitze des äusseren Gehörganges und die Fossa intercruralis dar. Die Lage der letzteren, sowie die der äusseren Gehöröffnung entspricht der Lage der ersten embryonalen Schlundspalte nicht, sondern ist bedeutend nach hinten verschoben. Auf diese Weise glaube ich die Widersprüche zwischen den herrschenden Auffassungen über die Bildung des äusseren
Gehörganges (s. ausser den älteren Forschern die Arbeiten von Kölliker (11), Moldenhauer (13) u. a. m.) und denen von Urbantschitsch (17) und Rückert (15) zu erklären.

Während die oben beschriebenen Veränderungen an der äusseren Oberfläche des Ohrgebietes ablaufen, verändert sich auch der entsprechende Theil des Schlundes. Die mit der Hereinschiebung des hinteren Schlundbogens beginnende Verengung desselben geht jetzt in seinen mittleren Theil über, indem die hintere Hälfte des zweiten Schlundbogens nach und nach an Dieke zunimmt, gegen die Schlundhöhle hereinwächst und mit dem dritten Schlundbogen verschmilzt (Taf. II, Fig. 14, 15 und 16). Damit wird der Raum der primären Paukenhöhle relativ bedeutend vermindert. Jetzt wird dieselbe von vorn durch den hinteren Rand des ersten und von hinten durch den jetzt nach vorn gekehrten früheren inneren Rand des zweiten Schlundbogens begrenzt. Zu gleicher Zeit bildet sich das knorpelige Labyrinth, schiebt sich von oben und von hinten gegen die primäre Paukenhöhle und verengt besonders den inneren Abschnitt derselben (Taf. II, Fig. 17). Somit zerfällt die primäre Paukenhöhle in zwei Abtheilungen: äussere (secundäre oder definitive Paukenhöhle) und innere (Tuba Eustachii). Die letzte ist anfangs ganz kurz und wird erst mit der Zeit verlängert. In der oberen vorderen Ecke der sekundären Paukenhöhle findet man noch eine Zeit lang den unveränderten Rest der ersten epithelialen Tasche (Fig. 14 und 15 et³). Mit dem fortwährenden Wachsthum der umgebenden Theile wird dieselbe relativ ausserordentlich klein und kann nicht mehr unterschieden werden. Ihre Lage entspricht der Ecke zwischen dem Corpus des Hammers und dem Hammergriff.

Mit dem Hereinwachsen der hinteren Hälfte des zweiten Schlundbogens gegen die Schlundhöhle verändert die zweite epitheliale Tasche ihre Lage vollständig, indem dieselbe von der entsprechenden epidermoidalen Tasche getrennt und nach innen und nach vorn versetzt wird. Jetzt findet man dieselbe neben dem unteren und hinteren Rande der Tuba Eustachii in Form einer schmalen, lumenlosen, mit dem Epithel des Schlundes zusammenhängenden Epithelleiste, welche ihre morphologische Bedeutung durch die Lage zwischen N. Facialis und N. Glosso-pharyngens kennzeichnet (Fig. 14, 15 und 16 et²). Später schwindet auch jener Rest spurlos. Inzwischen erscheint an dem inneren Rande des dritten Bogens ein longitudinal verlaufender Wulst. Der Raum
Das Schicksal der embryonalen Schlundspalten bei Säugethieren.

zwischen diesem und dem inneren Rande des zweiten Bogens wird somit in eine verticale Grube umgewandelt. Die letztere stellt augenscheinlich die Rosenmüller'sche Grube (Fig. 15, 16 und 17 F. R.) dar.

Es folgt aus den oben besprochenen Thatsachen, dass der mittlere Gehörgang keineswegs aus der ersten Schlundspalte, sondern in Folge der Verengung des Seitentheiles des embryonalen Schlundes entsteht. Ich muss also der Ansicht der meisten Autoren (von den neueren: Kölliker (11), His (5), Moldenhauer (13), Hoffmann (8) u. a. m.), dass das äussere und mittlere Ohr aus der ersten Schlundspalte entstehe, entgegentreten. Das äussere und mittlere Ohr muss ich für secundäre Bildungen auseinander. Damit will ich aber gar nicht die von His (6) angezeigte topographische Bedeutung der ersten Schlundspalte in Abrede stellen, weil der gesammte äussere und mittlere Gehörgang jedenfalls zwischen den Derivaten des ersten und des zweiten Schlundbogens gelagert ist. Das gilt auch für die Fossa Rosenmülleri, welche nach His den Rest der zweiten Schlundfurche darstellen soll.

Nach meinen Reconstructionsbildern schliesse ich, dass we nigstens der grösste Theil des Trommelfells aus dem
vorderen Theile des zweiten Schlundbogens gebildet wird, weil in den jüngeren Entwickelungsstadien die beiden ersten Taschen an dem vorderen Rande des Trommelfells zu bemerken sind. Darin bin ich mit Moldenhauer (13), welcher dasselbe aus dem ersten Schlundbogen sich entwickeln lässt, nicht einverstanden.

Das Schicksal der zweiten, dritten und vierten epidermoidalen und der dritten epithelialen Tasche
(Entwickelungsgeschichte der Thymus. Carotidenanlage).

In dem Entwickelungsstadium, welches ich als Ausgangspunkt für mein Studium genommen habe, stellt die dritte epitheliale Tasche einen langen, röhrenförmigen, epithelialen Schlauch dar, welcher knieförmig zunächst lateralwärts und dann vorwärts verläuft (Taf. I, Fig. 1 und Taf. II, Fig. 13 Cd. Tm.). Das Lumen des Schlauches ist auf der ganzen Länge desselben deutlich merkbar. An dem nach aussen und nach hinten gekehrten Knie der Röhre ist das Epithel zu einem relativ grossen Knoten (N. tm, Fig. 13 und 14) ausgewachsen. Derselbe besteht aus einer dichten Verflechtung solider epithelialer Stränge mit dem zwischenliegenden embryonalen Bindegewebe (Taf. 1, Fig. 6). Dieser Knoten, welchen ich wegen seines künftigen Schicksals als Nodus thymicus bezeichnen möchte, liegt in der Nähe derjenigen Stelle des Sinus praeecervicalis, welche ich schon früher für die ausserordentlich schwach entwickelte dritte epidermoidale Tasche angenommen hatte (ed 3, Fig. 6), ohne jedoch mit dem Epithel derselben zusammenzufallen. Das vorderste blinde Ende des Schlauches liegt in der Nähe der mittleren (unpaaren) Schilddrüsenanlage (Fig. 1 und 13 m. Tr.), lateralwärts von derselben. Dieser Schlauch aber hat keine Beziehung zu der Schilddrüse. Er geht mit der Zeit in
Das Schicksal der embryonalen Schlundspalten bei Säugethieren. 11
den unteren Theil der Thymus über. Zur Unterscheidung desselben
von den anderen Theilen der Thymusanlage, welche viel compli-
cierter ist, als man gewöhnlich anzunehmen pflegt, bezeichne ich
jenen Schlauch als Cauda der Thymusanlage.

Bei den späteren Entwicklungsstadien wächst der Nodulus
thymicus mit dem Epithel des Sinus praeccervicalis zusammen.
Somit stellt jetzt die dritte epitheliale Tasche samt dem Sinus
praeccervicalis ein continuirliches epitheliales Gebilde dar. Zu
gleicher Zeit wird die äussere Öffnung des Sinus immer mehr
und mehr verengt, verliert das Lumen und geht endlich in den
schmalen Zellenstrang über, welchen ich als Ductus praeccer-
vicalis (Taf. I, Fig. 2 D. p.) bezeichne. Jetzt erscheint der
frühere Sinus praeccervicalis (oder genauer, nach der His'sehen
Terminologie, Fundus praeccervicalis, zur Unterscheidung von der
entsprechenden oberflächlichen Vertiefung — Infundibulum prae-
cervicale) als ein an der Grenze zwischen Kopf und Rumpf ge-
lagerter Epithelknoten, welcher medianwärts mit dem Nodulus
thymicus verwachsen ist und lateralwärts noch in Verbindung mit
der Epidermis mittels des Ductus praeccervicalis bleibt. Dieser
Knoten stellt den epidermoidalen Theil der Thymusanlage dar.

Ebenso werden auch die zweite Schlundspalte und der zwischen
dem Nodulus thymicus und dem Schlunde gelegene Theil der
dritten epithelialen Tasche immer schmäler. Dieselben werden in
die Länge gezogen, verlieren ihr Lumen und werden endlich ge-
trennt. Die zweite Schlundspalte wird annähernd in der Mitte ge-
trennt. Somit bleibt ihre epitheliale Tasche in Verbindung mit
dem Schlund, während ihre epidermoidale Tasche sich der epi-
dermoidalen Anlage der Thymus einverleibt. Was nun die dritte
epitheliale Tasche betrifft, so wird dieselbe in der Nähe des
Schlundes getrennt. Somit bleibt der grösste Theil dieser Tasche
samt der Cauda der Thymusanlage und dem Nodulus thymicus
von dem Schlund vollkommen getrennt, aber mit der epidermoidalen
Anlage der Thymus in Verbindung (Taf. II, Fig. 14 und 15). Die
letztere behält jetzt das Lumen nur in ihrem hintersten Vorsprunge,
welcher noch einige Zeit lang unverändert bleibt. Das grosse,
aus dem Fundus praeccervicalis samt dem Nodulus thymicus be-
stehende Epithelkonglomerat bezeichne ich als Caput der Thymus-
anlage (Cp. Tm.).

Jetzt ist die Thymus schon leicht zu erkennen. Sie hat die
Form eines Hakens, welcher aus drei Theilen: Ductus praeccervicalis, Caput und Cauda besteht (Taf. I, Fig. 2). Zu dieser Zeit, oder zuweilen noch etwas früher, wird auch der Ductus praeccervicalis abgetrennt und somit verliert die Thymusanlage jeden Zusammenhang mit den umgebenden sowohl epithelialen, wie auch epidermoidalen Gebilden (Fig. 3). Die Zerreissung des Ductus praeccervicalis erfolgt meistens in der Nähe des Infundibulum praeccervicale derart, dass der grösste Theil des letzteren mit dem Thymuskopf in Zusammenhang bleibt und nur ein sehr kleiner, äusserster Rest desselben noch in den relativ späteren Entwicklungsstadien (bis zu einer Länge des Embryo von 15—20 mm), in der Nähe des Mandibularwinkels in Verbindung mit der Epidermis gefunden werden kann (Fig. 3 D. p.). Später schwindet jener Rest spurlos.

Jetzt, bevor ich zu der Beschreibung des weiteren Entwicklungsstadiums der Thymusdrüse übergehe, will ich die mechanischen Bedingungen der oben beschriebenen Processe ins Auge fassen.

Es ist kaum möglich zu bezweifeln, dass die Ursache der Umgestaltung der zweiten und der dritten Schlundspalte zuerst in die langgestreckten Röhren, dann in die lumenlosen, epithelialen Stränge, sowie die Ursache der Zertrennung der letzteren in dem relativ raschen Wachsthum der mittelblätterigen Bestandtheile der Schlundbogen liegt. Gerade in diesem Entwicklungsstadium werden die Knorpel der Schlundbogen und die betreffende Muskulatur angelegt. Infolge dessen nehmen die Schlundbogen sehr bedeutend an Umfang zu, indem sie zum Theil nach aussen, vorwiegend aber nach innen hervorwachsen und den Raum des embryonalen Schlundes immer mehr und mehr verengen. Durch diesen Vorgang werden die zweite und die dritte Schlundspalte sehr stark ausgedehnt, und diese Ausdehnung ist die Hauptursache der Zerlegung der Schlundspaltenschläuche.

Das Schicksal der embryonalen Schlundspalten bei Säugthieren.

13
des Halses annimmt (vergl. Fig. 1, 2 und 3). Mit der Verlängerung
des Halses, welche schneller als diejenige der Thymusanlage vor
sich geht, wird die letztere einer kräftigen Spannung unterworfen.
Die Cauda kann sich nicht emporheben, weil ihr Brustende zu
dieser Zeit durch die Auswachschung in dem oberen Brusttheile fest-
gehalten ist. Deshalb bekommt der mit der Cauda zusammenhän-
gende Thymuskopf das Bestreben sich nach unten zu verschieben.
Das wird jedoch durch den N. Hypoglossus, welcher jetzt in un-
mittelbare Berührung mit dem inzwischen gebildeten Ductus praec-
cervicalis kommt, verhindert. Der gegenseitige Druck dieser beiden
Gebilde hat zur Folge einerseits die winkelförmige Krümmung des
N. Hypoglossus, welcher früher mehr geradlinig verlief (vergl. Fig.
1 und 2), andererseits die starke Ausdehnung und Verschmälerung
des Ductus, und wird erst mit der Zerrtrennung des letzteren ver-
mindert, aber nicht vollkommen beseitigt, weil auch jetzt der innere
Theil des Ductus, welcher wie ein hakenförmiger Vorsprung des
Thymuskopfes aussieht, dem N. Hypoglossus fest anliegt (Fig. 3).
Endlich wird auch dieser Vorsprung von dem Thymuskopf losge-
rissen und bewahrt seine Lage lateralwärts von dem N. Hypoglossus,
während der Thymuskopf medianwärts von demselben bleibt. Von
diesem Augenblicke an gehen sehr schnell die beiden bisher zusammen-
hängenden Gebilde: N. Hypoglossus und Thymusanlage auseinander
(Fig. 4). Der Winkel des ersteren wird wieder gestreckt und da-
durch der Nervus selbst etwas nach oben gehoben. Die Thymus-
anlage dagegen senkt sich immer mehr nach unten.

Jetzt unterscheiden wir bei der Thymusanlage drei Haupt-
theile: 1) den aus dem Ductus praecervicalis ausgewachsenen und
jetzt getrennt liegenden, ausschliesslich epidermoidalen Knoten,
welchen ich als Thymus superficialis bezeichnen möchte (Tm. s.),
den oberen, sowohl aus epidermoidalen, wie auch aus epithel-
ialen Bestandtheilen zusammengesetzten, keulenförmigen Kopf
(Caput) und 3) den unteren ausschliesslich epithelialen Theil —
die Cauda. Die beiden letzteren bleiben immer in Zusammenhang
und können zusammen als Thymus profundus bezeichnet werden.

Jetzt noch wenige Worte über jede von diesen drei Bestand-
theilen im Besonderen. Als ich die Bildungsgeschichte der Thymus
superficialis verfolgt hatte, glaubte ich anfangs die Anlage irgend
eines von der Thymus ganz unabhängigen Organes zu finden. Die
isolirte Lage und das rasche Wachsthum gaben mir die Veran-

Bei den Embryonen von 80 mm NL. ist die Thymus superficialis von dem Thymuskopf noch durch eine ununterbrochene Bindedewebsschicht getrennt. In einigen Fällen wird das von dem Ductus praecervicalis stammende Gebilde in zwei Theile zertheilt. Dann besteht die Thymus superficialis aus zwei vollkommen gleichartigen Knoten (Fig. 4). Endlich muss ich noch bemerken, dass in einigen Fällen gar keine Thymus superficialis gebildet wird. Wenigstens habe ich bei einem Embryo von 30 mm NL. keine gefunden.

Das Schicksal der embryonalen Schlundspalten bei Säugthieren. 15

Die mit der Thymusanlage in Verbindung bleibenden lumenlosen Reste der Schlundspalten sind noch einige Zeit lang in Form der dornförmigen Anhänge des ersteren zu bemerken. Einen solchen Anhang finden wir an der medianen Seite des Thymuskopfes (Fig. 15). Er stammt von der abgetrennten zwischen dem Schlund und Nodus thymicus sich befindenden Theilstrecke der dritten epithelialen Tasche. Ein zweiter Anhang, welcher von der zweiten epidermoidalen Tasche stammt, bleibt meistens mit der Thymus superficialis in Verbindung (vergl. Fig. 2 und 3). Diese beiden Anhänge werden mit der Zeit verkürzt und endlich vollkommen mit ihnen zusammenhängenden Thymusanlagen einverleibt.

Ein anderes Schicksal hat das innerste blinde Ende des Fundus praecervicalis, welches ich oben vermutlich für die vierte epidermoidale Tasche angenommen habe (Fig. 6 ed t). Dieselbe behält noch sehr lange das Lumen an ihrer Spitze und bekommt deshalb das Aussehen eines mit dem Thymuskopf durch einen relativ schmalen Stiel verbundenen epithelialen Bläschen (Fig. 15, 4 und 7 V. tn.), welches ich als Vescicula thymica bezeichnen will. Dieses Bläschen ist bei den Embryonen von 15 bis 30 mm NL. gut zu beobachten. Später schwindet sein Lumen, das Zellennmaterial schmilzt mit dem Thymuskopf zusammen und als ein begrenztes Gebilde ist das Bläschen nicht mehr zu unterscheiden.

Gleichzeitig mit der Verschmelzung sämtlicher den Thymuskopf zusammensetzenden Gebilde (ausgenommen Nodus thymicus), geht der Process der Zerschnürung desselben in einzelne solide epitheliale Zellenhaufen vor sich, welche mit der Zeit sich in die bekannten Follikel umwandeln. Es liegt nicht im Bereich dieser Arbeit das Nähere über diesen Process der Umwandlung, sowie auch andere feinere histologische Einzelheiten zu studiren. Bei dem Embryo von 82 mm NL. besteht schon der ganze Thymuskopf,
ausgenommen Nodulus thymicus, aus zahlreichen, theils getrennten, theils noch zusammenhängenden, grossen, abgerundeten, follicelähnlichen Zellenhaufen.

Die Cauda der Thymusanlage ist gerade derjenige Theil der letzteren, welcher nach der Vesicula thymica am längsten sein Lumen beibehält. Die aus der dritten epithelialen Schlundtäschene stammende röhrenförmige Anlage der Cauda theilt sich in viele Sprossen, welche desto länger ihr Lumen behalten, je weiter nach unten sie gelagert sind. Bei den älteren Embryonen kann die Cauda nach ihrem histologischen Bau von dem Caput und der Thymus superficialis nicht mehr unterschieden werden. Die blinden unteren Enden der beiden Caudae wachsen schon bei Embryonen von 16 mm NL. ausserordentlich rasch und verschmelzen untereinander, indem sie viele sprossenähnlichen Zellenbalken und Zellenhaufen entwickeln (vergl. Fig. 14 und 15). Dieses untere unpaare Ende der beiden Caudae, welches vom Anfang an in der oberen Wand des Herzbeutels gelagert ist, wird infolge seines raschen Wachstums bald zu dem grössten Bestandtheile der Thymusanlage.

Ganz umgekehrt steht die Sache bei dem Thymuskopf. Der selbe nimmt in seinem Wachsthum in späteren Entwicklungsstadien relativ ab und wird allmählich nach unten verschoben. Die Ursache dieser Verschiebung liegt augenscheinlich in der fortwährenden Verlängerung des Halses. Nicht so schnell, aber nicht weniger sicher, wird auch die Thymus superficialis nach unten verschoben, obgleich die Ursache dieser Erscheinung mir nicht so klar ist. Wenn die Th. superficialis aus zwei getrennten Theilen besteht, so verwachsen dieselben zusammen und endlich verwächst die ganze Th. superficialis mit dem Thymuskopf, indem sie die oberste Lage in der ganzen Thymusanlage annimmt. Aber alle diese Verwachsungen, ebenso die der paarigen Caudae, finden nicht infolge der Zusammenschmelzung der einzelnen Zellenbalken oder Follikel statt, sondern infolge der Zusammenfassung der letzteren durch die zu dieser Zeit ersecheinende bindegewebige Hülle.

Wenn ich jetzt die Frage: was für ein Bestandtheil der Thymusanlage die Hauptrolle in der Entwicklungsgeschichte dieser Drüse spielt, beantworten muss, so sage ich entschieden: der von der dritten epithelialen Täschene stammende Schlauch, weil gerade dieser den grössten Theil der Gesammtmasse der Thymus bildet.
Das Schicksal der embryonalen Schlundspalten bei Säugthieren. 17

Obgleich es nicht in meiner ursprünglichen Absicht lag die Entwicklungsgeschichte der Gl. carotica zu untersuchen, fand ich es doch für zweckmässig auch mit dieser Frage wegen ihrer indirechten Beziehung zu der Entwicklungsgeschichte der Thymus mich zu beschäftigen, und dabei habe ich Folgendes gefunden. Bei Schweineembryonen bis 13 mm NL. bemerkt man noch keine Spuren von der Carotidenanlage. Dieselbe erscheint zuerst bei den Embryonen von 14—15 mm NL. als ein verlängerter ellipsoider Knoten, welcher die Art. carotis interna gleich an der Theilungstelle der Carotis communis umgreift (Taf. I, Fig. 4 und 9 Gd. e.). Derselbe stellt anfangs nichts anderes als eine Verdickung der Adventitia dar. Durch die genaue Durchforschung der successiven Quer- oder Längsschnitte kann man sich sehr wohl über-

Die sogenannten „Zungenbeindrüsen“, welche von Zucker-
kandl (19), Kadyi (9), Wölfler (18) und vielen anderen Forschern beschrieben worden sind, sind wahrscheinlich mit meiner Thymus superficialis identisch. Betreff der von Remak (14) bei jungen Katzen gefundenen Anhänge der Thymusläppchen, welche in Form der Wimperblasen erschienen (l. c. S. 124, Taf. VIII, Fig. 10 und 11), darf ich die Vermuthung aussprechen, dass dieselbe vielleicht mit meiner Vesicula thymica identisch sind.

"Aus dem Epithel der dritten, sowohl äusseren, wie inneren Kiemenfurche" lässt Fischelis (2) die Thymus sich entwickeln. Er stellt aber die Sache so dar, als ob diese beiden Furchen in einem

Das Schicksal der vierten epithelialen Tasche (zur Entwicklungsgeschichte der Gl. Thyreoidea).

Wenden wir uns zu der oben besprochenen, an dem Hintertheile des Schlundes symmetrisch gelagerten Röhre, welche wir für die vierte, obschon etwas modificirte, epitheliale Tasche angenommen haben (Taf. II, Fig. 13 l. Tr.), zurück. Diese mit deutlichem Lumen versehene epitheliale Röhre wächst mit dem fortwährenden Wachsthum des Embryo auffallend schwach. Ihre Länge wird nicht nur relativ, sondern auch absolut vermindert, aber die Dicke etwas vergrössert, indem die Röhre nach allen Richtungen viele sprossenähnliche, solide epitheliale Vorsprünge entwickelt und sich allmählich in ein Konglomerat von epithelialen Zellensträngen mit zwischenliegendem an Blutgefässen sehr reichem Bindegewebe umwandelt (vergl. Fig. 1, 2 und 3 l. Tr.). Der Abstand zwischen diesem drüsigen Konglomerate und der mittleren Schilddrüsenanlage, welcher von Anfang an sehr beträchtlich war, infolge der Bildung des Halses und der damit bedingten Verschiebung der mittleren Schilddrüsenanlage nach unten und dorsalwärts, wird immer kleiner. Zu gleicher Zeit wachsen die Seitentheile der mittleren Schilddrüsenanlage stark nach hinten hervor und umfassen die beiden symmetrischen drüsigen Konglomerate von vorn und lateralwärts (Taf. II. Fig. 14 und 15). Bald folgt die Verwachung der mittleren Schilddrüsenanlage mit beiden seitlichen Konglomeraten, welche somit als seitliche Schilddrüsenanlagen sich erweisen. Die Struktur der mittleren und der beiden seitlichen Schilddrüsenanlagen ist in solchem Grade ähnlich, dass nach dem Verwachsen derselben ihre Grenze nicht mehr unterschieden werden kann.

Gleichzeitig mit der Umwandlung der seitlichen röhrenförmigen Schilddrüsenanlage in den drüsigen Knoten verliert auch ihr Stiel (Fig. 3 D. 1.) sein Lumen, wird stark verschmälert und schwindet endlich, zuerst in seinem mittleren Theile, so dass im Anfange
der Verschmelzung der seitlichen Schilddrüsenanlage mit der mittleren der Stiel der ersteren nur noch in seiner Anfangsstelle, wie auch in der Nähe der Seitenanlage selbst, in Form eines schwachen, soliden Epithelstranges verfolgt werden kann (Fig. 15).

Die erste deutliche Beschreibung der lateralen Thyreoideaanlage hat Stieda (16) gegeben. Er hat aber die mediane Thyreoideaanlage nicht bemerkt und deshalb der Thyreoideadrüse ausschliesslich eine paarige Herkunft zugeschrieben. Die richtige Darstellung der Entwicklung der Thyreoideadrüse bei Säugethieren aus einer unpaaren, schon längst bekannten und zwei paarigen Anlagen finden wir bei Born (1). Seitdem ist diese Thatsache von mehreren Seiten bestätigt und unter anderen auch von His an
menschlichen Embryonen (5) und von de Meuron in seiner ausführlichen auf phylogenetischem Wege durchgeführten Arbeit (12).

Was die von de Meuron (12) beschriebene „portion dorsal du thymus“ betrifft, welche phylogenetisch zu der Thymus gehören, aber von der vierten epithelialen Tasche stammen und sich später
Das Schicksal der embryonalen Schlundspalten bei Säugethieren. 23

von der Seitenanlage der Thyreoidea trennen soll, so konnte ich keine Spur derselben finden. Die kleine Ausstilpung der lateralen Thyreoideaanlage, welche ich vermutlich für die Spitze der eigentlichen vierten epithelialen Tasche angenommen habe, theilt das Schicksal des ganzen Schlauches.

Ich habe mich bemüht die Untersuchungsresultate so kurz wie möglich zu beschreiben. Deshalb betrachte ich es für überflüssig, noch kürzere Schlussfolgerungen beizufügen.

Es sei mit gestattet, Herrn Professor Waldeyer für seine liebenswürdige Unterstützung meinen aufrichtigen Dank auszusprechen.

Literatur.

5) W. His, Anatomie menschlicher Embryonen. III. Leipzig 1885.

Erklärung der Abbildungen auf Tafel I und II.

Allgemeine Bezeichnungen.

A. = Auge.
Ac. = Nervus accessorius Willisi. u. s. w. epidermoidale Taschen der Schlundspalten.
ad. = äußerer Gehörgang.
Ah. = Anthelix.
Cd. Tm. = Cauda der Thymusanlage.
Cp. Tm. = Caput der Thymusanlage.
C. R. = Cartilago Reicherti.
Ch. = Cochlea.
Ch. t. = Chorda tympani.
Cr. c. = \{ \{ communis.
Cr. i. = \{ Carotis \{ interna.
Cr. e. = \{ externa.
D. l. = Ductus lateralis.
D. p. = Ductus praeacervicalis.
ed. = erste, zweite.
ed. = erste, zweite epidermoidale Taschen der Schlundspalten.
Et \{, et \{ u. s. w. = erste, zweite epidermoidale Taschen der Schlundspalten.
F. i. = Fossa intercervicalis.
F. R. = Fossa Rosenmülleri.
Fe. = N. Facialis.
F. d. = Fundus praeacervicalis.
G. G. = Ganglion Gasseri.
Gn. ac. = Gangl. acusticum.
Das Schicksal der embryonalen Schlundspalten bei Säugethieren. 25

Gu. pr. = Gangl. petrosum.
Gu. s. = Gangl. cervicale superius
n. sympathici.
Gd. c. = Glandula carotica.
Hy. = Hypophysistasche.
Hyk. = Hyoidknorpel.
Hgl. = N. Hypoglossus.
Hm. = Hammer.
Hmg. = Hammergriff.
I. p. = Infundibulum praeccervicale.
Lg. = Gehirnkopfeingang.
l. Tr. = laterale Thyroideaanlänge.
Lt. = Labyrinth.
m. Tr. = mediane Thyroideaanlänge.
m. Gr. = mittleres Ohrgrübchen.
N. tm. = Nodus thyamicus.
N. l. s. = Nervus laryngeus superior.
Oc. = Oesophagus.
Om. = Ohrmuschel.
Omk. = Ohrmuskelnkorpel.
o. Gr. = oberes Ohrgrübchen.
Ph. = Pharynx.
p. P. = primäre Paukenhöhle.
s. P. = sekundäre Paukenhöhle.
S. p. = Sinus praeccervicalis.
Trg², Trg³ = zweiter und dritter Ast
des n. Trigeminus.
Tr. = Trachea.
Trk. = Thyreoidknorpel.
Tm. s. = Thymus superficialis.
T. E. = Tuba Eustachii.
Tnf. = Trommelfell.
uter Gr. = unteres Ohrgrübchen.
V. tm. = Vesicula thyamica.
V. j. i. = Vena jugularis interna.
Vg. = N. Vagus.
Zg. = Zunge.

Tafel I.

Fig. 1. Sagittalreconstruction des Schlundspaltengebietes eines 12 mm langen Embryo. Vergr. 25.
The Lage der Ohrgrübchen ist durch die Schattierung angedeutet.

Fig. 2. Sagittalreconstruction des Schlundspaltengebietes eines 14 mm langen Embryo. Vergr. 22.
Gangl. plexiforme n. Vagi ist als abgeschnitten dargestellt, um die
Zeichnung nicht zu complicirt zu machen. Aeusserer Gehörgang
sicht wie eine kurze Tasche aus.

Fig. 3. Sagittalreconstruction des Schlundspaltengebietes eines 18 mm langen Embryo. Vergr. 22.
Das mittlere Ohrgrübchen (m. Gr.) ist auf das knorpelige Labyrinth
projicirt. Epiglottis ist nicht gezeichnet, ebenso das untere Ende
der Cauda der Thymusanlage.

Fig. 4. Sagittalreconstruction des Schlundspaltengebietes eines 30 mm langen Embryo. Vergr. 22.
Der äussere Gehörgang sieht schon wie eine lange keulenförmige
Tasche aus. Thymus superficialis besteht aus zwei getrennten
Lappen, welche dem Zuschauer näher als der Thymuskopf liegen,
was durch ihre dunklere Schattierung angedeutet ist. In der Tiefe
bemerkt man die zum Theil durch den Thymuskopf bedeckte Gl.
carotica am Winkel zwischen Car. ext. und int.

Fig. 5. Sagittalschnitt durch den Thymuskopf und die Thymus superficialis
eines 82 mm langen Embryo. Vergr. 22.
Fig. 6. Querschnitt durch diejenige Gegend, wo der Nodulus thymicus dem Sinus praecervicalis am nächsten liegt. Länge des Embryo 11 cm. 2 Syst. von Hartnack. Nur das unterste Ende des Ganglion plexiforme n. Vagi liegt in der Schnittebene.

Fig. 7. Sagittalschnitt durch den Thymuskopf eines 30 mm langen Embryo. 2 Syst. von II. Nur der periphere Theil des Nodulus liegt in der Schnittebene.

Fig. 8. Querschnitt durch die Schlundspaltengegend eines Hühnerembryo des dritten Tages der Bebrütung. 1 Syst. von II.

Fig. 9. Querschnitt durch die Carotidendrüse eines 17 mm langen Embryo.

Tafel II.

Fig. 10, 11 und 12. Ohrgegend von drei verschiedenen Embryonen von 12 mm, 13 mm und 15 mm NL. Vergrösserung 25. Nach der Natur gezeichnet.

1, 2, 3, 4, 5 Ohrmuschelhöcker nach His (5, p. 211 und folg.).

Fig. 13. Querreconstruction des Schlundes eines 12 mm langen Embryos. Vergr. 25. Ansicht von der dorsalen Seite. Sinus praecervicalis und mehrere andere Theile schimmern von unten durch.

Fig. 14. Querreconstruction der Schlundspaltengegend eines 15 mm langen Embryos. Vergr. 22. Der äussere Gehörgang, Infundibulum praecervicale u. a. m. schimmern von unten durch.

Fig. 15. Querreconstruction der Schlundspaltengegend eines 17 mm langen Embryos. Vergr. 22. Die Schnittoberflächen des Knorpels sind etwas dunkler schattirt.

Fig. 16. Querreconstruction der Mittellohrgegend eines 20 mm langen Embryo. Vergr. 22. An der vorderen Seite der primären Paukenhöhle bemerkt man eine secundäre (wahrscheinlich in Folge des Hammerwachstums) entstandene spaltenförmige Vertiefung, welche mit der ersten epithelialen Tasche nicht zu verwechseln ist.

Fig. 17. Querreconstruction der Mittellohrgegend eines 52 mm langen Embryos. Vergr. 10. Die Paukenhöhle ist zum Theil durch die knorpelige Cochlea bedeckt. An den beiden letzten Zeichnungen ist der Ohrmuschelknorpel nicht gezeichnet.

Nach Alkoholconservirung ist die schöne blaue Farbe der Thiere, die bei Thalassicolla caerulea vermutlich von blauen Oel- tropfen herrührt, verschwunden, das Thier zeigt besonders in den

Dass wir es hier nicht mit unnützen Einschüssen zu thun haben, die vielleicht auf dem Transport der Thiere an der Gallerte haften blieben und dann von den Pseudopodien in das Innere geführt wurden, dafür dürfte ein Umstand sprechen, den Brandt 1) besonders betont, nämlich der, dass anorganische Partikel, todte und lebende Organismen die mit der Gallertoberfläche in Berührung kommen, daran kleben bleiben. Die lebenskräftigeren Organismen reissen sich gewöhnlich bald wieder los; solche, die schon im Absterben begriffen sind, vermögen sich gewöhnlich nicht mehr von der gallertigen Umhüllung zu befreien und gerathen bei ihren verzweifelten Bestrebungen loszukommen, nur noch tiefer in die Gallerte hinein. Und da Brandt im Innern der Colonien nur solche Thiere traf, die sich noch kräftig bewegen konnten, so schliesst er, dass alle Thiere, die man innerhalb der Gallerte findet, sich hineingebohrt haben. Selbst im erweichten Zustand bietet die Gallertc viel zu grossen Widerstand, als dass die zarten Pseu-

1) Brandt, Die Kolonien bildenden Radiolarien 1885, p. 89.
Ueber Thalassicolla caerulea.

Dopodien todte Thiere in die Colonien hineinziehen konnten. Damit will aber Brandt keineswegs lügen, dass Sphärozoen im Stande sind Thiere zu verdauen, nur meint er, dass dies unter besonderen Verhältnissen in der Gefangenschaft der Fall sei. So sah er die Pseudopodien einer Sphärozoenkolonie in das Innere eines kleinen Ostracoden, der sich in die Gallerte eines Sphärozoon punct. eingebohrt hatte, eindringen und dessen Weichtheile nach 24 Stunden vollkommen beseitigen. Und ferner beobachtete er, dass in der Gefangenschaft die Pseudopodien der Colonie in kleine Thierleichen (Decapodentlarven, Copepoden) drangen und sah darauf den Weichkörper dieser Thiere verschwinden.

Da nun an der Richtigkeit der Angabe Brandt's nicht zu zweifeln ist, dass Fremdkörper nur an der Oberfläche kleben bleiben, so können die im Pseudopodienmutterboden gefundenen Muskelstücke entweder nur Reste eingedrungener Thierkörper, oder wenn ausser jenen gar keine weiteren Ueberbleibsel von Thieren gefunden wurden, nur von den Thalassicollen aufgenommen worden sein. Zunächst wäre dann wohl daran zu denken, dass diese Muskelstücke von Thierleichen, die mit den Thalassicollen in einem und demselben Behälter während des Transportes ins Laboratorium sich befanden, herrührten und von unseren Radiolarien verspeist wurden.

Wenn durch diese Beobachtung die Frage auch nicht endgültig beantwortet ist, in wie weit im freien Zustande die Radiolarien animale Nahrung geniessen, so haben wir doch eine bestimmte Vorstellung, in welcher Weise dies geschieht. Brandt äussert sich hierüber nicht genau. Wir erfahren nicht von ihm, ob die in abgestorbene Thiere eingedrungenen Pseudopodien die einzelnen Theile dieser in sich aufnehmen und dann erst in ihrem Plasma oder zunächst im sog. Pseudopodienmutterboden verdauen, oder ob die Oberfläche des Radiolarienkörpers, die Pseudopodien schon das Vermögen besitzen, das Nährmaterial, mit dem sie in Berührung kommen, in assimilirbare Stoffe zu verwandeln. Brandt sagt nur, dass kurze Zeit, nachdem die Pseudopodien seiner Radiolarienkolonie in die abgestorbenen Thiere eingedrungen sind, der Weichkörper dieser letzteren verschwunden ist. Es wird nun, nachdem die Aufnahme von Muskelfragmenten bei Radiolarien feststeht, nicht so schwer sein, zu ermitteln, ob unter günstigen Ver-
hältnissen von den Radiolarien aufgenommene feste animale Stoffe als Nahrung Verwendung finden.

Über Thalassicolla caerulea.

Die Vacuolen enthalten mattglänzende hyaline Kugeln, die concentrisch geschichtete kuglige Concretionen, wahrscheinlich aus kohlensaurem Kalk einschliessen.

Das Tinctionsvermögen der Nucleolen ist ein sehr wechselndes. Bei einigen Exemplaren gelang selbst nach mehrstündigem Einwirken des Hämatoxylin (auf Schnitte) die Färbung gar nicht. Dann erschienen die Kernkörperchen homogen, von etwas speckigem Glanz und leicht gelblichem Schimmer. Manchmal waren sie von kleinen punktförmigen Vacuolen durchsetzt. Oder die Färbung blieb auf eine äussere Zone beschränkt, oder endlich waren die Nucleolen in toto, aber dann doch immer im Centrum weniger gefärbt als in der Peripherie. Ähnliches beobachtete Brandt bei den verschiedenen Sphärozoen, deren Kerne sich bei der gleichen Behandlungsweise verschieden intensiv färben. Er vermutet aber, dass dies nicht daran liegt, weil die chromatische Substanz in dem einen Falle reicher sei als in dem andern, sondern dass sie bei den verschiedenen Arten verschieden sei.
Erklärung der Abbildungen auf Tafel III.

Fig. 1. Durchschnitt der Thalassicolla caerulea. a Rindenschicht des extracapsulären Plasma, b Vacuolen in demselben, c feinvacuoläre Schicht, d Muskeln in den innersten Lagen (Pseudopodienmutterboden), e Wand der Centralcapsel, f intracapsuläres Plasma mit Vacuolen, g Kern der Centralcapsel. System 4, eingeschobener Tubus Hartnack.

Fig. 2. Tangentialer Schnitt durch Thalassicolla caerulea. a Rindenschicht des extracapsulären Plasmas mit Vacuolen, b, c Muskeln in den Alveolen des pigmentirten Pseudopodienmutterbodens. System 7, Ocul. 3 Hartnack.

(Aus dem anatomischen Institut in Berlin.)

Beiträge zur Kenntniss der Entwicklung des elastischen Gewebes im Ligamentum Nuchae und im Netzknorpel.

Von

Dr. N. Kuskow aus St. Petersburg.

Hierzu Tafel IV.

Nur der Zellenkern bleibt, fast möchte ich sagen „gänzlich“ unbeachtet, wenn man von der, später von dem Autor selbst dementirten Henle’schen 1) Hypothese absehen will. Letzterer sah

1) Henle, Allgemeine Anatomie 1841.
nämlich das elastische Gewebe für ein Analogon des Bindegewebes an und glaubt deshalb und auf Grund der Valentin'schen Untersuchungen 1) über die Entwicklung des Bindegewebes, dass die elastischen Fasern den Kernfasern des Bindegewebes entsprächen und aus den Kernen der primären Zellen entstanden. Ausser Henle stellte noch Sudakewitsch 2), der bei seinen Untersuchungen zu dem Schluss gekommen war, dass die elastischen Fasern aus Zellen entstehen, die übrigens nur ungenügend motivierte These auf, dass auch die Kerne der embryonalen Zellen an der Bildung des elastischen Gewebes teilnehmen.

Ich verzichte auf eine ausführliche Aufzählung der betreffenden Literatur, da eine solche in mehreren anderen Arbeiten gegeben worden ist, wie z. B. bei L. Gerlach, Morph. Jahrbuch 1878 und Sudakewitsch (l. c.).

Auf Vorschlag des Herrn Prof. Waldeyer stellte ich mir die Aufgabe zu bestimmen, ob und welchen Antheil an der Entwicklung des elastischen Gewebes die Zellenkerne nehmen und ich hatte das Glück Präparate zu bekommen, aus welchen in der That hervorgeht, dass die Zellenkerne bei der Entwicklung dieses Gewebes nicht unbetheiligt sind.

Ich hatte meine Untersuchungen an Ohr- und Giesskannenknorpeln, sowie am Lig. Nuchae von Embryonen verschiedenem Alters und von verschiedenen Thieren begonnen und zwar bediente ich mich dabei der Tinctionsmethoden von Unna 3) und Lustgarten 4). An mit Osmiumsäure behandelten und nach Unna mit Jodviolett gefärbten Präparaten sieht man die elastischen Fasern sowohl des Knorpels, als auch des Lig. Nuchae intensiv gefärbt; doch ebenso intensiv färben sich auch die Kerne und ziemlich intensiv das Protoplasma der Knorpelzellen und im Lig. Nuchae färben sich das Protoplasma der Zellen, deren Fortsätze und Kerne in demselben Grade, wie die elastischen Fasern, weshalb trotz des augenweislichen Zusammenhanges zwischen den elastischen Fa-

4) Lustgarten, Medicinische Jahrbücher. Neue Folge. 1886.
sern und den Zellen, das Verhalten ersterer zu den Kernen am Lig. Nuchae gar nicht, am Knorpel wegen der undeutlichen Abgrenzungen des Kernes gegen das Protoplasma nur schwer sich beurtheilen lässt.

Beim Lustgarten'schen Tinctionsverfahren werden die Präparate aus der Flemming'schen Mischung in eine Lösung von Victoriaablau 4 B (besser als Victoriaablau B) gebracht, wobei die elastischen Fasern nur schwach gefärbt werden; dieselbe Flüssigkeit färbt jedoch sehr schön und intensiv das gesamte elastische Gewebe an mit Osmiumsäure behandelten Präparaten, wobei auch die Kerne stark tingirt werden, das Protoplasma und die intercellulare Substanz hingegen ungefärbt bleiben.

Recht dünne (nicht dicker als 5 μ) Schnitte aus dem in 85%igem Weingeist gehärteten Lig. Nuchae werden in Wasser übertragen und ordentlich ausgebreitet, von da in eine frisch bereitete Lösung von officinellem Pepsin in 3%iger Oxalsäure (0,1 Pepsin: 20,0 Oxalsäure) gebracht; in dieser Lösung bleiben die Schnitte bei Zimmertemperatur 10—40 Minuten, wobei sie stark aufquellen, um so mehr und schneller, je jünger das Gewebe war, woher sie stammten. In einer warmen Pepsinlösung geht das Aufquellen zu rasch und ungleichmässig von Statten, weshalb die Schnitte sich einrollen, am Glase kleben bleiben und sich sehr schwer ausbreiten lassen; alle diese Umstände zwingen eine kalte Lösung zu gebrauchen, obgleich man auch dabei mit denselben Schwierigkeiten, wenn auch in geringerem Maasse zu kämpfen hat.

Aus der Pepsinlösung werden die Schnitte wieder in Wasser gebracht, um dort ausgespült und dann, betreffs der Kernfärbung, in eine schwache Lösung von Ammoniakearmin gebracht zu werden; im letzteren liess ich sie etwa 24 Stunden und nachdem ich sie noch mit schwacher Essigsäure behandelt und in Wasser ausgespült hatte, untersuchte ich sie in Glycerin oder ich brachte sie, um auch die elastischen Fasern intensiv zu färben, nach der Behandlung mit Essigsäure und dem Ausspülen mit Wasser auf 1—3
Stunden in eine concentrirte Lösung von Pikrinsäure und aus dieser in Glycerin, wo die Schmittle die überschüssige Farbe abgaben, und hierauf nochmals in reines Glycerin, worin sie auch untersucht wurden.

Bei der mikroskopischen Betrachtung der Längsschnitte aus dem Ligam. Nuchae eines fünffmonatlichen Rinds-Embryo, die in oben beschriebener Weise präparirt waren, sehen wir die Zellen mehr oder weniger auseinander (Fig. 1) gelegt durch das aufgequollene und strukturlos gewordene intercellulare Gewebe, in welchem in derselben Richtung, in der die Zellen laufen, mehr oder weniger geschlängelte (elastische) Fasern einherziehen. Diese Fasern liessen sich in Aetzkali nicht lösen.

Beim Untersuchen dieser Präparate mit der Oelimmersion (Hartnack II) sehen wir mit völliger Deutlichkeit, wie einige elastische Fasern von den Enden der Kerne mit mehr oder weniger breiten Ansätzen (Fig. 1 a, b) ihren Anfang nehmen, oder, wie es scheint, es fangen die Fasern, was aber seltener beobachtet wird, innerhalb der Kerne an, wobei man sie ununterbrochen bis zu ihrem Austritt aus dem letzteren verfolgen kann (Fig. 1 c); ausserdem begegnen wir Fasern, die von den seitlichen Rändern des Kernes ausgehen (Fig. 1 d, d'). Von einer Stelle des Kernes gehen gewöhnlich 1—3 Fasern ab, von dem ganzen Kernes bis 5.

Dieses Verhalten der Kerne zu den elastischen Fasern ist ebenso deutlich zu sehen an den nur mit Carmin gefärbten Präparaten, wo die elastischen Fasern farblos sind, wie auch an den Präparaten, welche ausser mit Carmin noch mit Pikrinsäure gefärbt waren, und wo man die elastischen Fasern intensiv gelb gefärbt sieht.

Von den Kernen anfangend, gehen viele Fasern durch das Protoplasma der Zellen hindurch, welches an in dieser Weise bereiteten Objecten sehr blasi erscheint, jedoch beim Untersuchen mit der Oelimmersion deutlich zu sehen ist; für gewöhnlich verlassen sie sehr bald das Protoplasma und verlaufen alsdann im intercellulären Gewebe. Seltener gehen die Fasern eine grössere Strecke durch das Protoplasma, wobei jedoch oft schwer zu sagen ist, ob sie sich innerhalb oder an der Oberfläche des Protoplasma befinden. Zuweilen verlässt eine Faser das Protoplasma der Zelle, aus deren Kern sie entsprungen ist und legt sich in grösserer oder geringerer Ausdehnung an das Protoplasma oder den Kern
einer anderen Zelle an; diese Erscheinung veranlasste, wie es scheint, Oskar Hertwig (l. c.) anzunehmen, dass die elastischen Fasern ein Produkt der formativen Zellenthätigkeit sei. Wenn wir die Schnitte und zerquetschte Präparate aus demselben Lig. Nuchae, welches aber nicht der Pepsinbehandlung unterworfen wurde, untersuchen, so sehen wir in der That, wie Hertwig das beschreibt, dass die elastischen Fasern in einer bedeutenden Strecke der Oberfläche der Zellen aufliegen und allen Krümmungen und Unebenheiten des Protoplasmas und des Kernes folgen; aber das Verhalten der Zellenleiber zur Pepsinlösung scheint mir zu beweisen, dass ein Zusammenhang zwischen dem Protoplasma und den elastischen Fasern in der That nicht existirt und man dieser Erscheinung die Bedeutung, die ihr von Hertwig (l. c.) zugeschrieben wird, wohl nicht beilegen kann.

Alles, was wir an dem Lig. Nuchae eines 5monatlichen Embryos beobachten, können wir auch an dem Lig. Nuchae von 3 und 6monatlichen Embryonen sehen; doch sind die Präparate von einem 3monatlichen Embryos nicht so demonstrativ, da dessen elastische Fasern bei der Pepsinbehandlung sich verändern und körnig werden, diejenigen von einem 6monatlichen Embryos aber nicht genügend aufquellen, da hier das Lig. Nuchae ärmer an Grundsubstanz ist, aus welchem Grunde wir die Zellen nicht hinreichend auseinander geschoben sehen. Doch kann man auch hier durch leichten Druck auf die Schnitte unter dem Deckgläsen demonstrative Präparate erhalten.

Leider kann ich mich nicht mit derselben Bestimmtheit darüber äussern, ob auch das Protoplasma an der Bildung des elastischen Gewebes Theil nimmt oder nicht. Der Umstand, dass die von dem Kern ausgehenden Fasern sehr bald das Protoplasm verlassen (Fig. 1 a, d, e,) und die seitlichen (Fig. 1 d') Fasern zu demselben scheinbar in gar keinem Verhältniss stehen, lässt an dessen Beteiligung zweifeln.

Beim Untersuchen der Giesskannenknorpel mit Hilfe der Unna'schen und Lustgarten'schen Methoden konnte ich fast dasselbe, was auch Gerlach (l. c.) beobachtete, erkennen, doch konnte ich mich nicht von dem direnten, unmittelbaren Zusammenhang des in der hyalinen Zwischensubstanz liegenden elastischen Gewebes mit dem, was im Zellenprotoplasma ebenso wie das elastische Gewebe gefärbt war, überzeugen. Beim Färben derselben Präparate

Erklärung der Abbildungen auf Tafel IV.

Fig. 1. Lig. Nuchae eines 5monatlichen Rindsembryo. a, b elastische Fasern, welche vom Ende eines Kernes ausgehen. c elastische Fasern, welche aus dem Innern des Kernes hervorzuwachsen scheinen. d elastische Fasern, welche von dem Seitenrande eines Kernes ausgehen.

Fig. 2. Ohrknorpel eines 6monatlichen Rindsembryo. a Kerne, von welchen unmittelbar die (hell gezeichneten) elastischen Fasern ausgehen.

Ueber weitere Versuche, Farben auf dem Gewebe zu erzeugen und die chemische Theorie der Färbung.

Von

P. G. Unna.

Griesbach sagt in seiner Arbeit: „Weitere Untersuchungen über Azofarbstoffe behufs Tintio menschlicher und tierischer Gewebe)“1) sehr richtig:

„Ein empfindliches Argument gegen die chemische Theorie (der Färbung) wäre beigebracht, wenn die sinnfällige Erwägung sich realisiren sollte, dass Faser und Farbstoff vor und nach der Färbung dieselben chemischen Eigenschaften beibehalten und dass alle Agentien, welche den Farbstoff ausserhalb der Faser afficiren und modificeiren, dies in ganz derselben Weise auch auf derselben zu thun vermöchten.2)

Ich habe mich in meiner Arbeit: die Rosaniline und Para-rosaniline3) zur chemischen Theorie der Färbung bekannt und in dem kleinen Artikel: Ueber Erzeugung von Vesuvin im Gewebe

2) l. c. p. 368.
über Metaphenylendiamin als Kernfärbemittel) nachgewiesen, dass zwei Agentien, Metaphenylendiamin und salpetrige Säure, welche sich ausserhalb der Faser augenblicklich zu dem braunen Triamidotriazobenzol (Vesuvin) verbinden, einzeln auf die Faser gebracht, diese Verwandtschaft durchaus verlängern.

Durch Vermischen gleicher Theile der wässrigen Lösung von Metatoluylendiamin und salzsaurer Nitrosodimethylanilin entsteht die prachtvoll tieflaune gefärbte Lösung von Toluylenblau:

\[\begin{align*}
C_7H_6 \left(NH_2 \right)_2 + C_6H_4 \left(N(CH_3)_2 \right) & NO - HCl = C_6H_4 - N(CH_3)_2 \\
& \text{Toluylendiamin, + Salz. Nitrosodimethylanilin = Toluylenblau, + Wasser.}
\end{align*} \]

Diese charakteristischen Eigenschaften des Toluylenblaus lassen sich nun durch Uebereinanderfärbung der beiden Componenten auf dem Gewebe durchaus nicht erhalten. In der 1\%igen Lösung von Metatoluylendiamin nehmen die Schnitte eine graubräunliche, in der des salzsauren Nitrosodimethylanilins eine grüngelbliche

Färbung an. Bringt man die ersteren Schnitte in die letztere Flotte und umgekehrt, so bemerkt man nach einiger Zeit, dass die erste Farbe ganz allmählich der zweiten Platz macht. Schliesslich (z. B. nach 24 Stunden) zeigen die Schnitte nur noch die Farbe der zu zweit auf sie angewendeten Flotte.

Dieses Beispiel spricht noch schlagender als das der mangelnden Vesuvinbildung auf dem Gewebe für die chemische Bedeutung dieses letzteren beim Färbeprocess. Denn hier sind beide Componenten gefärbt; man kann das Resultat der Vor- und Nachfärbung an der Farbe des Objectes in jedem Abschnitte des Versuches verfolgen und bemerkt zu keiner Zeit die gewünschte Verbindung beider Componenten zu Toluylenblau.

Meine Erklärung dieses Vorganges, wie ich sie folgerichtig aus der in der oben genannten grösseren Arbeit niedergelegten Anschauung ableite, ist die folgende. Die beiden Bestandtheile des Toluylenblaus (a und b) zeigen zu einander eine chemische Verwandtschaft, die stärker (s. unten) ist als die Verwandtschaft beider Substanzen einzeln zum Gewebe (c). Bringe ich den Farbstoff a und das Gewebe c zusammen, so verbinden sich beide zu einer chemisch neuen Substanz (ac). Der Schnitt ac, in b immergirt, gibt a an b ab; es bilden sich also Spuren von Toluylenblau in der relativ unendlich farbreichen Flotte fortwährend, diese werden aber im Uebermaasse des Lösungsmittels b gelöst und verschwinden für das Auge, wie sie gebildet werden. Denn nur gleiche Theile von a und b geben zusammen Toluylenblau. Im selben Maasse als a sich von c dissociirt, nimmt c die Farbe b an, welche das in ihr gelöste Toluylenblau nicht zu modifizieren vermag. Folglich wird ac durch bc ersetzt, ohne dass es je zu einer Verbindung abc gekommen wäre. Ganz ebenso gibt die Verbindung bc an die Flotte a die Componente b ab und verwandelt sich allmählich in ac. Diese nach zwei Richtungen gleichmässig stattfindenden Umfärbungen beweisen, dass hier nicht eine grössere Verwandtschaft einer Componente zum Gewebe die Entfärbung bedingt, sondern vielmehr die stärkere Verwandtschaft beider Componenten unter sich.

Diese ganz durchsichtigen Vorgänge lassen sich nur verstehen, wenn wir annehmen, dass sowohl a wie b nicht nur physikalisch in c imbibirt sind, denn dann müsste sich bei der Nachfärbung so-
fort die Verbindung \(ab \) in \(c \) bilden\(^1\), sondern dass bei der Vorfärbung chemische Verbindungen \(ac \) resp. \(bc \) entstehen, die eben nur wieder durch die grössere chemische Verwandtschaft zwischen \(a \) und \(b \) überwunden werden. Farbstoffe, welche unter sich eine Verwandtschaft zeigen, sind daher stets geeignet, sich auf dem Gewebe bei der Nachfärbung zu verdrängen.

In dieselbe Gruppe der Anilinfarben wie das soeben betrachtete Toluylenblau, in die Gruppe des Indamine, gehört ein dunkelgrüner Körper (eine Art Phenylengrün), welcher beim Vermischen gleicher Theile von salzsaurem Anilin und salzsaurem Paraphenylendiamin und nachheriger Oxydation der Mischung mittels Kalium bichromicum, Natrium hypochlorosum oder anderer Oxydationsmittel entsteht. Der Vorgang in nuce ist folgender:

\[
C_6H_5-NH_2 + C_6H_4-NH_2 + O_2 = N\left[C_6H_4-NH + 2H_2O \right]
\]

Anilin + Phenylendiamin + Sauerstoff = Indamin + Wasser.

Ich habe versucht, diesen grünen Farbstoff im Gewebe zu erzeugen, theils durch Imprägnation des letzteren mit der angegebenen Mischung und nachheriger Oxydation, theils durch vorherige Behandlung der Schnitte mit Kalium bichromicum und nachheriges Eintauchen in die Mischung.

In der Aminmischung nehmen die Schnitte eine bräunlich-graue, schwache Färbung an. Spült man dieselben gut ab und bringt sie in eine Lösung von Kalium bichromicum (1\%/), so färben sie sich augenblicklich smaragdgrün. Sofort verblasst die Farbe aber wieder, um zuerst einer gelbgrünen Färbung zu weichen, die sehr bald dem reinen Chromgelb Platz macht. Nur wenige Orte, u. a. die mittlere Hornschicht, zeigen noch eine längere Zeit eine grünliche Färbung (vorherige physikalische Imbibition). Das vorübergehende Auftreten des Phenylengrüns beweist, dass die Verwandtschaft der auf dem Gewebe fixirten Aminmischung zum Sauerstoff des Chromsalzes genügte, um dieselbe aus ihrer Verbindung mit dem

\(^1\) Ob an ganz vereinzelten Stellen des Schnittes diese lockere, physikalische Bindung mit nachfolgender Toluylenblaubildung nicht ausnahmsweise eintritt (wie die Vesuvinbildung innerhalb der lockeren Hornschicht s. l. e.), soll hier nicht untersucht werden.
Gewebe zu befreien, worauf sie oxydiert und fortgeschwemmt wurde. Wäre die Affinität der Aminmischung zum Gewebe eine bedeutende gewesen, so hätte entweder gar keine Einwirkung auf das Chromsalz stattfinden können oder der disponible Sauerstoff dieses Salzes hätte sich der Verbindung hinzugesellt und diese grün färben müssen (Bildung von Phenylengrün im Gewebe). Da die Indifferenz zwischen beiden Theilen durch das vorübergehende Auftreten des Phenylengrüns ausgeschlossen ist, andererseits aber auch keine definitive Grünfärbung des Gewebes auftritt, so sind diese beiden Möglichkeiten ausgeschlossen und damit ist es auch die Annahme einer stärkeren Verwandtschaft der Aminmischung zum Gewebe. Sie tritt offenbar gegen die des Chromsalzes zum Gewebe zurück; letzteres verdrängt einfach die Aminmischung, ohne dass es zur Bildung des Farbstoffes auf der Faser kommt.

Setzt man der Mischung jedoch ein paar Tropfen H₂O₂ zu, so färben sich die Schnitte sofort wieder grün, um alsbald wieder abzublassen, bis sie — wenn auch immer schwächer — das anfängliche Chromgelb aufweisen.

Auch diese Erscheinungsreihe redet dieselbe deutliche Sprache. Die Aminmischung bekundet ihre Verwandtschaft zum Chromsalz dadurch, dass sie einen Theil desselben aus seiner Verbindung mit dem Gewebe löst. Diese augenblicklich grün gefärbte Portion ertheilt dem Gewebe vorübergehend die grüne Farbe, wird jedoch im Überschuss des Lösungsmittels fortgeschwemmt, so dass das Gewebe — nur etwas schwächer — chromgelb gefärbt zurückbleibt. Ein Zusatz von H₂O₂, der das Gewebe quellen macht und die Neigung der Lösung zur Oxydation verstärkt, löst wiederum einen
Theil des Chromsalzes ab und dasselbe Phänomen der Grünfärbung tritt auf und geht vorüber. So kann man durch successive Lockerrung des Chromsalzes auch das letztere durch die Aminmischung wohl verdrängen, aber keine dauerhafte Grünfärbung des Gewebes hervorbringen. Um wie vieles übrigens die Verwandtschaft des Gewebes zum Chromsalze bedeutender ist als diejenige zur Aminmischung, zeigt sich bei dieser umgekehrten Verdrängung der Componenten auf dem Gewebe wieder auf das Deutlichste.

Die beiden soeben skizzierten und misslungenen Versuche das Gewebe phenylengrün zu färben, unterscheiden sich aber noch dadurch wesentlich, dass im zweiten Fälle das grosse Molecul der Aminmischung an das andere grosse des Chromgewebes gebunden werden sollte, während es im ersteren Falle nur auf eine Oxydation, auf das Hinzutreten eines einfachen Sauerstoffmoleüls zu dem grossen Molecul von Aminmischung und Gewebe abgesehen war. Der zweite Versuch der Phenylengrünbildung ist dem ebenfalls verfehlten der Toluylenblaubildung zu vergleichen. Im Folgenden wollen wir nun eine einfache, reine Sauerstoffaddition (wie beim ersten Phenylengrünversuche) für sich betrachten. Hierzu bietet die den Indaminen nah verwandte Gruppe der Indophenole gute Gelegenheit, Farbstoffe, welche von den Färbern auch erst auf der Faser erzeugt zu werden pflegen.

Die Indophenole werden gewöhnlich, da sie in Wasser unlöslich sind, zum Zwecke des Färbens in die alkalilöslichen, entsprechenden Leukokörper übergeführt. Wir benutzen zweckmässiger die mehr oder weniger sauren, spiritüös-wässrigen Lösungen, wie sie bei Umwandlung der Indophenole in die Leukoindophenole durch Kochen mit Zinkstaub und Salz- oder Essigsäure im Reagirglasse entstehen, da bei der Neutralisation und Alkalisirung die Farbe allzurasch hervortritt, wodurch eine genaue Beobachtung sehr erschwert wird.

Ich experimentirte mit einem von der badischen Anilin- und Sodafabrik zur Verfügung gestellten Indophenolviolett. Einige

Wir müssen also auch hier wieder schliessen, dass die chemische Bindung des Indophenolweisses an das Gewebe seine Oxidation zu Indophenolviolett verhindert.

Die ganz entsprechende Wahrnehmung machen wir bei dem umgekehrten Versuche, Indophenolviolett auf dem Gewebe zu reduciren. Dieses Indophenolviolett färbt das tierische und pflanzliche Gewebe ganz charakteristisch und lässt sich schwer wieder entfärben 1). Mit Uebergehung anderer Eingenthümlichkeiten will ich an dieser Stelle nur darauf hinweisen, dass es die basale Hornschicht weiss lässt, die superbasale blauviolet hervorhebt und die mittlere Hornschicht bläulich färbt, also zur Differencirung der Hornschichten sehr geeignet ist. Bringt man die so gefärbten Schnitte nun in eine nascirenden Wasserstoff enthaltende Mischung von Zinkstaub und Salzsäure, welche freies Indophenolviolett sofort reducirt, so bleibt die Färbung ungeändert bestehen. Mit anderen Worten: das Indophenolviolett hat durch seine chemische Verbindung mit dem Gewebe seine Reducirbarkeit verloren, wie das Indophenolweiss unter denselben Umständen seine Oxydirbarkeit.

Ich muss gestehen, dass ich eine derartige, selbst auf die

1) Es ist deshalb überall bei sonst schwierig zu färbbenden Objecten zu versuchen.
einfache Addition von Sauerstoff sich erstreckende Bestätigung der Theorie gar nicht erwartet hatte. Denn die Sache liegt hier ja so, dass nur negative Befunde etwas, positive aber gar nichts beweisen. Nehmen wir beispielsweise an, die indophenolweissen Schnitte würden sich in H₂O₂ violett färben, so würde dieses nur beweisen, dass die Verbindung: Indophenolweiss-Gewebe in die Verbindung: Indophenolviolett-Gewebe direct durch Oxydation übergehen könne, nimmermehr aber, dass Indophenolweiss hier im Gewebe lediglich mechanisch imbibirt sei. Wenn sich mithin die gefärbten Gewebe hier und da ebenso verhalten wie die freien Farbstoffe, so kann die chemische Theorie stets unangefochten nebenher bestehen. Umgekehrt macht aber jedes negative Ergebniss eines derartigen Versuches die physikalische Theorie der Färbung zu einer unhaltbaren.

Mit Ausnahme von Methylenblau färbten sich die so behandelten Schnitte bei nachherigem Eintauchen in neutrales H₂O₂ oder eine Lösung von Kalium bichromicum nicht in der Farbe des zugehörigen oxydirten Farbstoffes, sondern sie behielten den schwachen Farbton der Lösung der Leukobasen bei oder entfärbten sich in den Oxydationsmitteln sogar gänzlich. Sie verhielten sich mithin durchweg verschieden von den entsprechenden Lösungen der Leukobasen selbst, welche, mit Oxydationsmitteln behandelt, entweder die Farbe der ursprünglichen Pigmente wieder annahmen.
(z. B. Wasserblau, Eosin, Saffranin) oder neue, auf Zersetzung
deutende Farbentöne aufwiesen (z. B. verschiedene Rosaniline).
Bei der grossen Verschiedenheit der Leukobasen unter sich ist hier
für unseren Zweck nur die auffallende, fast allen gleichmässig zu-
kommende Indifferenz gegen activen Sauerstoff der mit dem Ge-
wobe verbundenen Leukobasen hervorzubehe.

Eigenartig verhielt sich unter den von mir geprüften Farb-
stoffen das Methyleneblau 1). Hier findet die Reduction durch Zink-
staub und Salzsäure schon in der Kälte statt und ebenso leicht
oxydirt sich die Leukobase auch wieder. Taucht man einen Schnitt
in die vollkommen farblose, saure Lösung des Leukomethylene-
blaus, so färbi sich dieser augenblicklich blau, als hätte man ihn
in eine verdünnte Lösung von Methyleneblau selbst gebracht (Kern-
färbung), während die Lösung noch eine Zeit lang farblos bleibt.
Eine nachherige Behandlung dieser so gefärbten Schnitte mit Oxy-
dationsmitteln ändert hieran nichts weiter.

Was ist hier vorgegangen? Eine Abspaltung von Sauerstoff
aus dem Schnitte ist kaum anzunehmen. Mir scheint der Schnitt
(die Kerne) hier wie ein Alkali zu wirken, denn der Zusatz eines
Tropfens alkalischer Flüssigkeit ruft sofort die sonst nur allmählich
eintretende Blaufärbung hervor.

So einfach also (und so selbstverständlich möglich) wie die Er-
zeugung von Farben auf der Faser bei der Färberie im Grossen
zu sein scheint, verlaufen die entsprechenden Processe bei unsern
Versuchen im Kleinen durchaus nicht. Bei jenen Processeen kommen
aber auch noch viele andere Factoren in Betracht — die Hinzu-
ziehung mannigfaltiger physikalischer und chemischer Nebenum-
stände — die wir bei unseren einfachen Ausfärbungen im Uhr-
schlächen theils bisher nicht anzuwenden gewohnt waren, theils
nicht anzuwenden vermögen, z. B. hohe Temperaturen. Aber
gerade diese auffallende Differenz wirkt klärend auf unsere
Auffassung der sich hier abspielenden Vorgänge, indem sie be-
weist, dass bei den Processen der Färberie im Grossen gerade
die berührten Nebenumstände es sind, welche die Fixation
mehrerer Componenten gemeinschaftlich auf der Faser trotz der
dabei hindernd in den Weg tretenden Affinitäten der
Farbcomponenten bewirken. Das Studium derselben, beson-
ders der sog. Beizen, welche am häufigsten die Vermittelung ehe-

1) Das Chlorzinkdoppelsalz ebensowohl wie zinkfreies Methyleneblau.
mischer oder physikalischer Art übernehmen, hat für unsere Zwecke ein nicht geringes theoretisches und praktisches Interesse. Ich will nur beispielsweise erwähnen, dass schon das bloße Eintauchen in eine schwache (1/0) Tanninlösung genügt, um die vorhergehend auf der Faser auftauchende, aus den Componenten erzeugte Phenyleneinfarbung dauernd zu fixiren. Augenblicklich ist es mir nur darum zu thun, die Frage der Farberzeugung auf der Faser in ihrer einfachsten, reinsten Gestalt vorzuführen, um aus dem Resultate weitere Aufschlüsse für die Theorie der Färbung zu gewinnen.

Das Bisherige zeigt, dass die Erfahrungen, welche das Griesbach'sche Postulat erfüllen, bereits nicht mehr dürftige zu nennen sind und ich vermute auf Grund derselben, dass sich ihre Anzahl bei weiterem Nachforschen bald noch erheblich vermehren wird. Dem gegenüber stehen natürlich eine grosse Reihe von Thatsachen, welche beweisen, dass unter Umständen die Farbstoffe dieselben Veränderungen eingehen, seien sie frei oder mit dem Gewebe verbunden. Ich erinnere nur an die bekannte Umfärbbung der neutralen Salze von Rosanilinen und Pararosanilinen durch Salpetersäure (durch Bildung sanrer salpetersaurer Salze), an die weniger bekannte der Rosaniline durch unterchlorigsaures Natron1), an die oben von mir besprochene des Toluylenblaus durch Säuren.

Man weiss seit langem, dass die braungrüne Farbe, welche thierische Gewebe in Chromsalzen annehmen, auf die Bildung von chromsaurem Chromoxyd zurückzuführen ist, welches sich mit der Zeit durch Reduction der Chromsäure im Gewebe bildet. Ziemlich unbekannt ist es noch immer, obgleich von mir bereits vor längerer Zeit2) mitgetheilt, dass man die Auflösung dieses Zwischenproducts durch Behandlung mittels H₂O₂ ganz in seiner Hand hat, was dem oft gehörten Ausspruche gegenüber, die Fixirung der Gewebe in

1) S. Rosaniline und Pararosaniline, p. 64 Anmerkung.
Chrompräparaten sei nicht willkürlich zu regeln, betont zu werden undert. Bringt man eine Lösung von Chromsäure oder doppelt-chromsaurem Kali mit einer Lösung von H_2O_2 zusammen, so fällt augenblicklich ein tintenartiger, tief grüner Niederschlag von Chromoxyd aus, der sich sofort mit braungrüner Farbe in der restenden Chromsäure zu jenem intermediären Salze löst1). Ueberlässt man die Mischung sich selbst, so schlägt die Reduction, an einem bestimmten Punkte angelangt, in Oxydation um, und bald ist das chromsaure Chromoxyd wieder reoxydiert, die Lösung wieder gelb wie zuvor. Dieses Phänomen erklärt sich aus dem Janusgesicht des H_2O_2 welches sich in der Formel etwa so ausdrücken lässt (auf den Wasserstoff bezogen):

Wasserstoffsuperoxyd: Oxydationswirkung: Reductionswirkung:

$$
\begin{align*}
\text{H} - \text{O} & \quad \text{H} - \text{O} - \text{I} \\
\text{H} - \text{O} & \quad \text{H} - \text{O} - \text{I} \\
= \text{H Aufnahme} & \quad = \text{H Abgabe}.
\end{align*}
$$

Ganz dieselbe Erscheinung tritt nun auf, wenn man Schnitte in Chromsäure oder Kalium bichromicum färbt und in H_2O_2 bringt oder umgekehrt: mit H_2O_2 behandelte Schnitte in die Chromlösungen taucht. Auf der Stelle färben sich die Schnitte dunkelgrün, dann grünbraun, um langsam im ersten Falle sich wieder gelb zu färben, im zweiten ganz entfärbt zu werden. Hebt man die Schnitte im Momente, wo sie sich braungrün färben, aus der Lösung heraus und spült sie im Wasser gut ab, so hat man die für manche histologischen Details nicht unwichtige Farbe des chromsauren Chromoxyds auf denselben fixirt. Hier haben wir ein Beispiel von Reduction eines Farbstoffes auf dem Gewebe, die der Reduction desselben ausserhalb des Gewebes ganz analog ist. Die nachfolgende Reoxydation des reduzierten Produkts in H_2O_2 respectirt die Verbindung des Chromsalzes mit dem Gewebe allerdings wieder nicht, sondern zerreisst sie, indem das chromsaure Chromoxyd, im selben Masse als es sich zu oxydiren strebt, aus dem Gewebe ausgewaschen wird, wie es der chemischen Theorie und vielen Fällen von Oxydation von Leukobasen auf der Faser entspricht.

$^1)$ Neutrales chromsaures Kali und neutrales H_2O_2 geben zusammen diese Reaction nicht.
Untersuchungen über den Bau des funktionirenden Samenkanälchens einiger Säugethiere und Folgerungen für die Spermatogenese dieser Wirbeltierklasse.

Von

Dr. Carl Benda,
Assistenten am physiologischen Institut zu Berlin.

Hierzu Tafel V. VI. VII.

Nun wo ich daran ging, die Arbeit ausführlicher niederzuschreiben und mit den Resultaten der Voruntersucher zu vergleichen, stellte sich immer mehr heraus, dass alle Fortschritte der Technik und alle Kühlheit der Folgerungen nicht sehr viel mehr erreicht haben, als der Scharfsinn so vieler und trefflicher Voruntersucher bereits gesehen oder geahnt hat. Dennoch schien ein vielleicht verdienstliches Werk übrig gelassen. Wenn ich mich fragte, warum trotz aller Arbeiten gerade in diesem Gebiete kaum über einen Punkt soweit Einigung erzielt worden ist, dass er in zwei Lehrbüchern in der gleichen Weise dargestellt werden könnte, konnte der Grund darin liegen, dass meine Vorgänger auf ein s
weniger Gewicht gelegt haben: eine streng kritische Darstellungs-

methode, die Schritt für Schritt davon Rechenschaft gibt, was

objektiv beobachtet, was logisch gefolgert wurde. Dies hatte zur

notwendigen Folge, dass Jeder, der ausserhalb der direkten Arbeit

steht, und oft wohl der Arbeiter selbst nur schwer ein Urtheil

darüber gewinnt, wo Beobachtungen, wo Schlüsse in Zweifel gestellt

werden; so scheint die positive Basis zu fehlen, auf der neue

Beobachtungen und bessere Schlüsse eingefügt werden können,

ohne dass es nöthig ist, jeden Augenblick die Grundsteine zu ver-

rücken. Ich habe ein Hauptaugenmerk einer, in jenem Sinne ge-

sichteten Darstellung zugewandt und mein erstes Ziel darin gesucht,

auf diesem Wege einer Klärung der Fragestellung näher zu kommen.

Methodik.

Die mikroskopische Erkenntniss der Samenbildung der Säugethiere war das Ziel der manigfachsten Arbeiten; die Geringfügig-

der Erfolge ist der Beweis für die grossen Schwierigkeiten der Untersuchung. Die ideale Lösung der Frage hätte zwei Po-

stulate zu erfüllen: die anatomische Feststellung der einzelnen Stadien des Prozesses und die biologische direkte Beobachtung des Vorganges, Postulate, die bisher allerdings wohl nur für wenige histo-

genetische Prozesse erfüllt oder der Erfüllung nahe sind. In unserem Gebiete ist, was den zweiten Punkt betrifft, wenig Aus-

sicht vorhanden, dass es für’s erste gelingen wird, die Entstehung des samenbildenden Elementes und seine Umwandlung in das Spermatozoid an einem Elemente in allen oder in verschiedenen Phasen zu verfolgen. Diese vulnerabeln Gebilde sind bisher noch nicht ausserhalb des Thierkörpers in die geeigneten Bedingungen gebracht worden, um Lebensvorgänge an ihnen direkt wahrnehmen zu können. Hieraus ergiebt sich, dass von einer eigentlichen Be-

obachtung der Spermatozogenese noch nicht die Rede sein kann.

Aber auch die anatomische Methode, die nun völlig substitui-

rend für die biologische eintreten müsste, stösst auf erhebliche Schwierigkeiten. Zu welcher Zeit wir auch den funktionirenden Säugethierhoden untersuchen, er bietet stets das gleiche Bild, ein buntes Durcheinander in Entwicklung und Anordnung der Ele-

mente. Hierdurch lässt uns das Hulfsmittel im Stich, welches wir bei chronologisch einfachen Entwickelungen zur Anwendung ziehen:
wir sind nicht im Stande, durch eine zeitliche Folge von anatomischen Untersuchungen die Stadien festzustellen, und so den Vorgang zu rekonstruieren.

Alles was uns die fortgeschrittenste Technik bisher zu leisten vermag, ist das, uns von dem Bau und der Lagerung der Elemente im funktionirenden Hoden ein Bild zu geben und diesen Be dingungen der Technik muss sich der Weg der Untersuchung accommodiren. Ergiebt sich dann die Wahrscheinlichkeit, dass der funktionirende Hoden gleichzeitig alle Stadien der Processe in sich birgt, so dürfen wir in zweiter Linie versuchen, das vorhandene Material für die Rekonstruktion der vitalen Vorgänge zu verwerten. Wenn manche Voruntersucher den umgekehrten Weg einschlugen und den zweiten, rein hypothetischen Satz zur Grundlage ihrer Untersuchungen machten, haben sie nur die Fehlerquellen dieses ohnehin diffi zilen Gebietes vermehrt.

Von der frischen Untersuchung, von der ich eben keine weiteren Resultate über die Vorgänge erwartete, und die, soweit sie die Elementformen darstellt, von den Voruntersuchern wohl ausgiebig erschöpft ist, sah ich aus dem Grunde im Allgemeinen ab, weil sich mit ihr keine Erhaltung der Lageverhältnisse ver binden lässt.

Ich wandte nach Biondi's Vorgang zur Här tung fast ausschliesslich Flemming's Chrom-Osmium-Essigsäuregemisch an (1% Chromsäure 7 vol., 2% Osmiumsäure 2 vol., Eisessig 0,3-0,5 gr).

Der concentrirten Pikrinsäure und dem Sublimat verdanke ich ebenfalls recht brauchbare Bilder, doch war die Wirkungsweise dieser Reagentien unzuverlässigiger.

Die Untersuchung wurde an Schnitten ausgeführt, die nach Paraflindurehtränkung zur weiteren Sicherheit für die intensive Einwirkung des Här tungs mittels immer von den freien Oberflächen der conservirten Gewebsstückchen entnommen wurden. Die wei-

Mit Isolirungen, die für manche Fragen immer wünschenswerth sind, scheine ich im Allgemeinen weniger glücklich gewesen zu sein, als manche Voruntersucher; doch habe ich nach geringer Einwirkung von Osmiumsäure und mit 30‰/igem Alkohol recht instruktive Bilder erhalten.

1. Abschnitt. **Beobachtungen.**

1. Kapitel. **Die Spermatozoen und ihnen verwandte Elemente.**

Jeder Schnitt eines Säugetier Hodens zeigt neben einem, bei den einzelnen Spezies verschiedenen entwickelten interstitiellen Gewebe, welches hier nicht weiter besprochen werden soll, als Hauptbestandtheil die in mannichfachen Richtungen getroffenen Schnittbilder der Samenkanälchen. Letztere zeigen als äussere Begrenzung das Schnittbild des derben cylindrischen Umhüllungsschlauches, der der Basalmembran anderer Drüenschläuche entspricht, sich aber von dieser durch seinen lamöllösen Bau und eingestreute spindelförmige Kerne unterscheidet. Der Basalmembran liegt innen die breite epitheliale Kanälichenwand an, die nach innen ein cylindrisches Lumen umschliesst.

Dasjenige Element, welches im funktionirenden Samenkanälichen als das Charakteristische unsere Aufmerksamkeit fesselt, sind die Spermatozoen, die sich im Lumen der Kanälichen und zwischen den Elementen der Wand vorfinden. Gleichzeitig fällt eine Anzahl von Elementformen auf, die sich durch einige unverkennbare Merkmale den Samenkörpem verwandt zeigen; Formen, die allgemein als Entwickelungsstadien der Spermatozoen angesehen werden, wenn sich auch ihr Umwandlungsproces selbst der Beobachtung entzieht. Aber die Beobachtung kann wirklich feststellen, dass von einer gewissen Form an eine vollständige Formenreihe bis zum reifen Spermatozoon existirt.

Die in den neueren Arbeiten häufig rekapitalirten Resultate der Voruntersucher kann ich in Kürze zusammenfassen. Die Rückverfolgung der mit dem Spermatozoon abschliessenden Formenreihe bis zu Elementartheilen einer Zelle, im Wesentlichen bis zum Zell-
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 55

Die ununterbrochene Formenreihe wurde von mir bei allen Spezies bis zu der auf Tafel V als II bezeichneten Form zurückverfolgt. Ich stellt die ebenfalls bei allen Spezies aufgefundene Zellart, die den runden Hodenzellen, Nematoblasten, Tochterzellen u. s. w. der Autoren entspricht, dar. Dieselbe hat zwar beim Meerschweinchen ein auffallendes Merkmal mit der Form II gemeinsam und fand sich auch bei anderen Spezies durch einige Zwischenformen mit II verbunden, sie ist aber im Allgemeinen gerade durch das Fehlen der Merkmale, die II als Vorform des Spermatozoids charakterisiren, gekennzeichnet. Deshalb habe ich sie hier, wo es sich lediglich um die Feststellung der zur weiteren Orientirung dienenden Samenelementformen handelt, vorläufig ausser Betracht zu lassen.

Ich habe ferner vorweg zu bemerken, dass ich die Reihenfolge der Formen bei den verschiedenen Spezies unter korrespondirende römische Ziffern rubriecirt habe. Diese Schematisirung soll keine Spekulationen über die prinzipielle Analogie des Entwicklungsverlaufs vorwegnehmen, sondern nur leicht konvenirbare Be-

1) Arch. f. mikrosk. Anat. XXV, p. 113.
Die Zeichnungen für Formengruppen, die bei späteren Betrachtungen ein korrespondierendes Verhalten zeigen, festsetzen.

Ob die Chromatinkapsel noch von einer achromatischen Kernmembran überzogen ist, und namentlich ob eine solche Membran
die letztbeschriebenen Appendikulargebilde bedeckt oder von ihnen durchbohrt ist, dafür giebt die Beobachtung dieses Stadiums wenig Anhaltspunkte. An gut konservirten Stellen liegen alle Theile so unmittelbar aneinander, dass kein Gebilde zwischen Chromatin und Protoplasmawahrzunehmen ist. Dagegen sieht man an gequollenen oder gezerrten Elementen des Meerschweinchens bisweilen, dass zwischen Spitzenkappe und Chromatin ein heller Hof auftritt, der auch über die Grenze der Spitzenkappe hinaus das Chromatin lunulaartig umgreift, und dessen äussere, allerdings nie eigentlich als Membran sichtbare Begrenzung sich allmählich dem Kernecontour anlegt.

Im Uebrigen treten von der Form III an Differenzirungen hervor, die bei einer jeden Spezies charakteristische Eigenthümlichkeiten zeigen und daher gesondert zu betrachten sind.

Beim Eber verlängert sich die kugelige Chromatinkapsel in ein Ellipsoid; gleichzeitig erscheint am hinteren Kernpol ein feines Fädchen. Bei IV zeigt sich statt der feinen Granulirung der Chromatinkapsel ein homogenes Aussehen in der Flächenansicht, wobei die Tinktion blasser erscheint; daneben finden sich lineare, sehr dunkel gefärbte Kantenbilder: die Stelle der Chromatinkapsel ist also von einer Chromatinplatte eingenommen. Das Fädchen am hinteren Pol hat sich verlängert und ragt häufig aus dem hin-
Dr. Carl Benda:

Bei der Ratte, der sich die Brandmaus (Mus agrarius) in allen wesentlichen Punkten anschliesst, so wie bei der Hausmaus tritt mit der Verlängerung der Chromatinkapsel bei III eine Asymmetrie zu Tage, die sich dadurch kenntlich macht, dass in einer gewissen Stellung des Samenbildners die Axe zwischen Spitzen- und Schwanzpol etwas seitlich verlagert ist. Die Asymmetrie wird in den folgenden Formen ausgeprägter; gleichzeitig verlängert sich bei Ratte und Brandmaus die Kapsel beträchtlich, während sie sich bei der Maus verbreitert. Bei IV ist die endgültige Gestalt des Kopfes vorhanden. Diese ist bei der Maus platt, wie bei den übrigen Spezies, aber von der bekannten unsymmetrischen beilförmigen Gestalt. Der Spermatozoenkopf der Ratte unterscheidet sich von dem aller anderen Spezies in meinen Präparaten dadurch, dass er in allen Ansichten intensive Färbung zeigt, gleichgültig ob wir das unsymmetrische Profil oder das symmetrische Kantenbild betrachten. Mir schien, dass derselbe dreikantig abgeflacht ist.

Die ersten Umwandlungsformen beim Kaninchen zeigen ebenfalls eine mit der Verlängerung des Kernes einhergehende leichte Asymmetrie, die ich aber später nicht mehr bemerkte. Der Hof am hinteren Kernpol zeigt hier eine deutliche membranöse Begrenzung, die sich der Chromatinkapsel in einem scharf gezeichneten Kreise anlegt. Ich bezeichne diese Membran, die offenbar dem zuerst von v. Kölliker als Röhre, von Bi ondi als Blase gesehenen Ansatzstück des Kernes entspricht, als Schwanzkappe
Untersuchungen über den Bau des funktionirenden Samenkanalchens etc. 59

Die Samenbildnermetamorphose des Meerschweinchens schliesst sich hier an. Sie unterscheidet sich durch das Fehlen jeder Asymmetrie, sowie durch die fast kugelige Gestalt der Form III, der eine Kreisform des abgeplatteten reifen Kopfes entspricht. Am auffallendsten ist das Verhalten der oben erwähnten Spitzenkappe, die in einzelnen Stadien eine fast kegelförmige Gestalt annimmt und sich dem reifen Kopf wieder lunulaartig anschmiegt.

Der Stier, der mit dem Widder fast völlig identische Formen besitzt, Hund und Kater schliessen sich aneinander durch die vorwiegende Bedeutung, die die Differenzierung des Kuppentheils bei ihnen beansprucht. Es sind dies die Spezies, auf die sich vorwiegend die Mittheilungen der Autoren über das röhren- oder blasenförmige hintere Ansatzstück des Kernes, sowie über die Theilung des Kernes in einen stärker und einen schwächer lichtbrechenden Theil beziehen.

Ich sehe zuerst bei III die Spur eines Hofes, der sich um den hinteren Kernpol abhebt und bald etwa ein Drittel der Chromatinblase umgreift. Der Hof ist durch die deutlich als Membran kenntliche Schwanzkappe gegen das Protoplasma des Samenbildners abgegrenzt. Dieselbe legt sich an der Grenze des hinteren Drittels in einem scharf gezeichneten Kreise der Cirkumferenz der Chromatinblase an. In weiteren Formen nimmt der Kuppentheil die Färbung intensiver auf, als die vorderen zwei Drittel und geht weitere Umwandlungen ein. Zuerst setzt er sich an der Anlagerungsline der Schwanzkappe mit einem Falz ab, während er am hinteren
Pol abgerundet bleibt. In dieser Form verharrt er beim Kater in den folgenden Stadien, indess sich noch der vordere Kerntheil birnförmig verlängert und am hinteren Pol der Schwanzfaden in den von der scheidtenförmig verlängerten Kappe eingeschlossenen Hof hineinwächst.

Beim Hunde nimmt die Kuppe eine kegelförmige, der vordere Chromatintheil eine eiförmige Gestalt an. Ich habe bei dieser Spezies das Bild mit Zupfpappraten verglichen und mich dabei in Betreff der vorliegenden Form überzeugt, dass die stärkere Lichtbrechung dem vorderen Kerntheil, die schwächere dem Kuppentheil zukommt, dass also nicht, wie ich in einer vorläufigen Mittheilung vermutet hatte, der schwächer lichtbrechende Theil der Schwanzkappe entspricht.

ist. Mit dem Verschwinden dieser Theile haben wir endlich das reife Spermatozoon vor uns.

Der hintere Kopfabschnitt zeichnete sich besonders bei Stier und Hund bisweilen durch eine intensivere Färbung gegen den vorderen scharf ab.

Die „Kopfkappe“ der Autoren, die als membranöses Fetzen an Osmiumpräparaten so leicht am Spermatozoenkopf nachgewiesen werden kann, konnte ich in den Schnitten nicht auffinden, während der Spitzennkopf noch bisweilen, die Spitzenkappe des Meerschweinchens dagegen typisch zu erkennen war.

Kap. 2. Allgemeines über die Lagerung der Samenbildner.

Bereits mit der im vorigen Kapitel gegebenen Feststellung der verschiedenen, dem Samenkörperchen nahestehenden Elementarmformen waren eine Reihe allgemeiner Beobachtungen über ihre Lagerung unmittelbar verknüpft.
a) Von den dort besprochenen Formen fanden sich die reifen Spermatozoen sowohl frei im Lumen der Samenkanälchen als auch zwischen den Elementen der Kanälchenwand; die Vorformen II—IV dagegen nur in der Wand vor. Das Letztere gilt wenigstens für alle Stellen, wo eine Zerrung der Elemente ausgeschlossen werden kann.

b) Samenbildner und Spermatozoen, soweit letztere der Kanälchenwand angehören — nur diese interessiren uns vorläufig — lagen auf allen einigermaassen senkrechten Durchschnitten der Kanälchenwand, gleichviel ob Längs- oder Querschnitten, von allen Elementen der Wand zuinnerst am Lumen; wenigstens befanden sich auf demselben Radius nie andere Elemente hinter, d. h. distal von ihnen.

c) Samenbildner und Spermatozoen fanden sich in der Kanälchenwand nie gleichmassig horizontal geschichtet, sondern sind stets in eigenartiger Weise gruppiert: sie erscheinen auf einzelnen Radien in besonderer Anhäufung.

Diese höchst auffallende Thatsache, die jene Gebilde von allen anderen epithelialen Elementen des Säugethierkörpers unterscheidet, ist keinem der Untersucher, die Hodenschnitte vor Augen hatten, entgangen.

d) Jede derartige Samenbildner- oder Spermatozoengruppe enthielt nur Individuen desselben Umwandlungsstadiums.

Ich darf zugeben, dass sich wohl hin und wieder eine abweichende Form in einer Gruppe vorfindet, wobei die Frage entstehen müsste, ob sie durch abnorme Entwickelung oder durch eine mechanische Verschiebung an ihre Stelle gelangt ist. Das ändert jedoch nichts an der grossen Gesetzmässigkeit, die ich gerade in diesem Punkte bei allen Spezies konstatiren konnte.

e) Es ist von allen Autoren bemerkt worden, dass Samenbildner und Spermatozoen innerhalb der Kanälchenwand in ganz bestimmter Weise orientirt liegen, derart, dass ihre Längsaxen immer ungefähr radiär verlaufen, und dass der spitze Pol des Samenbildners, also auch sein Kern und in spätern Stadien der Spermatozoenkopf der Peripherie, der stumpfe Pol resp. der Schwanzfaden dem Lumen des Kanälchens zugewandt ist.

Auch ich bestätige diese Beobachtung vollkommen, möchte aber auf einige Punkte, die keineswegs neu sind, sondern überall in den Figuren Darstellung gefunden haben, etwas mehr Gewicht legen.

f) Das peripherische Ende eines solchen Samenbildnerbündels erreicht nur in den seltensten Fällen wirklich die Peripherie des Kanälchens, nämlich die Basalmembran, obgleich Biondi gerade auf dieses Verhältniss besonderes Gewicht gelegt hat.

Bisweilen schiebt es sich spitz zwischen die Nachbarelemente ein, wie es v. Wiedersperg für die Regel hält.
Am gewöhnlichsten aber setzt sich das peripherische Ende des Samenbildnerbündels in eine mehr oder weniger deutlich von den Zellleibern der Samenbildner unterschiedene Protoplasmamasse fort. Letztere strebt der Peripherie in radiärer Richtung zu, verliert sich natürlich häufig im Schnitt zwischen den nächsten Elementen, erreicht aber meist die Basalmembran und setzt sich dieser fast genau rechtwinklig an, so dass das Samenbildnerbündel vermittels der Protoplasmamasse der Basalmembran zwischen den übrigen Elementen hindurch aufsitzt.

g) Jene Protoplasmamasse, die ich vorläufig als „Fuss“ des Samenbildnerbündels bezeichne, zeigt keine membranartige Begrenzung und keine bestimmte Form, sondern passt sich im Allgemeinen den Contouren der Nachbarelemente an. Sie kennzeichnet sich aber diesen gegenüber durch die Art ihrer Protoplasmastruktur, die immer eine mehr oder weniger deutliche, senkrecht von der Basalmembran verlaufende Faserung zeigt. Sie enthält gewöhnlich einen ziemlich grossen Kern, der stets folgende Merkmale besitzt: eine wenig tingible, also sehr zarte peripherische Chromatinschicht, einen nicht färbbaren Inhalt, einen grossen Nucleolus, der durch einige wenige Chromatinfäden mit der Chromatinmembran in Verbindung steht. Seine Gestalt ist sehr variabel, die Oberfläche oft tief gefaltet; kurz wir haben einen exquisit bläschentörmigen Kern vor uns.

Ueber jeden dieser Charakter finden sich Mittheilungen oder Andeutungen bei den Autoren. Die labile Begrenzung ist wohl Biondi am meisten aufgefallen; ebenso hat er Andeutungen der fädigen Struktur gesehen, die Swaën und Masquelin in ihren Figuren vom Stier zum deutlicheren Ausdruck gebracht hatten, die aber in ihrer ganzen Klarheit nur durch die Flemming’sche Flüssigkeit, verbunden mit schärferer Protoplasmafärbung und durch die besten Linsensysteme, erkannt werden konnte. Die Darstellung des Kernes stimmt mit den meisten Figuren, obgleich die genannte Erkenntniss der Eigenheiten eigentlich auch erst durch die moderne Technik erwartet werden sollte. Nur Biondi giebt eine
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 65

h. Ich habe eine substantielle Verbindung des Fusses mit Samenbildnern aller Stadien gesehen.

Ich betone, um meine Stellungnahme in diesem Punkte zu präcisiren, dass hierin nicht gesagt sein kann, dass die direkte Beobachtung die Verbindung aller Füsse mit Samenbildnern oder diejenige aller Samenbildner mit Füssen klargestellt hat. Behauptet wird nur, dass an vielen Stellen, wo die Beziehung eines Fusses zur Samenbildnergruppe besonders günstig zur Darstellung gelangt, ein unmittelbarer Übergang von Theilen des Fussprotoplasmas in den Zelleib einzelner Samenbildner zu demonstrieren ist, während eine gleiche Verschmelzung des Fusses mit andersartigen Elementen nicht gefunden wurde.

Archiv f. mikrosk. Anatomie, Bd. 30, 5

Nachdem wir nun einige allgemeine Punkte über die eigenthümlichen Beziehungen der Samenbildnerbündel zu Fusselementen mitgetheilt haben, habe ich diese Verhältnisse im Einzelnen zu verfolgen. Ich lege meiner Beschreibung solche Stellen zu Grunde, wo Samenbildnergruppe und Fuss in grösster Ausdehnung vom Schnitt getroffen ist.

Bei allen andern Spezies scheidet sich der Fuss stets in einen der Basalmembran anliegenden Körper und eine Garbe von Protoplasmafortsätzen.

Der Fusskern sitzt mit seinem peripherischen (proximalen) Ende dem Körper auf, seitlich und distal von ihm entspringen die Fortsätze und verlaufen fädig, fast parallel gerichtet und wie mir

b) Ich habe nunmehr das Verhalten des Fusses und der zugehörigen Samenbildnergruppe bei jeder Spezies in den einzelnen Stadien zu betrachten.

Wechselnde Verhältnisse in der Lagerung der Samenbildner zu den Füssen haben Renson und Herbert H. Brown 1) für die Ratte so gut beschrieben und abgebildet, dass ich mich für fast alle Punkte auf ihr Zeugniss berufen kann. Für die andern Spezies fehlen Beobachtungen.

Die sich nun anreihenden Samenbildner bilden mit denen der Nachbargruppen am Lumen des Kanälechens eine breite Schicht, die an den Stellen, wo Füsse an sie herantreten, spitz nach der Peripherie hinaus springt. Die an diesen Spitzen gelegenen Individuen zeigen die unmittelbare Verbindung mit dem Fuss, so dass ihr Kern direkt dem Fussprotoplasma eingelagert erscheint. Zu den weiter gelegenen Samenbildnern kann man nur hin und wieder Protoplasmaabrücken verfolgen, dieselben bekunden aber durch die gegen den Fuss hin konvergirende Richtung ihrer Längsaxe ihre

Zugehörigkeit zur Gruppe. Ein auffallendes Bild, welches Brown bereits abgebildet hat, fand auch ich häufig bei dieser Spezies: der Fuss tritt kernlos bis an die Gruppe heran und man erkennt den typischen bläschenförmigen Fusskern inmitten der Samenbildner oft nahe am Lumen. (Fig. 7, II bei *)

Bei III liegt der Fuss mit breiterer Basis der Basalmembran auf; der Kern liegt dieser entweder platt an, oder ist mit einer Seite gegen sie abgeplattet oder wird in geringer Entfernung von ihr vom Protoplasma umschlossen. Hin und wieder findet man distal von ihm eine längere Protoplasmabrücke zur Samenbildnergruppe verlaufen, und letztere verhält sich dann ähnlich wie im vorigen Stadium zum Fuss. Meist aber liegen die proximalsten der Samenbildnerkerne fast unmittelbar jenseits des Fusskerns oder selbst seitlich von ihm, die anderen Samenbildner liegen weiter distal, zum Theil hintereinander in einer sich gegen das Lumen verbreiternden Strasse. Die ganze Gruppe stösst nur noch mit einigen Individuen an die benachbarten.

In den weiteren Formen behält die Fussbasis im Wesentlichen ihren Charakter, indem sie sich nur etwas verbreitert. Die Samenbildner erscheinen immer mehr nebeneinander gelagert, die distaleren schieben sich mit ihren Spitzen zwischen die proximaleren und fast jeder zeigt eine deutliche Verbindung mit dem Fuss.

Sobald sich die Kerne als Spermatozoenkörpfe präsentieren (IV) liegen sie in einem dichten Bündel fast genau auf gleicher Höhe, meist dicht über dem Fusskern oder um ihn herum, bisweilen fast unmittelbar auf der Basalmembran, doch zeigen sie auch in diesem Falle meist eine Verbindung mit Fussprotoplasma. Die Leiber der Samenbildner ragen distal von dem Kernbündel lappig nach dem Lumen hinaus, so dass die ganze Gruppe im Schnitt fächerförmig erscheint. Die Gruppen sind jetzt so konzentrisch, dass die benachbarten nur durch die Lappen einiger Zellleiber aneinander stossen. Die Fussbasis ist jetzt am breitesten; oft konfluieren benachbarte Füsse miteinander.

Auch die reifen Spermatozoen können noch eine ähnliche Anordnung zum Fuss zeigen, wobei nur eine mehr parallele Stellung der Axen auffällt. Des weiteren zeigt sich mit der Reifung der Spermatozoen die Fussbasis verschmälert, also mehr cylindrisch. Während sich die Leiber der Samenbildner auflösen, stellen sich alle Spermatozoen parallel zueinander und senkrecht zum Lumen.
Sie liegen entweder neben oder hintereinander in einer bandartigen (körperlich gedachte: cylindrischen) Strasse, die von der Basalmembran zum Lumen hinzieht und nur im peripherischen Theil die Fussstruktur erkennen lässt, gegen das Lumen zu dagegen den Charakter von Zelldetritus bietet. Der Fusskern findet sich meist nahe der Basalmembran, bisweilen indessen auch weit gegen das Lumen zu, in welchem Falle man oft unregelmässigere Faltungen an ihm bemerkt.

Ferner begegnet man Füssen, die nur mit einzeln Spermatozoen in Verbindung sind, während die meisten Spermatozoen im Zelldetritus am Lumen liegen. Der distale Fusstheil zeigt sich verschmälert.

Wenn in der Wandung des Kanälchens keine Spermatozoen oder Samenbildner vorhanden sind, finden sich nur vereinzelt Füsse, die die ganze Wand bis zum Lumen durchqueren. An solchen Stellen finden sich viele Uebergangsformen von dem ausgebildeten Fuss zu einer der Basalmembran aufsitzenden Zelle (cc Fig. 1 und 5 bei 1) mit bläschenförmigem Kerne, die sich durch ihr fein parallelgefasertes Protoplasma und ihre besonders nach innen (distal) auffallende diffuse Begrenzung von den umliegenden Elementen unterscheidet.

Auch die Lagerung der Samenbildner ändert sich in den verschiedenen Stadien nicht so erheblich wie bei der Ratte. Die Gruppierung bleibt sehr locker, so dass die benachbarten Gruppen
in allen Formen ausser der V. viele Berührungspunkte zeigen. Ausserdem fand ich die Samenbildner der Basalmembran niemals nur annähernd so weit genähert wie bei der Ratte. Unterschiede der Lagerung machten sich aber darin geltend, dass die Samenbildner im II. Stadium mehr hintereinander, bisweilen direkt in Reihen (Fig. 5, II) liegen, wobei das distale Ende des Fadenbündels die ganze Schicht bis nahe zum Lumen durchsetzt, und die Fäden der seitlich liegenden Samenbildner sich seitlich von dem Bündel isolieren. Später, besonders im IV. Stadium, liegen die Samenbildner fast genau auf gleicher Höhe, so dass die Köpfe ein Bündel bilden. Das schliessliche Verhalten ähnelt wieder dem bei der Ratte; nur zeigt das Fussesverhalten auch ohne Verbindung mit Spermatozoen meist ein die ganze Wandbreite durchsetzendes Fadenbündel.

Alle andern untersuchten Spezies bilden gewissermassen die Zwischenglieder zwischen den extremen Eigenheiten von Ratte und Hund. Ersterer schliess sich die M a u s am nächsten an, die ihr in allen Punkten gleich, ausser, dass sie die Samenbildner kaum je neben dem Kern des Fusses vorfinden. Alle andern Spezies, für die der St i e r das markanteste Beispiel giebt, zeigen bei II einen aufgerichteten Protoplasmaleib des Fusses, dem in geringer Entfernung von der Basalmembran der längliche, radiär gerichtete Kern aufliegt; jenseits des Kernes, so wie neben ihm entspringt die Garbe von Protoplasmafäden. Der Verlauf der Fäden und die Anordnung der Samenbildner gegen sie entspricht den beim Hunde beschriebenen Verhältnissen während dieses Stadiums.

In den weiteren Stadien wird der Leib und der Kern des Fusses platt an der Basalmembran angetroffen; die Gruppe ist gedrängter, der Basalmembran mehr genähert und ordnet sich in der Art, dass sich die Kerne auf gleiche Höhe stellen.

Im IV. und V. Stadium liegen bei allen diesen Spezies die einer Gruppe angehörigen Elemente mit den flachen Seiten ihrer Köpfe dicht aufeinander, besonders auffallend beim Meerschweinchen, wo sie fast wie zusammengestellte Teller ineinander ge passt sind.

Eine Anlagerung der Samenbildner an die Basalmembran wurde ausser bei der Ratte nicht gefunden.

Nach der Trennung von den Spermatozoen zeigt das Fuss element bei allen Spezies ähnliche Formen wie beim Hunde, indem bei allen die Protoplasmafäden auch dann noch persistiren.
Kap. 4. Die Lagerung der Samenbildnergruppen zu den übrigen Elementen des Hodenkanälchens.

Da die übrigen Elemente des Samenkanälchens stets in vielfachen Lagen die Kanälchenwand bilden, muss jede Abweichung der Schnittrichtung von der senkrechten ein differentes Verhalten darstellen. In dieser Schwierigkeit gibt das Vorhandensein der Füsse eine Richtschnur, da wir gesehen haben, dass dieselben meist senkrecht von der Basalmembran entspringen. Wenn wir also nur solche Stellen in's Auge fassen, an denen eine Samenbildnergruppe mit ihrem Fuss in der ganzen Ausdehnung nebst der Insertion an der Basalmembran getroffen ist, haben wir ein Ordinatensystem, an dem die Lage der Wandelemente genau zu beschreiben ist.

Ich gehe nun zur Schilderung der Einzelheiten über, nachdem
ich hervorgehoben habe, dass ich am nächsten mit Brown's Darstellung übereinstimme.

a) Stellen, die Samenbildnergruppen der Form II enthalten, zeigen das Bild der Figuren 1, 2, 3, 5 und 7 bei II.

Distal von diesen, eine peripherische Schicht bildenden Elementen folgt scharf von ihnen abgegrenzt eine zweite, die bei der Ratte und Maus typisch aus einer Reihe, bei den anderen Spezies auch im Ganzen aus einer Reihe, aber mit häufig distal vorgeschobenen Elementen, hin und wieder wirklich aus zwei Reihen besteht. Diese Zellen sind den meisten Voruntersuchern bekannt; sie sind grösser als die der äusseren Schicht, scharf umgrenzt, von elliptischer oder spindelförmiger Gestalt, deren Längsaxe stets radiär gerichtet ist. Ihr Zellleib ist sehr dicht, protoplasmareich, ihr Kern zeigt einen grobfadigen Chromatinknäuel (dd). Weiter innen bilden die Samenbildner, deren Gruppirung oben beschrieben wurde, eine breite dritte Schicht.

b) Mit der Form III der Samenbildner kombiniren sich folgende Strukturverhältnisse der Kanälehenwand:

Die Zellen aa liegen der Basalmembran gleicher Gestalt und Anordnung wie im vorigen Stadium an.
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 73

Daneben finden sich Zellen, die durch die Beschaffenheit ihrer Kerne den Zellen bb nahe stehen, die aber nur selten mit einer ganzen Fläche die Basalmembran berühren. Meistens berühren sie diese nur tangential, oder sind ganz von ihr durch Zellen aa oder durch Theile der jetzt verbreiterten Füsse getrennt. Diese Isolierung fand sich bei den Wiederkäuzern und Raubthieren fast durchgängig.

Distal von ihnen folgen die Zellen dd, die seitlich durch die verbreiterten Füsse und die sich um letztere gruppirenden Samenbildner weiter getrennt sind als im vorigen Stadium; sie liegen jetzt durchgehends mehrreihig, so dass die distalsten Elemente sich mit ihren peripherischen Spitzen in die Lücken der proximalen einschmiegen.

c) Mit dem IV. Stadium finden sich an der Basalmembran neben den breiten, oft seitlich konfluirenden Füssen nur noch Zellen aa, spärlich wie vorher; ausnahmsweise sah ich in ihnen Kerntheilungsfiguren (Fig. 1).

In den Räumen zwischen den Samenbildnergruppen liegen nach der Peripherie zu die Zellen, die offenbar den bb der vorigen Figuren entsprechen. Sie ordnen sich oft zu mehreren nebeneinander. Ihr Kern lässt jetzt meist einen sehr dichten feinfädigen Knäuel erkennen.

Distal von ihnen lagern die Zellen dd in mehreren Reihen. Die distalsten schieben sich namentlich bei Ratte und Maus weit gegen das Lumen zwischen die Samenbildner.

d) V—I. Mit der Anwesenheit reifer Spermatozoen in der Samenkanälchenwand verbinden sich mehrere Strukturnbilder, die wieder mit den verschiedenen Lagerungsverhältnissen jener Elemente typisch vergesellschaftet sind. Hier schliesst sich auch die Struktur der samenbildungserlosen Wandabschnitte an. Alle diese Bilder haben das Gemeinsame, dass sie wieder ähnlich wie im II. Stadium eine, aus einer einzigen regelmässig geordneten Zellreihe bestehende zweite Zellschicht vorfindet; ihre Elemente dd sind nur kleiner als jene Zellen dd und zeigen ein dichteres, feinfädiges Spirem der Kerne.

e) Wo die Spermatozoen eine ähnliche Anordnung zeigen wie im vorigen Stadium, sich nämlich noch in regelmässigem Zusammenhang mit dem Fuss befinden, weist auch die peripherische Schicht noch die gleiche Struktur auf wie bei IV. Distal von den
Zellen dd finden wir jetzt aber ein Gebiet zahlreicher karyokinetischer Figuren im Stadium der Knäuel, der Metakinese und der Trennung der Tochterkerne. Die Axen der Theilungfiguren sind im Ganzen radiär zum Lumen gestellt, doch kommen auch nicht so selten Querstellungen vor. Wo eine grössere Anzahl junger Zellen entstanden ist, schiebt sie sich zwischen den benachbarten Samenbündeln gegen das Lumen vor.

γ) Weiter haben wir die Verhältnisse zu beschreiben, wenn sich keine Spermatozoen zwischen den Wandelementen vordringen und in der Wand selbst die oben beschriebenen verschiedenen Bilder der samenbildnerlosen Füsse vorkommen (I). In diesem Falle zeigt die Wand die regelmässigste horizontale, d. h. concent-
Untersuchungen über den Bau des funktionirenden Samenkanälen etc. 75

trische Schichtung gegenüber den anderen Bildern und nur stellenweise und unregelmässig tritt eine radiäre Eintheilung durch Reste der Fusslemente zu Tage.

Distal von dieser Schicht findet sich eine einfache Lage der Zellen dd, die sich bis auf die seltenen Unterbrechungen durch Fusslemente in munterbrochener Reihe tangential berühren. Die Zellen dd sind gemeinhin breiter als die der äussersten Schicht und nehmen, wie auf Querschnitten deutlich sichtbar, natürlich auch die kleinere der concentrischen Cirkumferenzen ein, so dass ein Blick überzeugt, dass ihre Zahl kleiner ist als die der äusseren Zellen, und zwischen diesen beiden Zellarten gewöhnlich keine radiäre Anreihung besteht, wie dies Biondi als Regel gesehen haben will.

Zu innerst am Lumen liegt endlich eine breite kontinuirliche Schicht der Zellen cc, insofern sie den so bezeichneten der vorigen Form betreffs der Kernstruktur gleichen. Die Zellform ist jetzt polygonal, da die benachbarten sich gegeneinander allseitig ablachen und einschmiegen. Hierdurch ist die radiäre Rangirung viel weniger ausgesprochen als in dem vorigen Bilde. Die dem Kern anliegende Granulation des Meerschweinchen trägt jetzt die Form einer im optischen Querschnitt lunulaförmigen Kappe, die ohne sonstige Orientirung ein beliebiges Kernsegment umhüllt.

e) Nachdem wir die letztsbeschriebene Struktur durch gewisse Uebergangsformen mit dem Bilde V in Beziehung gefunden haben, ist noch einiger Bilder zu gedenken, die gewisse Charaktere mit dieser Form I, andere mit dem als II beschriebenen Stadium theilen. Das mir am bedeutungsvollsten erscheinende (Fig. 1, I—II) vom Stier

f) Wenn ich nun auf die den Eingang dieses Kapitels bildenden Erörterungen zurückgreife und daran erinnere, dass die hier beschriebenen Typen der Kanälenwandstruktur idealen Querschnitten dieser Wand entsprechen müssten, ist es selbstverständlich, dass überall, wo der Schnitt nicht gerade in der Ebene eines Fusses liegt, mannigfaltige Komplikationen der Schichtung in Erscheinung treten können. An solchen Stellen kann, wie in Biondi's Fig. 3 Taf. XXVI bei a, die äussere Schicht aus mehreren Reihen von Elementen bestehen; kann die zweite Schicht an Stellen, wo bereits Zellen ce am Lumen liegen, mehrreihig sein, wie ich solches unter den vorerwähnten Bedingungen allerdings nie gefunden habe, Ich halte es nicht für nöthig all solchen Schrägschnittbildern eine Beschreibung zu widmen.

Kapitel 5. Die Gesamtstruktur der Hodenkanälehen.

Wenn wir nun schliesslich Anhaltspunkte über die relative Lage der verschiedenen, jenen Typen entsprechenden Abschnitte der Kanälenwand zu gewinnen trachten, enthüllt sich auch hier eine
gewisse Gesetzmäßigkeit in dem bauten Gewirr der Einzelheiten. Vor allem springt das numerische Uebergewicht der dem V. Stad
dium und den Uebergangsformen zu I entsprechenden Bilder in
die Augen; es wird hierdurch einigermassen erklärt, dass diese
Bilder durch ihre Masse die alleinige Aufmerksamkeit des einen
Beobachters fesselten. Die Bilder jenes Stadiums verbreiten sich
über viele Querschnitte und lange Partien von Längsschnitten.

Die übrigen Formen sind im Allgemeinen seltener. Ich kann
über ihre Anordnung das unterschreiben, was v. Wiedersperg
darüber aussagt. Ich fand auf Querschnitten der Kanälchen meistens
nur eine Umwandlungsform der Samenkörper mit der dieser Form
entsprechenden Gruppierung und Wandungsstruktur. Auf Längs-
nchnitten kommen mehrere Stadien nebeneinander vor, und zwar
gewöhnlich in der Anordnung, dass gegenüberliegende Stellen der
Wandung, die demnach einem idealen Querschnitt entsprechen,
dasselbe Stadium, die örtlich benachbarten Abschnitte aber die
morphologisch nächststehenden Formen enthielten.

Zum Schluss dieses Abschnittes habe ich noch über den In-
halt des Kanälchenlumens anzugeben, dass dasselbe meist Sperma-
tozoen, zelligen Detritus mit Fettkügelchen, anch wohl vereinzelte
Zellen von den Typen dd und ee enthielt. In Kanälchenabschnitten,
die das III. und IV. Stadium aufweisen, schien mir das Lumen
außerdens häufig leer von körperlichen Elementen. Am regelmä-
ßigsten tritt die Anwesenheit der Spermatozoen im Lumen mit
den Wandabschnitten V—I zusammen, wo verschiedene Ueber-
gangsbilder zwischen ihrer bündelweiseen Lagerung innerhalb der
Wand und einer gleichmässigen Vertheilung im Lumen zu beob-
achten sind.

Ich rekapiilire noch einmal den Untersuchungsgang des
ganzen Abschnitts, um das Resultat der letzten Kapitel zusammen-
fassen zu können.

Ich ging von den charakteristischen Elementen des funktio-
nrenden Hodenkanälchens, den Samenkörpern und den ihnen un-
mittelbar nahe stehenden Elementformen aus, studierte zuerst ihre
Morphologie, dann ihre Anordnung zu einander und zu den ihnen
eigenthümlichen Fusselementen, endlich die Form und Anordnung
der übrigen Zellen des Samenkanälchens, sowie die Lagerungsver-
hältnisse, durch die die letzteren mit Samenbildnergruppen zu-
sammen die Wandung des Samenkanälchens bilden.

II. Abschnitt. Der Verlauf der Spermatogenese der Säugethiere.

Jeder Versuch, die im vorigen Abschnitt erbrachten Daten für Schlüsse auf den vermuthlichen Verlauf der Spermatogenese der Säugethiere zu verwerthen, basirt auf der, anderweitig zu bewisenden, übrigens aber kaum anfechtbaren Voraussetzung, dass die beschriebenen Strukturverhältnisse der Kanälenwand nicht bleibenden morphologischen Typen, sondern zufällig fixirten Stadien eines oder mehrerer formativer Prozesse entsprechen, die im ganzen Hoden nach den gleichen Gesetzen verlaufen.

Bevor wir aber daran gehen, diese Stadien zu einander in Beziehung zu bringen, haben wir zweier, dabei in Betracht kommender Fehlerquellen zu gedenken: es wird erstens möglich sein, ein wesentliches Stadium übersehen zu haben, und zweitens wird eine durch die Präparation bedingte Kunstproduktion ein wesentliches Stadium vortäuschen können.

Der erste Punkt ist insofern verhängnissvoll, als wir in der That keinen objektiven Anhalt dafür besitzen, wie weit unsere Beobachtungen erschöpfend sind. Namentlich dürfen wir Beobachtungen nicht darum für erschöpfend halten, weil sich aus ihnen ein bestehendes Bild der Vorgänge ableiten lässt, sondern die Probe auf das Facit muss umgekehrt ausfallen: wir dürfen eine
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 79

Konstruktion der Prozesse nur dann für befriedigend halten, wenn sie auf alle vorliegenden Beobachtungen anzuwenden ist, und jede Darstellung, die mit mehr Beobachtungen harmonirt als eine andere, kann vor dieser unbedingt den Vorzug beanspruchen. In dieser Hinsicht ernuthigt mich das Bewusstsein, mich fast durchgängig auf erweiternde, nicht auf widersprechende Beobachtungen gegenüber den Voruntersuchern zu stützen, und lässt mich hoffen, dass bei Divergenzen der Meinung meine Folgerungen die zwingenderen sind. Ebenso muss ich es allerdings späteren Arbeiten überlassen, die Lücken meines Gesichtskreises aufzudecken und darnach meine Anschauungen zu korrigiren.

Hinsichtlich der zweiten Fehlerquelle, durch Kunstprodukte über Formverhältnisse getäuscht zu werden, scheine ich allerdings den Vorwurf grosser Einseitigkeit meiner Methodik auf mich zu laden. Da ich es aber keineswegs unterliess, mich davon zu überzeugen, dass die frische Untersuchung sowie die Anwendung anderer Konservirungen viel ungleichmässigere Resultate giebt, habe ich mich nach Möglichkeit durch die Anwendung solcher Reagentien, deren günstiger Einfluss auf die hier in Betracht kommenden Zell- und Kernstrukturen bekannt ist, sicher gestellt, zumal meine Ergebnisse mit denen der Voruntersucher, auch wenn diese mit sehr differenten Methoden gearbeitet hatten, durchaus vergleichbar geblieben sind. Im Uebrigen scheint mir die Bedeutung dieser Fehlerquelle vielfach überschätzt zu werden. Zugegeben, dass beispielsweise die fädige Verbindung zwischen einem Fusslement und einem Samenbildner so, wie sie sich in meinen Präparaten darstellt, ein Kunstprodukt ist, d. h. nicht dem Verhalten im lebenden Gewebe entspricht, so sehen wir doch, dass unter genau den gleichen Bedingungen nicht die gleiche Verbindung zwischen andern Elementen dargestellt wird, und können darum schliessen, dass zwischen jenen zwei Zellarten eine besondere Beziehung besteht, während allerdings daraus, dass jene Verbindung in Präparaten häufig nicht sichtbar ist, keineswegs gefolgert werden könnte, dass sie im Leben nicht existirt. Das heisst allgemein: da wir im vorliegenden Falle die direkte Untersuchung des lebenden Gewebes nicht vornehmen können, sind wir nach dem heutigen Stande unserer Erfahrungen darauf angewiesen, uns auf die mittels erprobter, intensiver Härtingsmittel am lebenden Element fixirten Strukturbilder zu stützen. Wir sind uns dabei bewusst, mit Kunstpro-
Dr. Carl Benda:

dukten zu arbeiten, meinen aber, vor allen Dingen jene schwer kontrollierbaren Kunstproduktionen vermieden zu haben, die sowohl bei der sogenannten frischen Untersuchung, wie bei verschiedenen unsicheren Här tungsmethoden aus dem allmäßlichen Absterben und einer theilweise n Maceration der Gewebe resultiren. Die bei der Anwendung schnell abtödtender und schnell koagulirender Reagentien darstellbaren Gebilde müssen, wenn sie mit Regelmässigkeit auftreten, jedenfalls von chemischen und physikalischen Eigenschaf ten des lebenden Gewebes abhängig sein, und dürften uns so lange als die Fixirung des Lebenszustandes gelten, als sie nicht durch die Beobachtung des lebenden Elementes selbst korrigirt werden. Keineswegs kann aber die Zerstörung eines solchen Strukturverhältnisses durch irgend eine andere Präparationsmethode als Beweis gegen das vitale Bestehen desselben angezogen werden.

Unter diesen Voraussetzungen und Einschränkungen will ich nunmehr daran gehen, meine Ansichten über den Verlauf der Sekretionsvorgänge im Säugethierhoden zu entwickeln.

Ich habe wohl kaum Widerspruch zu befürchten, wenn ich die oben beschriebene Reihe von Samenbildnerformen im Grossen und Ganzen als die Reihenfolge der Stadien anspreche, durch die sich das Spermatozoon aus den Bestandtheilen einer Zelle, die vorläufig als Samenbildner bezeichnet wurde, differenziert, das heisst, dieser Process verläuft in einer Periode, die die vier dort beschriebenen Stadien umfasst. Was nun die Einzelheiten dieses Processes betrifft, so legt die grosse Mannichfaltigkeit, die in einem so kleinen Beobachtungskreise zu Tage trat, grosse Vorsicht für die Feststellung des Gesetzmässigen auf. Vor Allem verdient allerdings diese Mannichfaltigkeit selbst Beachtung; sie gestattet eine Schätzung des Spielraumes, der für die Individualisirung der Vorgänge selbst bei nahe verwandten Spezies vorhanden ist, und lässt immerhin schon Andeutungen von einer Gruppierung verwandtschaftlicher Typen herausfinden.

Im Uebrigen lenken besonders die Differenzirungen am Schwanzpol des Kernes die Aufmerksamkeit auf sich, obgleich ihre Deutung sehr dunkel bleibt. Anfänglich habe ich der Schwanzkappe besondere morphologische Bedeutung beigemessen, beson- ders, weil ich sie mit dem „weniger lichtbrechenden“ Kerntheil
Untersuchungen über den Bau des funktionirenden Samenkanülechens etc. 81
der Autoren identisch glaubte. Nachdem ich dies als irrhümlich
erkannt und auch das Fehlen dieses Gebildes beim Eber konstatirt
habe, bin ich sicher, dass es sich nicht um die Anlage eines per-
sistenten Theiles des Spermatozoons handelt, wie dies Klein an-
nimmt, der das Mittelstück Schwiegger-Seidel's darans entstehen
lässt. Die Schwanzkappe geht bei der Reif des Spermatozoons
erlaude. Ihre Reste scheinen höchstens in formlosen Anhän-
gsel des jungen Spermatozoonschwanzes fortzudauern.

Auch die ursprünglich so differente Entwickelung eines
cumpantheiles mancher Samenbildnerkerne lässt in der endgültigen
Gestalt des Spermatozoons wenig Spuren zurück. Einen der Val-
tin'chen Querstreifen des Kopfes möchte ich mit v. Brunn
für eine solche Spur ansehen. Ich halte es für möglich, dass
diesen Gebilde bei andern noch nicht untersuchten Spezies eine
bedeutendere Rolle spielt, die auf die vorliegenden Thatsachen
einiges Licht werfen könnte.

Im Uebrigen scheint die Differenzierung sowohl der Kappe
wie des Kuppantheils mit der Entstehung des Schwanzfadens in
Beziehung zu stehen, und das Verhalten jener Gebilde dürfte die
wichtigsten Daten für die Wachstumsrichtung des Schwanzes
gaben. Da ich bei geschlossener Schwanzkappe nie die proto-
plasmatischen Anhängsel der Zelle, aus denen sich nach der Mehr-
zahl der Autoren der Schwanz bilden soll, in den Zellleib ein-
dringen sah, wohl aber oft den Schwanzfaden in der geschlossenen
Schwanzkappe erkannte, schliesse ich mich der Anschauung
v. Kölliker's und Biondi's an, dass auch der Schwanz vom
Kern aus entsteht; und zwar, wie ich glaube, als ein direkter Aus-
läufer des Chromatintheils. Die Schwanzkappe würde ich dann mit
Biondi als die Hervorwölbung der achromatischen Kernmembran
erklären, die bei einigen Spezies so besonders resistent sein mag,
dass sie von dem hervorwachsenden Schwanz als lange Scheide
herausgetrieben wird, ehe sie gesprengt wird und den Schwanz
frei giebt, während sie beim Eber sofort durchbohrt ist. und der
Schwanz gleich frei in den Zellleib vorwächst. Für diese Deutung
spräche auch der Befund einer Fortsetzung der Membran auf die
vordere Kernhälfte, wie ich ihn beim Hunde erwähnt habe.

Ueber die Appendikulargebilde des Spitzenpols habe ich weiter
unten zu sprechen 1).

1) Es ist hier zu erwähnen, dass Biondi auch in einer neulichen
Die übereinstimmenden Momente im Verlauf der Metamorphose bei den verschiedenen untersuchten Spezies finde ich darin, dass sich, ausgehend von jener Form, in der der Kern eine Chromatinblase darstellt (II), zuerst der Schwanz anlegt (III), darauf die endgültige Gestaltung des Kopfes durch Abplattung der Chromatinkapsel erfolgt, wobei der vorher vorhandene, wahrscheinlich mit Kernsaft erfüllte centrale Hohlraum verschwindet (IV) und schliesslich das reife Spermatozoon von seinen cellulären Hüllen befreit wird (V).

Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 83

Umwandlung beginnen und dass, wenn seine „Zellsäule“ durch Umwandlung erschöpft ist, erst die Gesammtregeneration der Zellsäule erfolgt, ehe an derselben Stelle die Sekretion neubeginnt.

All diesen Beobachtungen ist vielmehr das Eine mit Sicherheit zu entnehmen, dass an jeder einzelnen Stelle des Samenkanälchens ein ganzer Haufen Samenbildner gleichzeitig seine Umwandlung von der Zelle zum Spermatozoon durchmacht, und dass nicht eher, als diese Umwandlung in allen Phasen vollendet ist, neue Zellen in den gleichen Process eintreten.

Die Sekretion erfolgt demnach exquisit schubweise. Die Fertigstellung jedes Schubes nimmt eine Periode ein, die sich ebenso wie die Umbildung des einzelnen Samenbildners durch die vier Stadien vom II. bis zum V. Wandtypus erstreckt.

Bevor wir die eigentliche Provenienz der Samenbildner selbst untersuchen, haben wir die zellbildenden Vorgänge des funktionirenden Samenkanälchens im Allgemeinen zu verfolgen.

Da Biondi diese Vorgänge selbstverständlich nicht beobachtet, sondern nur aus gewissen Phasen rekonstruiert haben kann, dürfen wir seine Beweise prüfen. Vor allem musste ich die That­sache, auf die er sich besonders stützt, die genaue Richtung der Säulen in Abrede stellen, da ich die Glieder der peripherischen und der zweiten Schicht keineswegs in so regelmässiger Correspondenz fand, wie dort supponirt wird.

Zweitens steht aber jene Darstellung mit vielen Beobachtungen in Widerspruch. Sie passt nicht auf die grossen Abschnitte der Samenkanälchen, in denen keine Spur jener Säulenordnung erkennbar ist; sie berücksichtigt nicht die interessanten Wechselbeziehungen, die zwischen der Zellbildung und der Zellmetamorphose
an jeder Stelle der Kanälchenwand herrschen; sie ist einzig und allein auf die Betrachtung von Durchschnitten und Schrägschnitten meiner Typen V—I basirt.

Auch von Wiedersperg ist nicht zur Klarheit über die betreffenden Vorgänge gelangt. Er ergeht sich in Spekulationen über die möglichen Gründe, aus denen die Beobachtung der Zelltheilung nicht an allen Orten angängig sein könnte, ohne die nächstliegenden Konsequenzen aus seinen ganz zutreffenden Beobachtungen zu ziehen.

Wenn wir alle Elemente der Kanälchenwand in der Umgebung eines Sekretionsschubes in einer, dem Fortschreiten der Sekretion korrespondierenden Veränderung begriffen finden, ist diese Beobachtung nur dahin zu deuten, dass die Vorgänge in jenen Elementen in ähnlichen Perioden, wie die Samenbildnermetamorphose verlaufen. Wir haben daher jedes Element durch die ganze Periode zu verfolgen.

Ich beginne diese Betrachtung mit den Zellen ee, die ich mit Biondi als „Tochterzellen“ bezeichnen kann.

Nur in den ziemlich spärlich verstreuten Bildern, die die ersten Reifungerscheinungen eines Spermatozoenschubes zeigen, also in meinem Wandtypus V sehen wir die Zelltheilungen, aus denen die Tochterzellen entstehen. Sobald die Ausstossung der Spermatozoen aus der Kanälchenwand deutlicher wird, sind die Tochterzellsäulen meist völlig ausgebildet und enthalten keine Karyokinesen mehr. Die Zellen vergrössern sich dann nur noch, wobei sie sich gegeneinander abplatten und schliesslich (I) die ganze innerste Zone einnehmen. Ihre ursprüngliche Anreihung ist offenbar ein Resultat ihrer vorwiegend einseitigen Bildungsrichtung, da die Theilungen fast durchgehends radiär verlaufen; indess ist es nicht selten, dass auch Elemente seitlich herausgedrängt werden.

Gleichzeitig mit der Entstehung der Tochterzellen sind in dem V. Stadium die distalen Reihen der Zellen dd verschwunden. Wir müssen annehmen, dass sie in die Bildung der Tochterzellen aufgegangen sind, und wir dürfen ihnen den von Biondi ange-
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 85

wandten Namen „Mutterzellen“ belassen. Diese Zellen fanden wir im I. und II. Stadium als zweite Schicht; sie wurden später (III und IV) gegen das Lumen in mehreren Reihen verschoben, wobei keine weitere Vermehrung stattzufinden scheint. Beim Verschwinden dieser distalen Reihen finden wir aber (V) bereits wieder eine vollständige Mutterzellenschicht als zweite Zone.

Diese Schicht ist weder von den Theilungen der alten Mutterzellen zurückgeblieben, noch etwa frisch durch Theilungen aus der peripherischen Schicht vorgeschoben worden. Sie ist, wie in den Typen III und IV zu verfolgen, durch allmäßliche Rangirung der Zellen bb (Brown's growing cells), die ich „Ersatzmutterzellen“ nennen will, entstanden. Diese Zellen können wir bis in's II. Stadium zurück verfolgen, wo sie in der peripherischen Schicht neben den Zellen aa und den Fusszellen lagern. Sie müssen dennoch den Zelltheilungen entstammen, die dort bei manchen Thieren (Stier) schon frühzeitig beginnen, in ihrer Hauptmenge aber zwischen dem V. und I. Stadium, also etwas später als die Theilungen der Mutterzellen, vor sich gehen.

Auch diese Theilungen sind wahrscheinlich durchgehends indirekt, obgleich es auffallend ist, dass die Mitosen eigentlich nur vereinzelt zu beobachten sind. Vielleicht darf man dies auf ihren schnellen Ablauf beziehen; das Vorhandensein karyokinetischer Figuren dieser Schicht ist aber durch Brown und mich unzweifelhaft konstatirt.

Die Theilungen der peripherischen Schicht haben eine wichtige Eigenheit, die namentlich Biondi gegenüber zu betonen ist: sie produciren nur Elemente der peripherischen Schicht. Ich schliesse dies erstens aus der Axenrichtung der Mitome, die immer mehr oder weniger der Basalmembran parallel läuft. Besonders aber wird dieses Gesetz durch den Umstand belegt, dass gerade während jener Theilungen die scharfe Abgrenzung zwischen peripherischer und zweiter Zone entsteht, die im I. Stadium so ausgesprochen ist. Dieselbe erklärt sich nur durch die ausschliesslich seitliche Vermehrung der Elemente und sie verschwindet, sobald Zellen von der Peripherie nach innen vordringen.

Von wo nehmen nun die produktiven Vorgänge der äusseren Zone ihren Ausgang? Es kommen dabei die beiden vor der Ver-
mehrungsphase allein in der peripherischen Schicht vorhandenen Zellen aa und die Fusselemente in Frage.

Nach Biondi, der zwischen beiden Zellarten nicht unterscheidet und beide in die Kategorie seiner „Stammzellen“ rechnet, ist die Frage unerheblich.

Nach Brown, der von vorneherein die Fusselemente als gänzlich differente Gebilde auffasst, kommen nur die Zellen aa, seine spore cells, in Betracht.

Ich stelle mich aus folgenden Gründen auf seine Seite. Bei manchen Spezies beginnen die Zelltheilungen der äusseren Zone schon im IV., bei den andern Anfangs des V. Stadiums, d. h. zu Zeiten, wo die Fusselemente noch in deutlichen Beziehungen zu den Samenbildnern stehen. Dass die Fusselemente unter diesen Umständen indirekte Kerntheilungen eingehen, oder auf eine andere Weise an Zellenbildungen Theil nehmen sollten, ist mit Sicherheit auszuschliessen; diese ersten Theilungen können allein von den Zellen aa ausgehen. Später (I), wo die Fusszellen von den Samenbildnern getrennt und oft ganz auf die äusserste Schicht beschränkt liegen, wäre eine Entscheidung durch die Beobachtung, wie ich glaube, unmöglich, aber man wird doch kaum annehmen wollen, dass die Fusszellen nun plötzlich als gleichwerthig mit den Zellen aa auftreten werden, nachdem sie sich solange funktionell durchaus von ihnen unterschieden. Ich nehme also auch an, dass die Regeneration der äussersten Schicht von den Zellen aa ausgeht und dass diese somit als Vorfahren der Mutter- und Tochterzellen den Namen der „Stammzellen“ beanspruchen dürften.

Hierin soll aber nichts über das Verhältniss dieser Stammzellen zu den Fusszellen antecipirt sein, ein Verhältniss, welches der Erkenntniss besondere Schwierigkeiten in den Weg legt.

Es ist nicht wahrscheinlich, dass ein eiserner Bestand an Fusszellen für die ganze Funktionsdauer im Hodenkanälchen vorhanden sein sollte; es ist sogar ziemlich sicher, dass im V. Stadium bei der Ausstossung der Spermatozoen Füsse zu Grunde gehen. Woher erfolgt nun deren Regeneration?

Ich bin in meinen ersten Publikationen ziemlich positiv für die Gleichartigkeit aller Elemente des Samenkanälchens eingetreten, worin eingeschlossen wäre, dass ich jene Regeneration auch auf die Zellen aa zurückführe. Ich muss aber gestehen, dass mir seitdem vom vergleichend histologischen Standpunkte dagegen schwere
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 87

Bedenken aufgestiegen sind, da mir, wie ich aus noch nicht abgeschlossenen Untersuchungen vorweg nehmen will, für die andern Wirbelthierklassen jene Homogenität der Elemente nicht durchführbar erscheint. Was mich damals veranlasste, in dieser Beziehung Biondi und Merkel beizutreten, und was ich auch heute noch aufrecht halten kann, ist der Umstand, dass ich bisher keine Phänomene gefunden habe, die auf einen anderweitigen Ersatz der Fussselemente deuten, namentlich sah ich an ihnen selbst keine deutlichen Theilungsvorgänge, aus denen auf eine eigenartige Vermehrung dieser Zellen geschlossen werden könnte. Daher ist mir auch jetzt nicht undenkbar, dass die Fusszellen durch Differenzierungen von Theilungsprodukten der Zellen auf entstehen könnten, und es finden sich gewiss Zellformen, die man für Übergangsformen erklären könnte. Zu Gunsten der zahlreichen Forscher, die für die Heterogenität der beiden Zellarten eintreten, bleibt der Umstand bedeutungsvoll, dass im funktionirenden Hoden kein Stadium existirt, in dem das Samenkanälchen gar keine Fusszellen aufweist. Somit scheint es mir nöthig, die Frage nach den genetischen Beziehungen von Fuss und Stammzellen in dieser Arbeit in suspenso zu lassen, und meine frühere Entscheidung vorläufig zurückzunehmen.

Das unmittelbare Resultat der Theilungsvorgänge in der peripherischen Zone ist überhaupt sehr schwer zu erkennen, weil der Process gleichzeitig an vielen Elementen vor sich geht, sehr schnell verläuft und sofort sehr viele und kleine neue Elemente entstehen, die sich entweder weiter theilen oder andere Differenzierungen ein­gehen. Es bleibt daher nicht nur dunkel, ob Fusszellen bei diesen Theilungen neugebildet werden, sondern auch ob die Ersatzmutterzellen als unmittelbares Theilungsprodukt, oder erst durch Differen­zierung aus anderen neugebildeten Zellen entstehen. Es wäre möglich, dass ein Theil der neuentstandenen Kerne nicht wieder ganz zu dem Ruhestadium des Stammzellenkernes zurückkehrt, sondern gleich aus einer vorangehenden Mitose den Charakter des Kernes der Ersatzmutterzelle annimmt, denn letzterer unterscheidet sich von jenem nur durch das Verhalten des Chromatins. Ich halte es indessen für wahrscheinlicher, dass das unmittelbare Theilungsprodukt immer nur Stammzellen sind, weil man dies bei den langsamen Theilungen der peripherischen Zone, die beim Stier in früheren Stadien auftreten, als sicher betrachten kann.
Wir hätten demnach im Samenkanälchen zwei Zellbildungsprozesse zu unterscheiden, die nicht nur durch ihren Ort und ihren Verlauf, sondern auch durch ihren Effekt total verschieden sind.

Die Zellbildung der peripherischen Zone spielt sich mit wenigen Ausnahmen völlig zwischen V. und I. Stadium ab, geht von den ruhenden Kernen der Stammzellen aus, verläuft in der gewöhnlichen Weise mit dem schnellen Wechsel der Mitosen und hat vermuthlich eine Neubildung von Stammzellen zum alleinigen Effekt.

Für den zweiten Process wandert zuerst ein Theil dieser jungen Stammzellen unter charakteristischen Veränderungen aus der peripherischen Zone nach innen. Das Movens dieser sicherlich passiven Wanderung liegt wohl unzweifelhaft anfänglich in der Vergrößerung der wandernden Elemente und in gewissen Veränderungen der Nachbarelemente, wodurch jene aus der peripherischen Zone hinausgedrängt werden. Das weitere Vorschieben der Mutterzellen wird durch die nachrückenden Ersatzmutterzellen bewirkt.

Der Verlauf des zweiten Processes gestaltet sich also folgendermassen: Eine Anzahl Stammzellen verlässt gleichzeitig die
periherische Schicht, erreicht gleichzeitig das feinfädige Spirem der Ersatzmutterzellen, das grobfädige der Mutterzellen und geht gleichzeitig durch Theilungen in Tochterzellen über; sie erreicht aber nie eher den neuen Kernzustand, ehe ihm nicht die Zellen des vorhergehenden Schubes verlassen haben. Wenn wir danach die Tochterzellen als Repräsentanten eines Stammzellenschubes, der seine Entwicklung abgeschlossen hat, ansehen können, stellen Mutterzellen und Ersatzmutterzellen zwei fernere Schübe dar. Das gleichzeitige Vorkommen dieser Formen im I. Stadium ist also so zu deuten, dass immer, wenn eine Generation Tochterzellen produziert ist, das Material für eine zweite Produktion schon als Mutterzellen bereit liegt, und die Vorbereitung einer dritten Generation beginnt, während die jetzt ruhenden Stammzellen der äusseren Zone die unerschöpfliche Quelle weiterer Generationen darstellen. Das weitere Vorrücken der Generationen ist nun dahin geregelt, dass die vorbereitenden Veränderungen jedes Stammzellenschubes sich auf zwei Umwandlungsperioden von Samenbildnerschüben verteilen, und dass mit der Reifung eines Spermatozoenschubes immer die Fertigstellung einer Tochterzellegeneration zusammenfällt.

Während also der eine zellbildende Process eine periodische Vermehrung der Stammzellen bewirkt, ist das Resultat des zweiten, kurz gesagt, die schubweise Entstehung von Tochterzellen aus einem Theil der Stammzellen in genau geregelter Perioden, die ebenfalls zu den Perioden der Samenbildnermetamorphose in bestimmtem Verhältniss stehen.

Wir stehen jetzt vor der schwierigsten Frage unseres Gebietes, der nach den Beziehungen zwischen Tochterzellen, Samenbildnern und Fusszellen. Bei der Beantwortung haben sämmtliche nur möglichen Anschauungen ihre Vertreter gefunden.

3) Die Tochterzellen treten mit den Fusszellen in Beziehung und wandeln sich in Samenbildner um. Hier tritt ein Theil der Autoren für die blosse Anlagerung der Tochterzellen an die Füsse (Sertoli, Merkel, Helmann, Krause, Brown), ein anderer Theil für eine wirkliche Vereinigung beider Zellarten ein (Renson, Swaen und Masquelin, Benda, Gruenhagen [Lehrbuch der Physiologie]).

Ich werde versuchen, meine Stellungnahme in dieser Frage in den zwei folgenden Kapiteln zu begründen.

4. Kapitel. Existirt eine Beziehung der Samenbildner zu den Fusszellen?

Es fragt sich also zuerst, ob die Fusszellen eigenartige Zellen sind. Die Stellungnahme Biondi's in diesem Punkte be-
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 91

zeichnet Grunenhagen, der sonst in vielen Punkten mit Biondi ehemals harmonirte, als „unverständlich“. Man kann, wie ich es thue, die Frage nach der genetischen Verschiedenheit der Fusszellen offen lassen, man kann sogar fest überzeugt sein, dass diese Verschiedenheit keines Falls so bedeutend ist, wie sie nach Sertoli’s Auffassung erscheinen könnte, dessen cellule ramificatae den Bindegeweben näher ständen, als den Epithelien. Dass aber die Fusszellen morphologisch und funktionell von den Stammzellen zu unterscheiden sind, wird keinem Beobachter entgehen, der diese Gebilde durch die ganze Reihe der Stadien verfolgt. Biondi’s Widerspruch ist nur dadurch erklärlich, dass er jene Zellen nur im V. Stadium sah, wo sie während der Aussendung der Spermatozoen in der That argen Insulten ausgesetzt seien und wahrscheinlich auch zum nicht geringen Theil dem Untergang geweiht sind.

Dass die Fusszellen eine Sonderstellung gegenüber den anderen Elementen einnehmen, spricht sich in Eigenheiten ihrer Struktur und ihrer Lebensthätigkeit aus. Von den Struktureigenheiten ist wohl das grösste Gewicht auf die Labilität ihrer Begrenzung zu legen 1). Diese kann unmöglich allein ein Zerfliessungsprodukt sein, denn eine solche Zerfliessung tritt unter den gleichen Bedingungen hier nur bei ganz bestimmten Elementen ein. Ich glaube zwar mit Biondi, dass die Formen, unter denen sich jene Zellen z. B. bei Isolirung präsentiren, nur zufällig unter dem Einfluss der Reagientien ent-

1) Biondi giebt jetzt sogar die Struktureigenthümlichkeiten des Korns zu, auf die ich weniger Gewicht lege, da sie sich ja nach unseren heutigen Kenntnissen schon durch Theilungsphänomene ändern könnten und also weniger zur Charakteristik einer Zellgattung als eines Zellzustandes taugen. Dass diese Merkmale aber nicht erst beim Zerfliessen ausgedienter Stammzellen auftreten, sondern den Fusszellen in allen Phasen ihrer Funktion zukommen, müsste nach meiner Meinung auch in B’s Präparaten zu erkennen sein.
standen sind. Mir scheint indess, dass ein solches Verhalten nur dadurch bedingt sein kann, dass die vorliegenden Elemente die einzigen membranlosen des Kanälchens sind. Ein Theil der Formveränderungen tritt aber so typisch auf, dass ich ihn in den engsten Zusammenhang zu der Lebenstätigkeit jener Zellen setze. Wenn wir namentlich die morphologischen Verhältnisse dieser Gebilde durch die verschiedenen Stadien der Samenbildungsperiode verfolgen, so müssen wir ihnen eine äußerst lebhafe aktive Beweglichkeit zusprechen. Dass die Zellkörper im V. Stadium sich strecken und die Kerne dem Lumen zugeordnet werden, ist wohl auf passive Veränderungen, die von den Nachbarelementen ausgehen, zu beziffern. Dass sich die Fusszellen aber nach dem II. Stadium, wo wir sie bei allen Spezies mehr oder weniger aufgerichtet fanden, entgegen der deutlichen Richtung des Wachtshumsdruckes wieder der Basalmembran nähern und sich dieser mit immer breiterer Basis anschmiegen, ist nur durch eine in ihnen liegende Thätigkeit zu erklären. Hierin zeigt sich schon die durchgreifende funktionelle Differenz gegen die Nachbarelemente, die, wie wir sahen, nur mit der Produktion der Tochterzellen beschäftigt sind, ohne dass eine Betheiligung der Fusszellen bei diesen Vorgängen wahrnehmbar ist.

Ich halte es ganz allgemein für keinen erlaubten Schluss, die artificielle Zerstörung eines Strukturverhältnisses für einen Beweis gegen die Existenz desselben auszugeben, da diese Methode zu den bedenklichsten Konsequenzen für unsere Kenntniss des Organischen führen müsste.

Technologisch spricht für die Existenz jener Verbindung die viel bedeutsamere Thatsache, dass es andern Beobachtern und auch mir gelang, die Samenbildner in Zusammenhang mit der Fusszelle durch Maceration zu isoliren.
Im übrigen muss ich bemerken, dass nicht nur die Kochsalzlösung, sondern auch andere ungenügende Härtingsmittel und sogar die ungenügende Einwirkung guter Härtingsmittel das Bild dieser Organisation nicht darzustellen vermag, weil es, wie ich durch vergleichende Härtingen konstatieren konnte, postmortal ganz von selbst zu Grunde geht. Das spricht nur für die ausserordentliche Zartheit der Organisation und erklärt die grosse Unsicherheit der Bilder jener Verbindung zur Genüge. Auch ich habe ja in der That keine Sicherheit, ob gerade mir die völlig lebensähnliche Darstellung gelungen ist; dies ist nur aus dem Grunde wahrscheinlich, weil mehrere gute Härtingsmittel ähnliche Resultate gaben. Dass für die Kunstproduktion kein zu grosser Spielraum bleibt, beweist am besten der Umstand, dass ich für die einzelnen Spezies gewisse Strukturen der Verbindung typisch fand. Hier an die regelmässige Wiederkehr zufälliger Gerinnungen zu glauben, würde doch wenig nahe liegen 1).

Wir kommen zu einer dritten Frage: Giebt es andere Erklärungen, die die vorliegenden Bilder plausibler deuten, als die Statuirung jener Verbindung?

Ich habe mir klar gemacht, dass, selbst wenn ich im vorigen Satze die Zuverlässigkeit meiner Bilder wahrscheinlich gemacht haben sollte, der weitere Einwand möglich wäre, dass die direkte Beobachtung ja nur den Zusammenhang einiger oder allenfalls der meisten Samenbildner mit Fusszellen demonstrieren kann, dass damit aber noch keineswegs der Beweis für die Gesetzmässigkeit dieses Verhältnisses geführt ist. Dieser Beweis ist in der That, wie mir scheint, überhaupt nicht direkt zu erbringen. Dass wirklich alle Samenbildner mit den Fusszellen in Zusammenhang stehen müssen, folgt aus einer Reihe von Phänomenen, die ohne eine Fixation des proximalen Samenbildner-Pols absolut nicht zu erklären wären. Der Druck von Seiten der nachwachsenden Elemente, den v. Wiedersperg für die Gruppierung verantwortlich macht, würde auf freiliegende oder nur mit den proximal zunächst liegenden Zellen verwachsene Elemente nur den Vorschub in das Lumen be-

1) Den Nachweis, dass irgend ein Härtingsmittel im Stande sein sollte, eine den Spuren (!) eines Spermatozoons entsprechende Veränderung der Protoplasmamasse in Gestalt deutlicher Fäden zu koaguliren, hat Biondi noch nicht erbracht, obgleich er diese Behauptung auch in der neuesten Publikation wiederholt.
Dr. Carl Benda:

Untersuchungen über den Bau des funktionirenden Samenkanälenches etc. 95

Ich kann also ebensowenig wie vor mir Renson und Brown umhin, die in den verschiedenen Wandabschnitten auftretenden Bilder der Lagerung der Samenbildner auf eine Verlage-

¹) Biondi wiederholt, wie gesagt, in seiner neuesten Publikation die Behauptung, dass die von mir und ja auch von ihm gesehenen Verbindungsfäden die Spuren der ausgestossenen Spermatozoen seien. Dass diese Fäden aber nicht an den ausgestossenen Spermatozoen, sondern an den jungen Samenbildnern am deutlichsten erkennbar sind, glaube ich auf meinen Präparaten oft genug demonstrirt zu haben.

²) B. bestätigt bereits selbst diese Vermuthung, denn er erkennt jetzt an, dass beim Menschen im Gegen satz zur Ratte die Umwandlung nicht bis zur Basalmembran fortzuschreiten braucht, und dass dort die „Stammzelle“, die er nunmehr auch als „Fusszelle“ bezeichnet, am Grunde des Spermatozoenbündels erhalten bleiben kann. Von den andern zahlreichen Säugerthierspezies, bei denen früher angeblich das gleiche Verhalten wie bei der Ratte konstatirt wurde, ist nicht mehr die Rede. Ich glaube, dass hiermit die wichtigste Position seiner Beweisführung genannt wird.
rung dieser Elemente zurückzuführen, die bei der Ratte geradezu excessiv in Erscheinung tritt, indess mehr oder weniger bei allen Spezies beobachtet werden kann. Die Verlagerung ist absolut oder relativ. In ersterem Falle finden wir die Samenbildner in den späteren Phasen wirklich in einer Annäherung zur Basalmembran, wie sie in den früheren nicht beobachtet wurde, so besonders bei Ratte, Maus, Kaninchen, Stier; oder wir sehen, dass die Samenbildner nicht im gleichen Schritt mit den proximal gelegenen Elementen gegen das Lumen vorrücken, sich vielmehr mit dem proximalen Pol zwischen sie drängen, also wenigstens relativ verlagern; dieses Verhalten ist selbst beim Hunde zu konstatiren, wo sonst jene Phänomene am wenigsten ausgesprochen sind. Die Schwierigkeit, ein aktives Zurückkriechen der Samenbildner annehmen zu wollen, werden wir gern umgehen.

Die Möglichkeit einer Deutung ergibt sich aber aus der Vergleichung der Spezies. Wir erkennen dabei, dass die Verlagerung der Samenbildner jedes Mal den oben beschriebenen, von der Fusszelle ausgeführten Bewegungen proportional ist. Beim Hunde ist die Retraktion der Fusszelle vom zweiten Stadium an fast unmerklich. Dem entsprechend verbleiben die Samenbildner, durch lange Fäden mit der Fusszelle verbunden, nahe am Lumen und bilden eine äusserst lockere Gruppe, die erst durch die relative Verlagerung in den späteren Stadien markirter wird. Bei den meisten anderen Spezies, wo die Rücklagerung der Fusszelle erheblicher ist, werden die Samenbildner zu einer dichten Gruppe in die Nische zwischen die Mutterzellen hineingedrängt. Bei der Ratte endlich, wo wir den Kern der Fusszelle im zweiten Stadium oft mitten zwischen den Samenbildnern finden, werden diese oft bei der Retraktion der Fusszelle bis an die Basalmembran getragen.

Da die in diesem Kapitel behandelte Frage häufig dahin for-
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 97

5. Kapitel. Wie und wann entsteht die Verbindung von Fusszellen und Samenbildnern?

Wenn wir nunmehr die Frage nach der Entstehung des organischen Zusammenhanges von Fusszellen und Samenbildnern verfolgen, wird sich Niemand der Voreingenommenheit verschliessen können, eine Herleitung jenes Zusammenhanges aus der Genese der Elemente zu versuchen, ihn also für primär anzusehen. Die Auffassungen v. Ebner's, Neumann's, v. Mihalkowicz's, v. la Valette St. George's u. a. stimmen bei allen Differenzpunkten darin überein, dass sie die samenbildenden Elemente aus der Fusszelle entstehen lassen und in dem unvollkommenen Eintreten der Abtrennung der Tochterelemente die natürliche Erklärung jener Verbindung finden. In diesem Sinne ist es gleichgültig, dass der eine dieser Autoren die ersten Stadien übersah und die Spermatozoen frei in den Lappen der Fusszellen entstehen lässt, während die andern ihre Ableitung aus Kernen erkannten, es ist gleichgültig, dass der eine für freie Kernbildung, die andern für Abschührung eintraten, die einen die Lappen bestehen liessen, der andere ein riesenzellenartiges Vorstadium annahm.

Räthselhaft war nur der Verbleib der Tochterzellen, die zwischen meinen Typen I und II ganz plötzlich verschwinden
müssten, da ich zwischen diesen zwei Stadien, die sich durch das Verhalten aller anderen Elemente so ausserordentlich nähern, keine auf eine andersartige Zerstörung der Tochterzellen weisenden Zwischenformen fand. Ebenso fehlten alle Bilder, die einen von der Fusszelle ausgehenden Zellbildungsproces in seinen Anfängen demonstrierten; vielmehr zeigte diese Fusszelle immer von vornherein Beziehungen zu einer ganzen Anzahl von Samenbildnern, die auch ganz plötzlich entstanden sein mussten.

Das, was mich aber veranlasste, die Vertretung eines genetischen Zusammenhangs zwischen Fusszelle und Samenbildnern endgültig aufzugeben, waren die Befunde beim Hund. Hier wird nie jene Annäherung der beiden Kernarten aneinander beobachtet; wo nur immer die Verbindung zwischen Samenbildnern und Fusszellen zur Beobachtung kommt, ist sie durch lange Protoplasmafäden repräsentiert. Ähnlich, wenn auch nicht ganz so auffallend, sind die Verhältnisse bei Kater, Eber, Meerschweinchen.

Wenn nun aber der Zusammenhang von Samenbildnern und Fusszellen besteht; wenn ferner ausgeschlossen werden kann, dass dieses Verhalten aus genetischen Beziehungen beider Elemente entspringt, so bleibt keine andere Möglichkeit, als dass es sekundär zu Stande gekommen ist, indem sich die Fusszellen mit anderwärtig entstandenen Elementen vereinigten. Für diese Bestimmung bleiben allein die Tochterzellen übrig; und diese haben wir danach als die weitere Vorform der Samenbildner und somit als die eigentlichen Samenzellen zu betrachten.

Diese gleiche Schlussfolgerung müssen alle jene Autoren gemacht haben, die für die sekundäre Vereinigung der Tochterzellen mit den Fusszellen eintraten, gleichviel ob sie dieselbe als Zerfliessung, Anlagerung oder Verschmelzung auffassten; die Verfolgung des Vorganges selbst ist selbstverständlich bisher noch nicht gelungen, und wird vermutlich noch lange ein Postulat der biologischen Untersuchung bleiben. Aber jene Schlussfolgerung darf als zwingend gelten, so lange nicht eine andere Möglichkeit nahe gelegt werden sollte.

Die anatomische Methode kann dem Wesen jenes Vorganges nur noch näher treten, indem sie die Frage verfolgt, welches die ersten Phänomene sind, die auf das Zustandekommen der Verbin-
Untersuchungen über den Bau des funktionirenden Samenkanälechens etc. 99
dung zu beziehen sind. Auf diesem Wege müssen auch die Vor-
untersucher ihre Ansichten gebildet haben.

Am unvollständigsten in dieser Hinsicht waren wohl die Be-
obachtungen Grünhanen's, die in seinen vorläufigen Mitthei-
lungen (Centralbl. f. d. med. Wissensch. 1885, p. 481 und 737) niedergelegt sind, obgleich er jetzt auf diese den Ausspruch gründet, „der Erste gewesen zu sein“, der den „nach bestimmten Gesetzen ablaufenden Verwachsungsprocess zweier Zellarten“ nachgewiesen hat. Er hatte damals offenbar nur den Zusammenhang der reifen Spermatozoen mit Fusszellen gesehen und demgemäß lautet das dort ausgesprochene „Gesetz“: „Die ausgebildeten Spermatozoen gruppiren sich radiär zum Querschnitt des Samenkanälechens und stellen im Verein mit den sie untereinander verklebenden Zerfall-
resten des Protoplasmas der sekundären Samenzellen, sowie den zuerst erwähnten Stützzellen die sogenannten Spermatoblasten der Autoren dar. Die Spermatoblasten sind also nicht einheitliche Zellbildungen mit der Aufgabe, als Keimstätten der Samenlemente zu dienen, sondern Zerfallprodukte, mit deren Produktion die Samenbildung örtlich abschliesst.“ Jetzt nach Herausgabe seines „Lehrbaches der Physiologie“ darf sich Herr Grünhanen allerdings rühmen, die frühesten Vereinigungsphänomene dargestellt zu haben; soweit sich aus seiner Figur 214, auf der allerdings überhaupt keine Zellgrenzen wiedergegeben sind, entnehmen lässt, hätte er die Verschmelzung der Fusszelle nicht nur mit Tochterzellen, sondern sogar schon mit Mutterzellen gesehen. Es muss jetzt aber die Frage entstehen, ob auf den Präparaten, denen jene Figuren entnommen sind, neben so hochgradigen Konfluenzersecheinungen auch das Bild der Isolation der Elemente, die der „Verwachsung“ doch nothwendiger Weise vorausgegangen sein muss, zu erkennen war. Es ist gewiss sehr anerkennenswerth, wenn Herr Grünhanen seine oben eitirte Ansicht dahin geändert hat, dass er jetzt die Spermatoblasten „nicht als Keimstätten neugebildeter Spermatozoen, sondern als Sammelstätten anderswo entstandener, hier erst zur Reife gelangender“ ansieht, und mir um so erfreulicher, als ich meinen dazwischen erschienenen Mittheilungen vielleicht auch einigen Einfluss auf diese Erkenntniss zuschreiben darf. Ich kann aber nicht zugeben, dass G. die Verdienste um die Klarlegung jener Vorgänge hat, die er sich selbst zuschreibt.

Viel weiter als er kamen vor ihm unter andern bereits Ser-
toli und Merkel, die die Beziehung der Samenbildner zur Fusszelle bereits in früheren Stadien erkannt hatten und sehr richtig annahmen, dass zu der Zeit, wo sie diese Phänomene wahrnahmen, keine weitere Verschmelzung, sondern nur eine Anlagerung vor sich gehe.

Die sorgfältigsten Mittheilungen aber verdanken wir Herbert H. Brown, der, wie oben bereits gesagt, bei der Ratte wenigstens alles das verfolgt hat, was ich nur trotz besserer Methoden sehen konnte. Zwar legt er (vielleicht mehr als Concession gegen einige Voruntersucher) auf das „without fusion“ besonderes Gewicht; doch ist er der einzige Autor, der bereits in den Bildern des II. Stadiums die Zeichen der stattfindenden Vereinigung erkennt und die Aufrichtung des Leibes der Fusszelle und die Verlagerung ihres Kernes als aktive Betheiligung dieser Zelle bei dem Vorgange deutet.

All diese Untersuchungen hatten also noch den Schluss gemeinsam, dass die Vereinigung der Tochterzellen mit den Fusszellen erst erfolgt, nachdem in ersteren bereits die ersten Umwandlungen zum Spermatozoon vorgangen sind, d. h. nachdem sie sich (in meine Nomenclatur übersetzt) selbständig in „Samenbildner“ umgewandelt haben.

Um meine Stellungnahme in diesem Punkte zu entwickeln, habe ich auch endlich an diesem Orte die Phänomene zu besprechen, die die Umwandlung der Tochterzelle zum Samenbildner charakterisiren.

Dass in der Frage, ob Tochterzellen und samenbildende Elemente identisch sind, so abweichende Meinungen bestehen konnten, findet dadurch genügende Erklärung, dass die eigentlichen Ueber-
Untersuchungen über den Bau des funktionirenden Samenkanälchens etc. 101

Zur Beurtheilung des letzteren Punktes wäre es förderlich, zu prüfen, von welcher der beiden Zellarten die Aktion bei der Kopulation ausgeht.

läufig, bei den anderen Spezies ausschließlich geschieht, zu dem gleichen Zweck protoplasmatische Ausläufer verwenden, ein Vorgang, der ebenfalls mit einer geringeren Aufrichtung des Zellleibes verknüpft sein, oder wie der Hund zeigt, ohne das stattfinden kann.

Hiergegen wird geltend gemacht werden, dass der Richtungspol nicht durch den Kopulationspunkt, sondern durch den proximalen Zellpol bestimmt wird, und dass beide nur zufällig zusammenfallen. Ich betone aber, dass der Kopulationspunkt ursprüng-

Wenn aber auch eine gewisse Retraktion der Fortsätze vielleicht eintritt, muss doch hervorgehoben werden, dass sonst ein Fortschreiten der Beziehungen zwischen Fuss- und Samenzellen während der Umwandlung nicht stattzufinden scheint. Auch in den Fällen, wo die Samenbildner tief in die Ausläufergarbe hineingezogen werden, erfolgt nicht etwa eine weitere Verschmelzung der Zelleiber, wie dies von den älteren Autoren, die die anfängliche Kopulation nicht kannten, durchaus zutreffend beobachtet wurde. Selbst bei der Ratte, wo in späteren Stadien die Einlagerung in den Fusszellenleib so weit zu gehen scheint, ist immer zu berücksichtigen, dass sie auch zu Anfang intimer war als bei den anderen Spezies.

Die schliessliche Lösung der Verbindung erfolgt wohl gleichmässig spontan und passiv. Das Zerfließen der Samenbildner fällt mit den Zelltheilungen der benachbarten Mutterzellen zusammen, so dass der Druck der neuentstehenden Tochterzellen die Loslösung und Hinauspressung der Spermatozoen unterstützen wird.

Hiermit glaube ich die diesen Punkt betreffenden, unmittelbar
durch die vorliegenden Beobachtungen bedingten Folgerungen unterbrechen zu müssen. Das in den beiden letzten Kapiteln Gebrachte wird, hoffe ich, dazu beitragen, der Thatzache weitere Anerkennung zu verschaffen, dass mit der Kopulation zweier differenten Zellgebilde bei der Spermatogenese der Säugethiere ein sonst vielleicht analogieloser Vorgang in Erseheinung tritt, der soweit Swaën und Masquelin's, meine und Grunhagen's Untersuchungen bisher vermuthen lassen, jedenfalls in weiteren Kreisen der Wirbelthierklasse, vielleicht auch noch weiter abwärts, zu der Entstehung der männlichen Geschlechtsprodukte in besonderer Beziehung steht.

Der einzige Einwand, der gegen diesen Vorgang noch bestehen bleibt, ist wohl der der Analogielosigkeit. Man möge aber doch bedenken, dass alle uns bequem scheinenden Analogieen, wie die der Umwandlung der Epidermoidalgebilde, nur auf regressive Metamorphosen Anwendung finden können und dass eine der Samenbildung ähnliche progressive Sekretion, von deren Mechanismus wir abstrahiren könnten, überhaupt nicht existirt.

Dass bei der Samenbildung eine Analogielosigkeit besteht, leuchtet aus allen Entzugsversuchen der Autoren heraus und selbst die Erklärung Biondi's, die den scheinbar einfachsten Mechanismus verlangte, kann sich auf keine Analogie stützen. Wenn wirklich nur die successive Umwandlung der distalsten Elemente in einem geschichteten Epithel bezweckt ist, so wäre es nicht nur ganz alleinstehend, sondern auch höchst unzweckmässig, wenn sich statt der einfachen schichtenweisen Absonderung einzelne vertikale Sekretionssäulen markirten. Hierdurch würde nur die bei einem so einfachen Verhältniss ganz überflüssige Komplikation geschaffen, dass für die Regeneration zwei Wachstumsrichtungen statt einer nothwendig würden.

Die Statuirung jenes Vorganges der Kopulation scheint mir dagegen vor Allem den Vorzug zu haben, dass sie fast allen Beobachtungen der Voruntersucher gerecht wird und nur die Modifikation der Denzung beansprucht, die aus der Ergänzung von Lücken der Beobachtung entspringt.

Ein Verständniss für die physiologische Bedeutung der Ko-

1) Die naheliegende Analogie der wirklich geschlechtlichen Kopulation ist wegen des verschiedenen Grades der Kernbetheiligung bedenklich.

Aber selbst bei ununterbrochener Funktion wäre jeder Abschnitt des Samenkanälchens nur fähig in bestimmten Intervallen Spermatozoen zu produciren. Hierfür ist aber eine wichtige Aushilfe geschaffen. Die Mannichfaligkeit, in der wir die Bilder der Sekretionsstadien im ganzen Hoden antreffen, beweist, dass die Funktionsperioden nicht überall parallel verlaufen. Die Gesetzmässigkeit, in der jene Bilder auf die verschiedenen Abschnitte der einzelnen Kanälchen vertheilt sind, beweist ferner, dass hier annähernd regelmässige, zeitliche Differenzen innegehalten werden. Wir müssen uns vorstellen, dass der Beginn neuer Umwandlungsperioden im Allgemeinen vielleicht unregelmässig erfolgt, aber wellenartig jedes einzelne Kanälchen durchläuft. Wodurch letzteres Verhalten bedingt ist, ist noch nicht untersucht; vielleicht wird sich ein
Dr. Carl Benda:

wellenförmiges Fortschreiten der Sekretionsimpulse herausstellen. Jedenfalls ermöglicht die zeitliche Inkongruenz der Samenbildungsperioden in den verschiedenen Abschnitten jedes Kanälchens die Kontinuität der Funktion des gesamten Samenkanälchens und gleichzeitig die des ganzen Säugethierhodens.

Resumé.

Zurückgreifend auf die Voraussetzungen und Einschränkungen, die im Anfang des Abschnittes angegeben wurden, ziehe ich das Facit meiner Vorstellungen von dem Verlauf der Säugethierspermato genesis in folgenden Sätzen:

1) Das Samenkanälchen der Säugethiere enthält zwei funktionell verschiedene Elementarten: die Stammzelle mit ihren Abkömmlingen und die Fusszelle.

3) Alle vier Akte verlaufen schubweise.

4) Die Vermehrung der Stammzellen erfolgt durch indirekte Zelltheilungen in der äussersten Zellschicht des Samenkanälchens.

7) Gleichzeitig mit oder unmittelbar nach dem Eintritt der Kopulation beginnt die Umwandlung der Samenzellen in Spermatozoen.

9) Die Anlage der Organe des Spermatozoons orientiert sich gegen die Kopulationsstelle, indem der nächstgelegene Kerntheil den Kopf, der abgewandte den Schwanzfaden bildet.
10) Die Samenzellen bleiben während ihrer ganzen Umwandlung in organischem Zusammenhang mit der Fusszelle und werden durch active und passive Veränderungen dieser selben zu einem Spermatozoenbündel formirt.

12) Die verschiedenen Akte der Sekretion greifen in jedem Kanälchenabschnitt gesetzmässig in einander, der Art, dass immer bestimmte Punkte zeitlich sich folgender Sekretionsschübe koicidiren.

Wenn wir die Umwandlung einer Samenzelle in ein Spermatozoon als Zeitmaass statuiren, fällt

a. mit dem Abschluss jeder Umwandlungsperiode die Vermehrung der Stammzellen zusammen.

b. Mit dem Beginn der Umwandlungsperiode beginnen die vorbereitenden Veränderungen der Stammzellen für die Samenzellenproduktion.

c. Die Vorbereitung einer Samenzellproduktion nimmt immer zwei Umwandlungsperioden in Anspruch; es sind also immer zwei Produktionschübe gleichzeitig in Vorbereitung.

d. Mit dem Abschluss jeder Umwandlungsperiode fällt wieder die Vollendung einer Samenzellgeneration zusammen, so dass beim Abschluss der Umwandlung in demselben Kanälchenabschnitt das Material für eine nächste Periode in Bereitschaft liegt.

13) In jedem Abschnitt eines Hodenkanälchens ist also eine periodische Sekretion von Spermatozoen und eine ununterbrochene Folge der Sekretionsperioden möglich.

14) Die Sekretionsperioden in den verschiedenen Kanälchenabschnitten fallen nicht zusammen.

15) Durch eine gesetzmässige Alternation der Sekretionsperioden in den verschiedenen Abschnitten der Kanälchen sind die Bedingungen gegeben, die eine kontinuirliche Samensekretion des gesammten Säugetierhodens ermöglichen.
Erklärung der Abbildungen auf Tafel V—VII.

Tafel V.
Vergleichende Darstellung der Umwandlung der Samenzellen bei den einzelnen Spezies.

Die römischen Zahlen bedeuten die Stadien, die lateinischen Buchstaben Übergangsformen innerhalb eines Stadiums, die griechischen Buchstaben verschiedene Schnittrichtungen derselben Form.

I Die Samenzellen (Tochterzellen).
II—IV Die Samenbildner.
V Die reifen Spermatozoen.

Tafel VI.
Fig. 1. I, I—II, II, III, IV, V, V—I Die typischen Strukturbilder der Kanälchenwand des Stiers.
Die römischen Zahlen entsprechen in den folgenden Figuren dem Stadium der Samenzellenmetamorphose in dem betreffenden Kanälchenabschnitt nach Tafel V.

a Stammzellen.
b Ersatzmutterzellen.
c Fusszellen.
d Mutterzellen.
e Samenzellen, Samenbildner, Spermatozoen.

Fig. 2. II Typus des Meerschweinchens.
Fig. 3. II Typus des Kaninchens.
Fig. 4. IV Typus des Ebers.

Tafel VII.
Fig. 5. V—I, II, III, IV Typus vom Hunde.
Fig. 6. IV Typus vom Kater.
Fig. 7. II, III, IV Typus von der Ratte.

II bei * Fusszellenkern zwischen den Samenzellern.
Bezeichnungen wie in Fig. 1.
Neue Untersuchungen über die Copulation der Geschlechtsprodukte und den Befruchtungsvorgang bei Ascaris megalcephala.

Von

Dr. Otto Zacharias in Hirschberg i. Schl.

Hierzu Tafel VIII. IX. X.

gestellten Preisfrage eingereicht und am 3. August desselben Jahres gekrönt worden.

Herrn. Munk trat mit seiner Abhandlung (Ueber Ei- und Samenbildung bei den Nematoden) schon 1858 hervor und er war es, der die später sich bestätigende Vermuthung aussprach, „dass möglicher Weise nicht das ganze Samenkörperehen ins Ei eindringt und dass es vielleicht nur die flockige Kuppe mit dem Kernkörperehen gewesen sei, die auf irgend eine Weise zur Befruchtung diene“.

Claparède hingegen nahm in seiner Preisschrift noch eine skeptische Haltung dieser Frage gegenüber ein, insofern er das Eindringen der Spermatozoen in die Eier als „une opinion purement hypothétique“ bezeichnete.

1) Zeitschr. f. w. Zoologie, Bd. VIII.
2) l. c. S. 97.

Dr. Otto Zacharias:

der behauptet das Zerfliesen des Spermatozoons und stellt die direkte Beteiligung desselben am Befruchtungsacte in Abrede. Es hegt diese Ansicht keineswegs bloss in Bezug auf das Ei von A. megaloocephala, sondern ganz allgemein; indessen scheint es so, als ob seine Beobachtungen an anderen Objecten durch die am Ascaris-Ei erhaltenen negativen Resultate beeinflusst worden wären. Ich erinnere hier nur an die skeptische Haltung, welche Schneider gegenüber den Befunden W. Flemming's (am Echiniden-Ei) eingenommen hat, und wohl noch einnimmt, weil es ihm nicht möglich gewesen ist, am befruchteten Ei von Sphaerechinus microtuberculatus sich von dem Fortbestehen des eingedrungenen Samenkörperehehefs zu überzeugen. Er zieht deshalb die Richtigkeit der Flemming'schen Beobachtungen in Zweifel 1).

Das sind die von Nussbaum erzielten Ergebnisse, durch welche die früheren Beobachtungen A. Schneider's an demselben Object in dankenswerther Weise ergänzt und berichtigt werden.

Inwiefern, meiner Meinung nach, auch die Nussbaumsche Darlegung noch einer Berichtigung bedarf, wird später (hauptsächlich im V. Abschnitt dieser Schrift) zu erörtern sein. Die Bedeutung der Untersuchungsergebnisse des Bonner Forschers wird dadurch aber nicht im Geringsten geschmälert. Denn Nussbaum ist der Erste gewesen, der den ernstlichen Versuch gemacht hat, die Befruchtungsscheinungen, welche sich im Ascaris-Ei zur Beobachtung darbieten, mit der Hertwig'schen Conjugationstheorie in Einklang zu bringen.

Fast gleichzeitig mit Nussbaum's bahnbrechernder Abhandlung, welche im Februar 1884 erschien, publicirte E. van Beneden seine ausgezeichneten Recherches sur la maturation de l'œuf, la fécondation et la division cellulaire, in welchen eine Fülle von neuen Beobachtungen niedergelegt ist, die der genannte Forscher durch seine fortgesetzten Studien über das Ei von A. megaloecephala zu machen in der Lage war. Prof. v. Beneden's Werk trägt die Jahreszahl 1883; es gelangte aber erst im April des folgenden Jahres (1884) zur Veröffentlichung. Es ist ein Buch, welches — wie Flemming mit Recht bemerkt — „in besonderem Grade beansprucht und verdient gelesen zu werden“. Die Lecture desselben wirkt ausserordentlich anregend.

Dr. Otto Zacharias:

anstatt der beiden Halbkerne (demi-noyaux) ein wirklicher „Furchungskern“ in dem Sinne, wie Oscar Hertwig diese Bezeichnung gebräuchlich, vorhanden gewesen wäre.

Während also Nussbaum angibt, dass er eine Verschmelzung der beiden „Pronuclei“ beobachtet habe, stellt v. Beneden diese Thatsache gänzlich in Abrede und sagt: „Les deux pronucleus ne se confondent jamais“.

Neue Untersuchungen über die Copulation der Geschlechtsprodukte etc. 117

halber diese beiden Arbeiten unter der Bezeichnung La Cytodierèse I und II citiren.

Wie steht es nun angesichts solcher Thatsachen mit der O. Hertwig’schen These, wonach das Wesentliche bei der Befruchtung auf der Verschmelzung geschlechtlich differenzirter Zellkerne beruhen soll? „Die Befruchtung — sagt Hertwig — erscheint nicht bloss als ein chemisch-physikalischer Vorgang wie die Physiologen meist annehmen, sondern gleichzeitig auch als ein morphologischer Vorgang, insofern ein geformter Kerntheil des Spermatozoons in das Ei eingeführt wird, um sich mit einem geformten Kerntheil des letzteren zu verbinden 1).“ Nach den Befunden von v. Beneden und Carnoy würde es den Anschein gewinnen, als ob die Befruchtung des Nematoden-Eies nicht dazu dienen könnte, die Hertwig’sche These zu stützen. Mindestens ist durch die Thatsachen, über welche die beiden genannten Forscher berichten, eine Schwierigkeit gegeben, die für den Augenblick ganz unlösbar erscheint. Als solche ist es aber geeignet den Zweifel zu erwecken, ob nicht etwa auch in den Fällen, wo Fol, Selenka, Flemming und Hertwig selbst eine wirkliche Verschmelzung der Geschlechtsprodukte konstatirt zu haben glauben, dieser Vorgang doch nur ein scheinbarer war? Das ist eine sehr wichtige Frage. Und müsste man dieselbe bejahen, so wäre das, was Hertwig als das

1) O. Hertwig, Das Problem der Befruchtung und der Isotropie des Eies. 1884.
Dr. Otto Zacharias:

Von so bedeutsamen Einflüssen auf die Gestaltung unserer theoretischen Ansichten würden die am Nematoden-Ei erhaltenen Befunde sein, wenn dieselben so besehaffen wären, dass an ihrer Richtigkeit gar kein Zweifel aufkommen könnte. Verdienen die beiden Kerne, welche man in allen legereifen Eiern von A. megaloecephala constatiren kann, wirklich den Namen Pronuclei, und sind sie ihrer Entstehungsgeschichte nach thatsächlich geschlechtlich differenzirte Vorkerne, so ist die Hertwig'sche Befruchtungstheorie erschüttert und die Ansicht v. Beneden's, dass es sich beim Befruchtungsacte lediglich um „remplacements de certains éléments d'une cellule par des parties similaires fournies par une autre cellule“ handele, gewinnt an Wahrscheinlichkeit.

Aber ich betrachte es nun gerade als meine Aufgabe, in dieser Abhandlung zu zeigen: dass jene beiden Kerne, welche alle bisherigen Beobachter des Nematoden-Eies — von Auerbach an bis zu Nussbaum und Carnoy — für Pronuclei gehalten haben, Gebilde von völlig anderer Bedeutung sind. Wie sich hiermit das von Carnoy gemeldete Factum verträgt, dass dieselben gelegentlich mit einander zu einem einheitlichen Kern verschmelzen, wird in befriedigender Weise erklärt werden. Ich werde nachweisen, dass der Befruchtungsact längst vorüber ist, wenn diese Kerne ihre definitive Ausbildung erlangt haben, und vor Allem gedenke ich zu zeigen, dass wir im Ei von Ascaris megaloecephala ein ganz vorzügliches Object besitzen, um die Richtigkeit der Hertwig'schen Befruchtungstheorie zu demonstrieren. Weit davon entfernt also, dass die Vorgänge im Ascaris-Ei dazu geeignet wären, die Conjugationstheorie zu er-

²) W. Flemming, Beiträge zur Kenntniss der Zelle etc. Th. III. Archiv f. mikr. Anatomie 1881.
schertern, können sie derselben vielmehr als eine kräftige Stütze dienen.

I. Die Präparation.

Um sich die Vorgänge, welche ich in den nachstehenden Abschnitten schildere, möglichst klar und naturgetreu zur Anschauung zu bringen, dazu ist in erster Linie eine glückliche Fixirung der Objekte erforderlich.

Dies erklärt sich aus dem Umstande, dass gerade diese Vor-

Lebensbedingungen) eine Rückbildung erleiden, oder unter dem langandauernden Einflusse der Härzungsfüssigkeit unkenntlich werden. Auf eine normale Conservirung ist also in letzterem Falle bei Anwendung von verdünnten Säuren oder Alkohol nicht zu rechnen.

Schläuche ein Stück erhalten, welches bis zur Vereinigungsstelle etwa 25—30 Centimeter misst. Vom oberen (dünneren) Ende an-gefangen, enthalten diese prall angefüllten Uterus-Schläuche Eier in allen Stadien der Reifung und Befruchtung; in den untersten Abschnitten auch solche, die sich bereits zur Furchung anschicken.

Die Eier aus dem oberen und mittleren Drittel des Uterus behandelt man nach vollzogener Fixirung zunächst mit 30%igem Alkohol und nach einigen Stunden mit 50%igem. In letzterem lassen sie sich sehr gut längere Zeit aufheben.

Will man zur mikroskopischen Beobachtung schreiten, so ist es nöthig, die Eier vorher zu färben. Dies geschieht am aller-

Zur Durchmusterung einer solchen Serie sind nicht bloss Tage, sondern Wochen erforderlich. Und selbst dann, wenn man glaubt, so aufmerksam als nur denkbar ist, untersucht zu haben, wird man bei erneuter Besichtigung des nämlichen Materials immer wieder neue Stadien entdecken, welche Aufklärung über den und jenen zweifelhaften Punkt bringen.

Ich habe auf das Studium der Vorgänge im reifenden und befruchteten Ei von Ascaris megaloecephala alle meine freie Zeit während eines ganzen Jahres verwendet, und meine Ergebnisse sind also das Resultat einer langen und consequent fortgesetzten Beobachtung. Dies möchte ich beachtet wissen, falls es einem oder dem andern Fachgenossen nicht gleich gelingen sollte, am Ascaris-Ei alles das zu sehen, was ich darüber berichte. Ich bin jedoch überzeugt, dass bei genauer Befolgung der oben gegebenen Präparationsvorschriften jeder nur einigermaassen geübte Mikro-
skopiker meine Befunde wird bestätigen können, wenn er sich lange genug dem Studium jenes vorzüglichen Objects widmet. Ich bin ganz der Meinung Prof. v. Beneden's, wenn derselbe sagt: „Les oeufs de l'Ascaris megalonecephala constituent un matériell incomparable et que je ne puis assez recommander à tous ceux qui voudront s'éclairer par eux-mêmes sur les diverses questions, qui se rattachent à la fécondation“.

II. Das Ei und die Samen-Elemente von A. megalonecephala.

Wenn die Eier aus dem untersten Abschnitte des Ovariums in den Eileiter eintreten, so besitzen sie noch immer die bekannte keulenförmige Gestalt. Die Zellsubstanz derselben zeigt, um in Leydig's Sprache zu reden, ein „schwammiges Gefüge“, und ent-hält Unmassen winziger Körnchen (granula) von unregelmässiger Form eingelagert. In manchen Präparaten lassen dieselben ein fein punktiertes Aussehen erkennen. Im dicksten Theile dieser keulenförmigen Eikörper (Fig. 1, Taf. VIII) liegt das Keimbläschen (Kbl), über dessen eigenthümliche Bauverhälttnisse nähere Angaben weiter unten folgen sollen. Ausser den Körnchen constatirt man noch zwei andere Arten von Einlagerungen, nämlich 1) hyaline Kugeln, welche erst nach längerer Einwirkung der Färbemittel eine blasse Tinktion annnehmen, und 2) Hohlräume im Gerüstwerk der Eischicht, also Vaecolen, die v. Beneden als gouttelettes homogènes bezeichnet.

Jene hyalinen Kugeln sind auch bereits von Leydig geschen und beschrieben worden. Dieser Forscher nahm dieselben als Nebenkerne in Anspruch, wie sie nicht bloss bei Infusorien, sondern auch in den Hautdrüsen von Raupen vorkommen. Es liegt nicht in meiner Absicht, an diesem Orte über die Zulässigkeit der Leydig'schen Auffassung zu entscheiden. Ich möchte nur bemerken, dass der genannte Histolog schon klar hervorhebt, dass sich der Hauptkern stärker in Carminlösung färbt, als die Nebenkerne (1)

Im Oviduct werden die Eier nach und nach zu rundlichen Ballen umgeformt, womit zugleich auch ein Schwinden der hyalinen Kugeln und eine gleichmässigere Ausbildung des Gerüst-

Jetzt wollen wir dem Keimbläschen des Ascaris-Eies eine eingehendere Betrachtung widmen, denn dieses Gebilde ist geeignet, unsere Aufmerksamkeit in hohem Grade zu fesseln. An Präparaten von keulenförmigen Eiern, welche mit Essigcarmin tingirt sind, macht man die Wahrnehmung, dass nicht bloss der sogenannte „Nucleolus“, sondern auch der übrige Theil des Keimbläschens färbbar ist, wenn auch nicht in gleichem Maasse wie der erstere. Je nach der Lage, den das untern Mikroskop befindliche Ei in Rücksicht auf den Beobachter einnimmt, präsentirt sich das Keimbläschen in der Weise, wie es durch a, b und c in Fig. 2 veranschaulicht ist. Aus diesen Ansichten ist zu entnehmen, dass das Keimkörperchen (der Nucleolus der Autoren) nicht im Mittelpunkte des Kernes der Eizelle, sondern ganz peripherisch gelegen ist, so dass es dicht unter der Oberfläche der Kernmembran seinen stereotypen Platz hat. Ich kann die hierauf bezüglichen Beobachtungen v. Beneden's lediglich bestätigen, wenn es mir auch nicht gelang, diejenigen beiden Partien des Keimbläschens, welche der Lätticher Forscher als Prothyolosome und Portion accessoire unterscheidet (Recherches, p. 104 u. ff.), so scharf aus einander zu halten, wie dies in den betreffenden Abbildungen v. Beneden's der Fall ist. Daran ist höchstwahrscheinlich meine Tinctionsmethode schuld, d. h. die etwas zu intensive Färbung mit Schneider'schem Carmin.

Im unteren Abschnitt des Ovarialschlauches von A. megalocephala trifft man häufig — wie jeder Beobachter weiss — auch solche Eier an, bei denen das Keimkörperchen insofern eine Umwandlung erfahren hat, als es in zwei annähernd gleiche Theilstücke zerfallen ist. Es bietet dann den Anblick dar, den ich in d (Fig. 2) skizzirt habe. Diese Erscheinung tritt um so häufiger
auf, je weiter wir im Ovarium herabgehen. Im Oviduct selbst finden wir selten noch ein Ei, welches diese Fragmentierung des Nucleolus nicht zeigt. Ofters bemerkt man in unmittelbarer Nähe der beiden Bruchstücke noch 2—3 kleinere Brocken, welche den Farbstoff in gleich begieriger Weise aufnehmen wie die grösseren Stücke. Zu der nämlichen Zeit, wo das Keimkörperchen auf solche Art zerfällt, scheint die es einschliessende Membran nicht mehr in gleichem Grade färbar zu sein, wie vorher.

Auf Grund meiner eigenen sehr ausgedehnten Beobachtungen bin ich nun in der Lage zeigen zu können, dass eine Vermittlung zwischen diesen beiden entgegengesetzten Befunden möglich ist.

1) La Cytodiéresse I, p. 12.
3) Die Veränderung der Geschlechtsprodukte etc., p. 170.
Bei aufmerksamem Zusehen beobachtet man nämlich die That-
sache, dass die ursprünglichen beiden Chromatingruppen zweifellos
aus je vier kugeligen Gebilden zusammengesetzt sind. Durch das
Wälzen der Eier mittels Deckglasverschiebung überzeugt man sich
hiervon. Es tritt aber sehr bald in manchen Eiern eine eigen-
thümliche Vermehrung der Kugelchen ein, insofern jedes derselben
sich ein- oder mehrmals theilt, und so (unter Erscheinungen, die
man mit dem Sprossungsprocess der Mikrokokken vergleichen
könnte) zu einem verlängerten, stäbchenartigen Gebilde wird. Die
betreffenden Chromatingruppen bestehen dann nicht mehr, wie
früher, aus je vier einzelnen Kugeln, sondern aus je vier Kugel-
reihen, deren einzelne Elemente zum Theil mit einander verschmol-
zen sind. In guten Präparaten machen die so entstandenen Stäbchen
daher den Eindruck, als seien sie eingekerbt. Im optischen Quer-
schnitt gesehen präsentiren sie sich aber nach wie vor als „globules“.

Ist das Keimkörperchen in die eben beschriebenen beiden
Substanzhäufchen zerfallen, so treten auch Veränderungen am
Keimbläschen selbst ein, welche zunächst darin bestehen, dass das-
selbe ein geschrumpftes Aussehen bekommt. Dies habe ich in e
(Fig. 2) veranschaulicht. Aber das ist nur der Anfang zu einer
vollständigen Auflösung dieser zerknitterten Membran in zahl-
lose feine Fäden (f in Fig. 2), welche in der Folge das Material
für die achromatischen Spindeln des ersten und zweiten Richtungs-
körpers liefern. Die Anordnung dieser Fäden in Bezug auf die
beiden Häufchen der Chromatinstäbchen habe ich in Fig 3 darge-
estellt. Es sind von vornherein gleich zwei deutlich von einander
gesonderte Spindelfiguren angelegt, so dass Carnoy Recht hat,
wen er bei Schilderung der Richtungskörper von einem fuseau
dimidié, einer halbhirten Spindel, spricht.

Wir werden im Verlaufe unserer Beschäftigung mit dem As-
caris-Ei nicht bloss diesen, sondern einen durchgehenden morpho-
logischen Dualismus in den Lebenserscheinungen zu constatiren
haben, der sich nicht blos in der Richtungskörperbildung, sondern
auch im Befruchtungsvorgang und beim Beginn des Furchungsprozesses
kundgiebt. Bisher hat Niemand dieser Erscheinung die ihr ge-
bührende Beachtung geschenkt und deshalb ist die merkwürdige
Thatsache zu verzeichnen: dass man bisher ganz allgemein die
mitotische Theilung der ersten Furchungskugel bei A. megalo-
cephala für den Befruchtungsact gehalten hat, während die eigent-
liche Art und Weise, in welcher die Geschlechtsprodukte mit einander verschmelzen, unbekannt geblieben ist.

Das Keimkörperchen ist also eine Bildung sui generis und es wird sich demgemäss empfehlen, ihm eine Bezeichnung beizulegen, die das zum Ausdruck bringt, was wir als seine wesentliche

In Fig. 4 ist ein Spermatozoon von A. megalocephala abgebildet, wie es im Vas deferens des Männchens zu Tausenden angetroffen wird. Als solche Kugelchen gelangen die befruchtenden Elemente in den Uterus des Weibchens und machen hier eine Reihe von Umwandlungen durch, bei deren Abschluss sie verschiedenartige Gestalten annehmen, welche sich jedoch auf einen und denselben Typus zurückführen lassen. Ich habe in Fig. 5 (a, b, c, d) die am häufigsten vorkommenden Formen dargestellt. Prof. v. Beneden gibt auf Tafel XI seines Werkes 29 verschiedene Ansichten von Samenkörpern, wie sie sämmtlich im Geschlechtsschlauch eines und desselben Weibchens gefunden werden können.

Man unterscheidet an jedem copulationsreifen Ascaris-Spermatozoon einen amöboiden und einen unbeweglichen Theil. Der erstere wurde von den älteren Autoren „das flockige Ende“ genannt, weil es unbestimmte Contouren zeigt. Mit diesem Theile

kriechen die Samenkörperchen nach Art der Amöben im Uterus vorwärts und gelangen schliesslich bis in den unteren Abschnitt des Ovariums, wo die Copulation mit den Eiern stattfindet. Das amöboide Verhalten der Nematodenspermatozoen ist von A. Schnei
der zuerst entdeckt worden. Das Zellprotoplasma der Ascaris-Samenkörper zeigt zahlreiche glänzende Körnchen im Innern, welche radiär angeordnet sind, wenn man das färbbare Körperchen, den Mitoblasten, als den Mittelpunkt des ganzen Gebildes betrachtet.

Der unbewegliche Theil des Spermatozoons hat die Gestalt eines Füllhorns oder einer spitzen zulaufenden Mütze. Seiner Natur nach stellt er ein membranöses Gehäuse dar, welches nach unten zu vollständig offen ist. Das Innere desselben ist vollkommen von der amöboiden Substanz ausgefüllt, insoweit der Stelle nicht von einem stark glänzenden Körper eingenommen wird, der die Form einer Keule, Glocke, Spitzkugel oder diejenige eines einge
erkerten Stabes hat. Man wird dieses Gebilde leicht in Fig. 5 erkennen. Prof. v. Beneden nennt es corps refringent, womit nichts über die histologische Dignität dieses Zellbestandtheiles ausgesagt wird. Nussbaum bezeichnet denselben Körper als „Kopfkappe“. Mir will aber dieser Ausdruck nicht recht passend erscheinen, weil gerade derjenige Theil des Spermatozoons, welcher der Nuss-

Wichtiger ist Folgendes. v. Beneden nennt das chromatische Körperchen des Ascaris-Spermatozoons einen „Kern“, bezeichnet es aber auffallender Weise als noyau chromatique, womit er, wie mich dünkt, andeutet will: dass es ein Kern ganz besonderer Art sei. Denn wozu sonst das beigefügte Epitheton?

Ich möchte meinerseits auf Grund sehr genauer Untersuchungen (die ich nicht bloss an den Samenkörpern von A. megalcephala, sondern auch an denen von A. suilla angestellt habe) Anstand nehmen, jenes färbbare Körperchen einen Kern zu nennen. Das einzige Nucleusartige, was dem noyau chromatique anhaftet, ist seine centrale Lage in der Zellsubstanz. Im Uebrigen kann man

Als ich im Sommer 1884 die Spermatozoen des Polyphemus ped iculus in Bezug auf ihr amöboides Bewegungsvermögen studirte, bemerkte ich gleichfalls, dass die chromatische Substanz in den Samenelementen dieser Cladocere nicht in typischer Kernform, sondern in Streifen und Körnerhälften angeordnet sei. Ich ge-

statt mir auf die Abbildungen zu verweisen, die ich damals angefertigt habe 1).

Man könnte nun in Anknüpfung an das Vorstehende die Frage aufwerfen, ob die Spermatozoen unter solchen Umständen noch als echte Zellen anzusehen sind, oder nicht. Jedenfalls sind sie Produkte unzweifelhafter Zellen, der Spermatogonien, und wenn wir es, wie schon oben angedeutet, nicht für wesentlich halten, dass der Zellkern eine Membran besitzen muss, so steht einer Subsumtion der Samenkörper unter den allgemeinen Zellbegriff nichts im Wege.

2) W. Flemming, Beiträge zur Kenntniss der Zelle etc. Theil II. Archiv f. mikr. Anatomie. Bd. 20, 1882, p. 34.

3) M. Nussbaum, Ueber die Veränderungen der Geschlechtsprodukte etc. 1884, p. 184.

Aber die Abkunft von einer morphologisch-identischen Grundlage ist — meine ich — allein nicht geeignet, eine Homologie zu begründen. In der vergleichenden Anatomie der Organe ist es klar, was wir mit diesem Begriffe zum Ausdrucke bringen wollen. Wenn sich dieselben Bestandtheile in verschiedenen Organen wiederfinden, und zwar so, dass sie in Bezug auf einander die gleich en Lageverhältnisse darbieten, da sprechen wir von homologen Organen in den zum Vergleich kommenden Thiergruppen. Wir schliessen mit Recht aus der Thatsache, dass solche Homologien vorhanden sind, auf die Abstammung der betreffenden Organismen von einem gemeinsamen Urerzeuger zurück, weil wir uns eine derartige Uebereinstimmung nicht anders als durch Vererbung zu erklären vermögen. Homologe Organe in verschiedenen Gruppen gestatten also den Rückschluss auf einheitliche Descendenz. Keineswegs ist aber das umgekehrte Schlussverfahren gestattet, um aus gemeinsamer Herkunft das Vorhandensein von Homologie zu erweisen. Aus diesem Grunde fühle ich mich abgeneigt, die Geschlechtselemente als homologe Zellen zu betrachten; und das um so mehr, als es mir unmöglich ist, Uebereinstimmungen solcher Art, wie sie etwa ein Arm und ein Vogelflügel darbieten, an jenen histologischen Gebilden zu entdecken.

Die Spermatozoen sind bei allen Thieren das Product einer viel grösseren Anzahl von Theilungen des ursprünglichen Zellenmaterials, als die Eier, und schon deshalb ist anzunehmen, dass ihr Protoplasma sowohl wie ihre Kernsubstanz eine ganz andere Molecularstructur besitzen, als sie den entsprechenden Ei-
bestandtheilen zukommt. Auch diese Erwägung verhindert mich, die Nussbaum'sche Ansicht von der Homologie der Geschlechtszellen zu der meinigen zu machen.

Ei und Samenkörper sind allerdings wirkliche Zellen, wie wir seit den epochenachenden Forschungen von la Valette St. George wissen, aber sie sind ganz verschiedenen physiologischen Funktionen angepasst, sodass sie im copulationsreifen Zustande eine ebenso grosse morphologische Verschiedenheit darbieten, wie zwei somatische Zellen aus differenten Geweben. Darin freilich unterscheiden sie sich von den Gewebszellen, dass sie nicht indifferent wie diese sich einander gegenüberstehen, sondern dass sie eine ausgesprochene physiologische Affinität (wenn ich den Ausdruck gebrauchen darf) besitzen, die sie zur Copulation treibt. Zum Unterschiede von anderen histologischen Elementen könnte man sie dieser Eigenschaft wegen com.plementäre Zellen nennen, wonit klar zum Ausdrucke gebracht würde, dass sie, trotz ihrer morphologischen Verschiedenheit, speziell auf einander angegossen sind, um ihren beiderseitigen physiologischen Zweck zu erfüllen.

Ein Blick in das Reich der Protozoen belehrt uns darüber, dass die in Copulation tretenden Fortpflanzungszellen gar nicht morphologisch differenzirt zu sein brauchen, um ihrer Aufgabe genügen zu können. Dies liefert uns weiter den Beweis dafür, dass das, was wir mit dem Mikroskop an Übereinstimmungen oder Verschiedenheiten bei den copulirenden Zeugungselementen nachweisen, ihre wesentliche Function nicht beeinflusst. Eine Homologie der Geschlechtsproducte, wenn sie sich begründen liess, würde also keineswegs geeignet sein, die eigentliche Natur des Befruchtungsactes in ein helleres Licht zu rücken.

Orientiren wir uns an einem concreten Beispiel. Kein Object eignet sich zur Demonstration der hier in Betracht kommenden Dinge besser, als Stephanosphaera pluvialis Cohn, ein Repräsentant der coloniebildenden Flagellaten, welcher sich nach heftigen Regengüssen in ausgeböhlteten Steinplatten, Felsblöcken u. dergl. vorzufinden pflegt.

Die männlichen und weiblichen Gameten (Mikrogonidien) gehen hier aus den Primordialzellen der Mutterkugel hervor, und haben somit einen morphologisch-identischen Ursprung. Gewöhnlich bilden sich alle Zellen einer und derselben Colonie zu Ga-
Dr. Otto Zacharias:

dieselbe durch die früher angeführten Argumente noch nicht hinlänglich begründet erscheinen sollte.

Auf Grund ganz anderer Erwägungen ist auch N. Pringsheim\(^1\), wie man weiß, zu der Ueberzeugung gekommen, dass es ungleichartige histologische Bildungen seien, welche sich im Zeugungsaacte vereinigen. Er sagt in Betreff der Geschlechtsprodukte wörtlich: „Sie sind unbeschadet ihres histologischen Characters als Zellen oder Zellbestandtheile und unbeschadet ihrer Entstehung dennoch spezifisch differenzirte Bildungsprodukte der Sexualzellen, und als solche unter sich zugleich äusserst verschiedene Dinge\(^2\). Und am Schlusse der nämlichen Abhandlung fasst derselbe Forscher seine Ansicht nochmals in den Satz zusammen: „So lange man noch genöthigt ist, den Sexualvorgang als einen Vorgang sui generis, verschieden von Ernährung und Wachsthum aufzufassen, so lange wird man seine morphologische Manifestation auch nicht in der Verbindung gleichwertiger Elemente, aus denen kaum etwas spezifisch Neues hervorgehen kann, suchen können."

\(^2\) l. c. p. 540.
wodurch dieselben entsprechenden Theilen der Samenkörper morphologisch gleichwerthig werden, so dass — trotz der ursprünglichen morphologischen Verschiedenheit beider Sexualzellen — doch schliesslich gleichartige Elemente beim Befruchtungsvorgange zur Verschmelzung gelangen. Wir werden sehen, dass dieser Fall wirklich eintritt, und dass die miteinander verschmelzenden Derivate der Geschlechtsprodukte nicht mehr in dem Sinne, wie diese letzteren selbst, different genannt werden können.

Die Verschiedenartigkeit von Samen und Ei dient nur dazu, diese beiden complementären Zellen (behufs Ausführung der Copulation) zusammenzubringen. Dabei fällt dem Spermatozoon die Aufgabe zu, die weibliche Sexualzelle aufzusuchen, während diese letztere wieder dazu organisirt ist, plastisches Material in sich aufzuspeichern, aus welchem der Leib des Embryo aufgebaut werden kann. Im Ei findet nachweisbar ein weit reger Stoffwechsel statt, als im Samenkörperchen. Assimilation und Ausscheidung sind dort im flottesten Gange, wie die Grössenzunahme des Eies während der Reifeperiode beweist. Das Ei ist späterhin nicht bloss aktiver Theilnehmer am Befruchtungsvorgange, sondern auch das Behältniss, in welchem sich derselbe vollzieht. Es ist ferner der Schauplatz der ganzen embryonalen Entwicklung, oder richtiger gesagt: der Nährboden für dieselbe, woraus begreiflich wird, dass es von Anfang an für alle diese Vorrichtungen specifisch vorgebildet sein muss. Ich betone das zum Schluss dieses Capitels nochmals ausdrücklich, um die Ansicht, dass Samen und Ei ganz differente histologische Bilder sind, als die den Thatsachen entsprechendere erscheinen zu lassen.

III. Die CopulatioH der Sexualzellen.

Es ist bekannt, dass der Lütthicher Forscher der Ansicht huldigt, das Spermatozoon dringe an einer bestimmten Stelle in das Ascaris-Ei ein. Dieser Copulationspol (pôle d'imprégnation) soll einem der beiden Endpunkte der Ei-Axe entsprechen und eine wahre Mikropyle darstellen, insofern die Dotterhaut daselbst unterbrochen wäre und das Eiprotoplasma nackt hervortrètre. An keiner anderen Stelle (vgl. Recherches, S. 149) soll ein Spermatozoon in das Ei eindringen können, als lediglich an dieser.

Wie aber dringt das Samenkörperehen in das Ei hinein, wenn letzteres allseitig von einer deutlich wahrnehmbaren, wenn auch zunächst noch ganz dünnen Membran umschlossen ist? Hierfür habe ich durch fortgesetzte Beobachtungen an gut fixirten und mit Essigkarmin gefärbten Präparaten folgende Erklärung gewonnen.

Es unterliegt keinem Zweifel, dass dem amöboiden Theile der Ascaris-Spermatozoen die Fähigkeit innewohnen muss, den Bezirk der Dotterhaut, auf dem es sich festsetzt, aufzulösen. Ja, der Act der Fixirung selbst scheint bereits auf den Beginn einer solchen Auflösung hinzuweisen. Man sieht oft deutlich, dass das Spermatozoon unter Aussendung von pseudopodienartigen Fortsätzen in den Dotter einsinkt (Fig. 6, Taf. VIII), und dann seine

Werfen wir noch einen Blick auf das eben in’s Ei eindringende Ascaris-Spermatozoon (vgl. Fig. 9, 10 und 11), so zeigt es sich, dass der Wiederverschluss der temporalen Mikropyle genau in dem Maasse erfolgt, als sich die Copulation ihrer Beendigung nähert. Man sieht, dass die Oeffnung in der Dotterhaut (Fig. 11) bereits vollständig wieder verschwunden ist, wenn das füllhornäre Ende des Samenkörpers mit seiner letzten Spitze eben in’s Eiprotoplasma unterzutauchen beginnt. Der Verschluss erfolgt höchstwahrscheinlich durch eine locale Regeneration (Neuproduction) von Dotterhaut an der betreffenden Copulationssstelle. Später ist nicht mehr die geringste Spur von einer vorhanden gewesenen Oeffnung wahrzunehmen.

Ich habe mir auch das Ei von A. suilla mit Bezug auf die Frage nach der Existenz eines specifischen Imprägnationspoles angesehen, konnte aber auch an diesem nahe verwandten Object nichts entdecken, was die Schilderungen Prof. v. Beneden’s zu bestätigen geeignet wäre.

Ich kann daher auf Grund meiner Beobachtungen das Vorhandensein einer mikropylartigen Oeffnung im Ascaris-Ei nicht zugeben, sondern muss behaupten, dass das Spermatozoon als solches die Fähigkeit besitzt, durch die geschlossene Perivitellinmembran hindurch zu wandern. Und zwar in der Weise, dass es diese das Ei umgebende Haut in eigenthümlicher Weise erweicht und auflöst, um dann mit Hilfe pseudopodiumartiger Fortsätze nach Art einer Amöbe so weit vorwärts zu kriechen; bis es in wirkliche Berührung mit dem Dotter gelangt. Diesem gegenüber behauptet es aber lange Zeit seine Selbstständigkeit. Es dauert sehr
lange, ehe das Protoplasma des Samenkörpers innerhalb des Eies unkenntlich wird. Zuerst wird vielmehr der glänzende Körper (k in Fig. 8) vom Dotter aufgelöst; diesem folgt die kappenartige Umhüllung (das füllhornförmige Gehäuse, g in Fig. 8) nach. Dann erst nimmt man wahr, dass sich die protoplasmatische Substanz des Spermatozoons inniger mit der Dottermasse des Eies vermischt. Der männliche Mitoblast (mm) nimmt aber an allen diesen Copulationserscheinungen keinen Theil. Er verändert auch seine rundliche Form zu dieser Zeit nicht im Geringsten, sondern hat genau noch das Aussehen eines ruhenden „noyau chromatique“.

Erst später, wenn die Ausstossung des zweiten Richtungskörpers nahe bevorsteht, kommt Leben in den chromatischen Theil des Spermatozoons. Wir werden uns später eingehend mit den betreffenden Vorgängen beschäftigen.

Protoplasma fünf Scheidewände passiren muss, ohne dass vorgebildete Wege (Canäle oder dergl.) dazu vorhanden wären.

An den Eiern von A. megalcephala, die zur Zeit der Copulation die Form von rundlichen Ballen oder wirklichen Kugeln besitzen, ist es schwer die Richtung der organischen Axe zu ermitteln. Ich habe mir daher die entsprechenden Stadien der Copulation von A. suilla verschafft, um über die in Rede stehende Angelegenheit in's Klare zu kommen. Die Eier des letzterwähnten Rundwurmes sind ellipsoidisch gestaltet, und wenn ich auch zunächst nicht sagen kann, ob die beiden Pole des Ellipsoids genau je einem der Endpunkte der organischen Axe entsprechen, so stehen sie doch sicher in einer bestimmten geometrischen Beziehung zu dieser Axe. Denn schwerlich wird Jemand annehmen, dass die Verkürzung und Umformung der langgestreckten Eier, wenn sie sich von der Rhachis losgelöst haben, in jeder beliebigen Richtung erfolgen könne. Wäre nun Prof. v. Beneden's Ansicht richtig, so müsste ich bei meinen Beobachtungen der in Copulation begriffenen Eier von A. suilla, wenn auch keinen vorgebildeten Imprägnationspol, so doch wenigstens eine bevorzugte Stelle, an welcher sich die Spermatozoen angeheftet zeigten, haben ausfindig machen können. Aber dies ist nicht der Fall gewesen. Ich traf die männlichen Elemente ebenso oft an einem der Pole wie an einer der langen Seiten der Eier festsitzend (vergl. Fig. 12 und 13). Hieraus wird, meiner Ansicht nach, klar ersichtlich, dass keine feste Beziehung zwischen den Punkten, wo die Copulation

1) M. Nussbaum, Ueber die Veränderungen der Geschlechtsprodukte etc. p. 167.
Neue Untersuchungen über die Copulation der Geschlechtsprodukte etc. 143

des Samens mit dem Ei stattfindet, und der organischen Axe dieses letzteren zu constatiren ist.

Höchst merkwürdig ist es nun aber, dass in der weit überwiegenden Mehrzahl der Fälle nur ein einziges Spermatozoon mit dem Ascaris-Ei in Copulation tritt. Ist keine vorgebildete Imprägnationsstelle vorhanden, so ist es ganz unerklärlich, warum immer nur ein einziges Samenkörperchen von den vielen Hunderten, welche das Ei im oberen Theile des Uterus umgeben, zur Anheftung gelangt. Allerdings geschicht es, aber dies ist ein relativ sehr seltenes Vorkommniss, dass sich mit einem und demselben Ei (Fig. 14 auf Taf. VIII) 2 oder 3 Samenkörperchen (jedes an einer anderen Stelle) copulirt zeigen. Es sind mir auch Eier zu Gesicht gekommen (von A. megalcephala), in denen 6, 8, ja selbst 10 Spermatozoen enthalten waren. Diese Fälle sind aber äusserst selten, und höchst wahrscheinlich gelangen derartige Eier niemals zur Entwicklung. So viel ich mich erinnern kann, weisen dieselben auch sonst Anomalien im Gerüstwerke ihrer Zells substanz, in der Structure der Dotterhaut und auch Störungen in der Anordnung der Chromatinstäbchen der ersten Richtungsfigur auf. Es sind dies also jedenfalls kranke oder abortive Eier gewesen.

Wie man es sich (bei Nichtanwesenheit einer Mikropyle) begrifflich machen soll, dass die Copulation des Eies immer nur mit einem einzigen Spermatozoon vor sich geht, dazu geben die zu beobachtenden Thatsachen gar keinen Anhalt. Möglicher Weise spielt dabei die Zellsubstanz (der Dotter) eine active Rolle, aber so, dass keine bestimmte Stelle des Eies dabei in Frage kommt. Wir wissen, dass die protoplasmatische Eisubstanz im hohen Grade amöboid ist und dass so hieftige Contractionsbewegungen in ihr stattfinden können, dass es aussieht, als würde sie von unsichtbaren Händen heftig durchgeknetet. Bei solchem Verhalten der copulationsreifen Eikörper kann es auch zur Hervorwölbung einer kleinen Protoplasmapartie kommen, zu einer analogen Bildung des „cône d’attraction“, dessen Auftreten Fol am Echinodermen-Ei beobachtete. Und ein solcher Attractionskegel, auch wenn er nur sehr klein und unscheinbar wäre, könnte leicht die Veranlassung dazu werden, dass sich das in der Nähe befindliche Samenkörperchen gerade dort und an keinem anderen Punkte der Eikugel anheftete. Dieser Modus des Conjugirens ist im hohen Grade wahrscheinlich, weil etwas dem Entsprechendes bei anderen
Dr. Otto Zacharias:

Indessen kann man in Betreff des Ascaris-Eies nicht sagen, dass das Eindringen des Spermatozoons die einzige und unmittelbare Ursache für die Bildung der ersten Dotterhaut sei. Denn wir sehen, dass sich auch solche Eier mit einer Membran umgeben, welche unbefruchtet geblieben sind. Allerdings erreicht in diesem Falle die Dotterhaut niemals die oben angegebene Maximaldicke, sondern sie entwickelt sich nur schwach. Derartige Eier bieten auch noch andere Eigenthümlichkeiten dar, durch welche sie sofort auffällig werden. So ist das Gerüstwerk ihrer Zellsubstanz nicht feinfädig und in Form eines regelmässigen Maschennetzes angeordnet, sondern grobstährig und mit zahlreichen Körnern durch-

setzt, die den Einhalt stellenweise ganz verdunkeln. Auf allen Eiern aber, mögen sie befruchtet oder unbefruchtet sein, kommt eine äussere (dritte) Schicht zur Ablagerung, ein Chorion, dessen Material aus den papillenartig verlängerten Zellen des Uterus epithels secernirt wird. Im optischen Querschnitt entdeckt man an dieser äussersten Hüllschicht eine radiäre Streifung, so dass es aussieht, als stünden zahllose kurze Stäbchen senkrecht zur Peripherie des Eies und als sei die ganze Oberfläche des letzteren mit solchen Gebilden bedeckt. Bei Färbung der Eier mit Essigkarmin löst sich dieses Chorion vollständig auf, und es ist nur der scharfe Contour der ersten Perivitellinmembran an derartig behandelten Objecten zu äusserst wahrzunehmen.

Der histologische Bau des weiblichen Geschlechtsschlauches ist von Prof. v. Beneden sehr speciell beschrieben worden (vergl. Recherches, S. 13—45), so dass ich hier nicht weiter auf die bezüglichen Verhältnisse einzugehen brauche. Auf Taf. III der v. Beneden'schen Arbeit (Fig. 10, 15 und 16) ist auch das eigen tümliche papillentragende Epithel des Oviducts und des Uterus, von dem oben bereits die Rede war, sehr naturgetreu dargestellt.

In der männlichen Geschlechtsröhre ist ebenfalls eine epitheliale Auskleidung vorhanden. In den oberen Partien erinnert dieselbe an die papillentragenden Zellen des Uterus. Die innere Wandung des Vas deferens aber ist mit einem höchst merkwürdigen Zellenbelag ausgestattet, welcher anscheinend noch gar nicht näher untersucht worden ist. Querschnitte, auch wenn sie noch so fein hergestellt sind, bringen wenig Licht über diese Zellenart. Um sich einen Begriff davon zu machen, muss man sich Fig. 16 auf Taf. VIII betrachten. Diese Zeichnung ist nach einem Zupfpräparat hergestellt, welches vorher 24 Stunden mit Essigkarmin tingirt worden war. Bevor man aber die Färbung vornehmen kann, muss das herauspräparirte Vas deferens 1 Stunde lang in dieselbe Präparationsflüssigkeit gelegt werden, welche ich bei Härtung der karyokinetischen Kernstadien zur Anwendung bringe. Der Erfolg dieser Procedur ist ein ausgezeichneter.

An den isolirten Zellen, welche eine Grösse von meist 0,0110 bis 0,0120 mm besitzen, sieht man grosse ovale Kerne, deren Längendurchmesser 0,0030 mm ist. Der Leib dieser Zellen ist sitzenförmig und fast durchgängig zweigetheilt (Fig. 15). Jede der mit einander zusammenhängenden Hälften besitzt ihren Kern. In-
dessen kommen auch drei und viermal in dieser Weise getheilte Zellen der nämlichen Art vor. Ich stelle eine solche in Fig. 16 dar. Das Protoplasma dieser sich schön roth färbenden Epithelzellen hat ein exquisit streifiges Aussehen; man könnte es beinahe fibrillär nennen, so deutlich und von einander abgesetzt sind die einzelnen Linien der Streifung. Um den Kern herum entdeckt man zahlreiche Körnchen, die sich mit Essigkarmin ziemlich dunkel bräunen.

Das Merkwürdigste im Bau dieser Zellen ist nun aber der stark verlängerte Fortsatz, in den das sitzenartige obere Ende derselben ausläuft (Fig. 16, f). Zuweilen ist dieser Fortsatz auch noch dichotomisch getheilt (Fig. 15). Eine Messung ergab, dass die grössten dieser Ausläufer nahezu einen halben Millimeter lang sind. Dabei haben sie einen Dickendurchmesser von nur $0,0037\, \text{mm}$. Zu äusserst enden diejenigen, die man bei der Zerzupfung des Praparates vollständig unverletzt erhalten, mit einer kolbenartigen Anschwelung, die ein vacuoläres Aussehen darbietet. Richtet man ein starkes Objectiv (Leitz Nr. 7 z. B. mit Ocular I) auf das Lumen dieser offenbar hohlen Fortsätze, so bemerkt man einen sich in Essigkarmin rosa färbenden Strang darin, der das in den beigegebenen Figuren skizzierte Aussehen zeigt. Meistentheils verläuft dieser Strang (st) geschlängelt, oft ist er aber auch in eigen tümlicher Weise schleifenförmig angeordnet (Fig. 15). Sein proximales Ende scheint sich im Protoplasmaleibe der Zelle zu verlieren. Wenn ich alle die Eindrücke resümire, welche ich bei wiederholter Untersuchung von diesem sich schlingelnden, äusserst dünnen Faden (denn ein solcher liegt vor) erhalten habe, — so kann ich nicht umhin, in demselben ein ciliartiges Gebilde zu erblicken. Am lebenden Aeserismännchen habe ich keine Beobachtungen angestellt, aber die Befunde, die ich an präparirtem Material zu Gesicht bekommen habe, sind so klar, dass kaum ein Zweifel über die histologische Natur jener Fäden bestehen kann. Bin ich mit meinen Beobachtungen im Rechte, so haben wir es im Epithel des Vas deferens der Aeserismännchen mit einem Excretionsapparat höchst eigen tümlicher Art zu thun, denn jede einzelne Zelle repräsentirt hier das Analogon eines jener complicirten (und aus der Verschmelzung mehrerer Zellen hervorgegangenen) Excretionseanaläe, wie sie in der Klasse der Würmer in
so zahlreichen Modifikationen (Stränge, Schleifen, Knäuel und Netze bildend) angetroffen werden.

Ich bin etwas ausführlicher auf diese That sehe eingegangen, weil ich vermute, dass in Ermangelung einer genügend zarten Isolirungsmethode jener merkwürdige Zellenbelag im Genitalschlauch der Ascarismännchen noch nicht specieller mikroskopisch untersucht worden ist.

In Fig. 17 gebe ich die Ansicht des Vas deferens eines Pferdespulwurmes. Bei grossen Männchen ist es halb so gross, als ich es hier gezeichnet habe. Die Stelle, wo sich die in Fig. 15 und 16 skizzierten Zellengebilde am Massenhaftesten vorfinden, ist durch Schraffirung besonders kenntlich gemacht.

IV. Die Bildung und Ausstossung der beiden Richtungskörper.

Bevor ich die Frage, ob die Thatsachen zu einer solchen Auf- fassung hinleiten, näher erwäge — will ich den Vorgang, um den es sich handelt, nach eigenen Beobachtungen beschreiben. Ich verweise dabei auf die Abbildungen (Fig. 1—12), welche ich auf Tafel IX dargestellt habe.

Man weiss, dass bei Ascaris megalocepha 2 solche Aus- würflinge, welche manaus bekannten Gründen „Richtungskörper" nennt, gebildet werden. Ich gedenke nicht mit der gleichen Um- ständlichkeit, wie dies Prof. v. Beneden gethan hat, auf alle Ein- zelheiten ihrer Bildung einzugehen, sondern möchte nur das, was dabei am augenfälligsten ist, hervorheben.

Der 1. Richtungskörper. Es ist schon früher darauf hin- gewiesen worden, dass sich die Membran des Keimbläschen in zarte Fäden auszieht, aus denen sich die nicht färbbare Doppel- spindel, resp. die beiden Halbspindeln des ersten Richtungskörpers, schon zu der Zeit hervorbilden, da das Spermatozoon eben erst mit dem Ei in Copulation getreten ist. Dieses Stadium habe ich auf Taf. VIII in Fig. 6 zur Anschauung gebracht. Die chromatische Substanz des Keimbläschen (der weibliche Mitoblast) zeigt sich in zwei Häufchen getheilt und jedes derseiben nimmt seinen Platz in einer der beiden Halbspindeln ein. Es wurde gleichfalls schon erwähnt, dass beide Häufchen zusammen aus 8 Kügelchen oder kurzen Stäbchen bestehen, die immer zu vieren gruppirt sind.

Die Figur des 1. Richtungskörpers erweist sich hiernach als ein Doppelgebilde, welches aus dem ursprünglich einheitlichen Keimbläschen und seinem chromatischen Körperchen hervorgegangen ist. Die beiden Halbspindeln können zu einander eine sehr ver- schiedene Lage einnehmen. Am häufigsten sind sie parallel ge-
Neue Untersuchungen über die Copulation der Geschlechtsprodukte etc. 149 stellt und völlig von einander getrennt. An den Polen findet sich stets eine Anhäufung von sehr feinen Körnchen. Die gewöhnlichste Form, in der diese Spindeln sich präsentiren, ist eine bandartig abgeflachte. Doch kommt auch eine Anordnung der achromatischen Fäden vor, welche der ganzen Figur (von den Polen her beschreib) eine mehr tonnenförmige Gestalt verleiht. In diesem Falle nimmt man wahr, dass die beiden Spindeln an ihren Polenden mit einander vereinigt sind. Dies ist z. B. auf Taf. IX, Fig. 1 die Art der Anordnung.

Sehr häufig sieht man auch, dass die beiden Spindelhälften eine convergirende Stellung zu einander einnehmen, so dass sie dann ein gemeinsames hinteres Polende besitzen, während die vorderen Enden divergiren. Dies ist der Fall in Fig. 2 auf Taf. IX. Diesen ganz speziellen Fall der Spindelstellung hat v. Beneden zum Range einer typischen Richtungsfigur erhoben und mit dem Namen Figure Ypsiliforme belegt, weil sie in der That die Form des Buchstabens Y nachahmt, wenn sich einige lose achromatische Fäden der beiden Halbspindeln über die Convergirungsstelle hinausziehen und so einen zarten Strang bilden. Prof. v. Beneden hat dieser Y-Figur eine Detailschilderung von 17 Druckseiten (S. 196—213 der Recherche) gewidmet. Ich glaube jedoch nicht, dass er einen Forscher, der sich selbst eingehend mit dem Ascaris-Ei beschäftigt hat, zu der Ueberzeugung bringen wird, es liege hier ein typischer Fall von achromatischer Spindelbildung vor. Auch die Abbildungen Prof. v. Beneden's (auf Taf. XIV und XV) scheinen mir nicht zu Gunsten seiner Ansicht zu sprechen.

Nussbaum1) und Carnoy2) sind in Bezug auf die Figure Ypsiliforme ganz gleicher Ansicht mit mir, und die Einigkeit in diesem Punkte fällt um so schwerer in's Gewicht, als bei anderen Beobachtungsergebnissen, die an demselben Object gewonnen wurden, unsere Meinungen vielfach auseinander gehen.

In dem Maasse, wie das Spermatozoon sich der Mitte der Dotterkugel nähert, rückt die Spindelfigur des ersten Richtungskörpers nach der Peripherie derselben vor. Man vergleiche Fig. 6, 7 und 8 der VIII. Tafel. Auf Grund zahlreicher Beobachtungen

2) Cytodierese. I, p. 28.
möchte ich die Behauptung aufstellen, dass der Punkt, nach welchem das Vorrücken der Richtungsspindeln erfolgt, etwas mehr als 120 Bogengrade von dem Orte entfernt ist, an welchem das Spermatozoon in die Eikugel eindrang. Ist die Spindelfigur mit ihren vorderen Polenden an der inneren Oberfläche der Dotterhaut angelangt, so verkürzen sich die achromatischen Fäden der distalen Spindelhälften (Fig. 3 und 4, Taf. IX) zuerst, und die der proximalen folgen diesem Beispiele. Hierauf bildet sich eine kleine Hervorwölbung in der Dotterhaut (Fig. 5) und aus jedem der beiden chromatischen Häufchen treten zwei Kügelchen in die Ausbuchtung hinein. Man muss Nutzende von Eiern, welche sich in diesem Stadium der Richtungskörperbildung befinden, ansehen: um sich den Modus zu rekonstruiren, nach welchem die Absnürung erfolgt. Wenn man das Stadum, welches in Fig. 5 dargestellt ist, genau untersucht, so bemerkt man, dass die beiden Kugelreihen durch feine (nicht ganz achromatische) Fäden verbunden bleiben, bis die endgültige Trennung erfolgt. In dem vollständig ausgestossenen Richtungskörper, welcher stets dicht an der inneren Oberfläche der ersten Dotterhaut liegt, sind immer vier von einander isolirte Kügelchen enthalten. Zuweilen teilt sich jedes derselben nach der Ausstossung nochmals, und wir finden dann ausnahmsweise Richtungskörper, welche acht chromatische Elemente einschliessen.

Die Hauptfrage, auf die ich schon zu Eingänge dieses Kapitels hindeutete, ist nun aber die: ob wir es bei der Ausstossung der Richtungskörper mit einem karyokinetischen Vorgange zu thun haben oder nicht. Prof. v. Beneden behauptet das letztere. Und zwar auf Grund der Angabe, dass nach seiner Beobachtung die Theilung der Richtungssfigur nicht quer gegen die Längsaxe der selben erfolge, sondern in der Richtung dieser Axe selbst,
in einer Ebene, welche der tangirenden des Eies parallel gerichtet sei. „Ce n’est pas l’un des pôles du fuseau, qui est éliminé; mais dans le plan équatorial que se fait l’élimination.“

Wie verhalten sich nun die am Ascaris-Ei zu beobachtenden Thatsachen zu dieser These?

Man sieht an diesem Beispiele recht deutlich, „welch‘ grosser Werth an möglichst frisches Untersuchungsmaterial und eine Fixierungs methode zu legen ist, mittels welcher‘ man die Eier recht schnell zu tödten vermag. Bei meinem Verfahren genügen off'schen 3—5 Minuten dazu, um die Stadien der Ausstossung des ersten Richtungskörpers zu conserviren.

Mit dem Nachweis aber, dass die Spindelfigur des ersten Polkörpers (und, wie wir sehen werden, auch die des zweiten)

1) Über die Theilbarkeit der lebendigen Materie. l c. p. 528.

Der zweite Richtungskörper. Prof. v. Beneden hat zwischen der Bildungsweise des ersten und derjenigen des zweiten Richtungskörpers bei A. megaloecephala erhebliche Abweichungen constatiren wollen; ich finde aber mit N u s s b a u m und C a r n o y, dass es nicht möglich ist, solche Unterschiede zu entdecken. Ich sehe vielmehr an meinen Präparaten, dass sich die achromatische Figur des zweiten Richtungskörpers ebenfalls auf zwei Halbspin- deln zurückführen lässt, welche gegen einander die verschiedensten Stellungen einnehmen können. Hierdurch entstehen allerdings sehr mannichfaltig gestaltete Richtungsfiguren, aber jede derselben lässt sich unschwer auf das Schema zweier paralleler oder convergiren- der Spindeln reduire. Die chromatischen Elemente sind durch Ausstossung der halben ursprünglichen Anzahl auf vier vermindert, und von diesen wird abermals die Hälfte bei Abschnürung des zweiten Polkörpers entfernt, so dass als dann 3 Viertheile des weiblichen Chromatins von der Beteiligung an der Embryonalentwicklung ausgeschlossen worden sind.

Ich habe die am häufigsten vorkommenden Richtungsfiguren der zweiten Art in Fig. 6, 7, 8, Fig. 7 und Fig. 8 zur Darstellung ge-
bracht. In Fig. 6 sieht man zwei parallel zu einander gestellte Spindeln; in den beiden nächsten Figuren solche, welche mit ihren hinteren Polen vereinigt sind. Ein Unterschied gegen die Spindeln des ersten Richtungskörpers macht sich an denen des zweiten insofern bemerkbar, als die letzteren spitz zulaufende Enden besitzen und aus viel feineren achromatischen Fäden bestehen. Dazu weisen sie auch eine sehr starke Polstrahlung auf, die man an den Spindeln des ersten Richtungskörpers gänzlich vermisst. Ganz besonders eigenthümliche Systeme solcher Polstrahlungen entstehen, wenn sich die zweite Richtungsfigur der Dotteroberfläche nähert (Fig. 9, Taf. IX) und sich zur Abgabe ihres Polkörpers anschickt.

Bevor letzteres geschieht, aber erst ganz kurze Zeit vorher, wird die zweite Dotterhaut (la seconde couche périvitelline) abgeschieden, welche — wie man am lebenden Ei sehen kann — ein merkwürdig verfilztes Aussehen zeigt, als ob sie aus lanter feinen Fasern bestände. An conservirten Eiern ist es nicht mehr möglich, diese Structur zur Ansicht zu erhalten, weil jener Filz unter Einwirkung der Reagentien sich verändert und aufquillt. Zuletzt wird er ganz unsichtbar.

Kurz vor Austritt des zweiten Polkörpers (Fig. 10 und 11) wechselt auch das Spermatozoon, welches bisher ganz unbetheiligt im Centrum der Dotterkugel verweilt hatte, seinen Ort, und rückt in unmittelbarste Nähe der chromatischen Kugelchen, von denen in unserer Fig. 10 die beiden mittelsten im Begriff stehen, mit einer sehr kleinen Portion Zellsubstanz umhüllt, auszutreten. In Fig. 11 ist der Moment der Abschnürung veranschaulicht, so wie ich ihn an Hunderten von Eiern beobachtet habe. Die Austrittsstelle scheint für beide Richtungskörper die nämliche zu sein; wenigstens kann man in den meisten Fällen den Mittelpunkt der Dotterkugel und die beiden Auswürglinge durch eine gerade Linie verbinden. Diese Ansicht wird auch durch Fig. 12 bestätigt, wo ich ein Ei dargestellt habe, bei welchem sich anormaler Weise der erste Richtungskörper noch in Zusammenhang mit seiner Ursprungsstätte befindet. Durch diese Hemmungsbildung wird es fast zur Gewissheit, dass beide Richtungskörper an einer und derselben Stelle der Dotterkugel ausgestossen werden. Wir sehen in Fig. 12 den ersten Richtungskörper einer Ausbuchung des Dotters aufsitzen, welche offenbar die Stelle bezeichnet, an welcher sich eventuell der zweite Richtungskörper gebildet haben würde.
Ist die Ausscheidung des letzteren wirklich erfolgt (vergl. Fig. 13), so stellt sich der im Ei zurückbleibende Rest des weiblichen Mitoblasten in der Form von zwei chromatischen Kugelchen oder Stäbchen dar, die in Größe und Aussehen genau den beiden Substanzbrocken gleichen, welche ihrer Herkunft nach auf den chromatischen Theil des Spermatozoons zurückzuführen sind, und so mit das Halbhirungsprodukt des männlichen Mitoblasten repräsentire.

Der germinative Dualismus, der schon ganz früh im Ei zu Tage trat, macht sich also — wie wir deutlich sehen — nur auch im Spermatozoon geltend, insofern sich der rundliche Chromatin kern desselben zur Zeit der Bildung des zweiten Richtungskörpers erst etwas in die Länge streckt und dann wirklich in zwei ganz distinete Hälften zerfällt, die den gleichfalls tigirbaren Gebilden weiblicher Provenienz in Größe und Form, also in morphologischer Hinsicht, ganz gleichwertig gegenüberstehen. Ich ersuche den geehrten Leser bei Nachprüfung meiner Untersuchungsergebnisse auf diesen Punkt ganz besonders zu achten, weil derselbe von höchster Wichtigkeit für das Verständniss des Befruchtungsvorganges bei Ascaris megaloecephala ist. Ich werde im nächsten Kapitel an die That sache des schon mehrfach erwähnten Keimdualismus wieder anknüpfen und zeigen, in wie frappanter Weise derselbe die im Ascaris-Ei sich abspielenden Befruchtungserscheinungen beeinflusst.

Zum Schluss der vorstehenden Beschreibung der Richtungskörperbildung möchte ich noch berichten, dass auch vom völlig unbefruchteten Ei des Pferdespulwurms ein erster Richtungskörper ausgestossen wird, wogegen die Bildung eines zweiten unterbleibt.

Ueber die biologische Bedeutung der Richtungskörper lässt sich noch keine bestimmte Meinung äussern. Bütschli hat in einem geistvollen Aufsätze Gedanken über die morphologische Bedeutung dieser Gebilde entwickelt und unter Hinweis auf die Geschlechtsverhältnisse gewisser Flagellaten die Ansicht zu begründen versucht, dass in den Richtungskörpern noch „ein An klang an die ehemalige Bildung einer weiblichen Gameten-Colonie“ zu finden sein möchte 1). Weismann hat sich ebenfalls neuerdings in dieser Frage vernehmen lassen 2), aber im Gegensatz zu

1) Biolog. Centralblatt. 1884. p. 5 u. ff.
2) Die Continuität des Keimplasmas. 1885, p. 70—87.
Bütschli bemerkt, es sei ihm unwahrscheinlich, dass ein Vorgang, der sich in den allerersten Stadien der Ontogenese abspiele und somit auf sehr alte phylogenetische Verhältnisse zurückweisen müsste, sich bis heute erhalten haben sollte — wenn ihm nicht eine ganz hervorragende physiologische Bedeutung zukäme, und letztere erblickt Weismann darin, dass die Ausstossung der Richtungskörper nichts Anderes sei, als die Entfernung desjenigen Kernplasmas, welches bisher das Wachsthum der Eizelle beherrschte, und welches er aus diesem Grunde das ovogene nennt.

Wenden wir diese theoretische Ansicht auf das Ascaris-Ei an, so wäre anzunehmen, dass hier der weibliche Mitoblast (das Keinkörperchen des Eikerns) zu drei Vierteln aus ovogenum Kernplasma bestanden haben müsste, weil thatsächlich diese Quantiät Chromatin ausgestossen wird. Leider besitzen wir kein Reagens um das ovogene Chromatin von dem andern zu unterscheiden, welches die Vererbungserscheinungen vermittelt. Und so bleibt Weismann's Ansicht zunächst lediglich Theorie.

Indessen verdient dieselbe ebenso wie diejenige Bütschli's die Beachtung aller Forscher, welche sich mit cellulären Problemen beschäftigen. Man muss dankbar für die Eröffnung jeder neuen Perspective in Bezug auf die schwierige Frage der Richtungskörperbildung sein, welche allem Anschein nach noch weit von ihrer definitiven Lösung entfernt ist.

Was die ansprechende und auf den ersten Augenblick sehr bestehende Hypothese von Minot 1) anlangt, dass die Richtungskörperbildung den Zweck habe: der ursprünglich hermaphroditischen Eizelle (um sie befurchtungsfähig zu machen!) die männlichen Bestandtheile zu entführen, so ist diese Hypothese im höchsten Grade unwahrscheinlich, wenn man die Consequenzen derselben genauer erwägt. Das Ei von Ascaris megoalocephala wäre darnach vor Abgabe der beiden Richtungskörper zu drei Vierteln männlich und nur zu einem Viertel weiblich. Denn nur dieser geringe Bruchtheil von Chromatinsubstanz bleibt, wie wir sahen, wirklich im Ei zurück. Eine hermaphroditische Zelle aber, die zum grössten Theile männlich ist, erweist sich als eine contradictio in adjecto. Mindestens hätte die Natur das Verhältniss zwischen den beiden

Das schliesst natürlich nicht aus, dass sie in mancher an-

²) A. Weismann: Die Continuität des Keimplasmas, 1885, p. 73.
Neue Untersuchungen über die Copulation der Geschlechtsprodukte etc. 157

2) E. Strasburger: Neue Unters. über den Befruchtungsvorgang bei den Phanerogamen etc. 1884, p. 159.

V. Der Befruchtungsact.

Ich kann auf Grund meiner eigenen Untersuchungen dieser Schilderung nicht ganz beistimmen. Meine Beobachtungen haben mir vielmehr gezeigt, dass der Mitoblast des Samenkörpers, der sehr früh eine Zusammensetzung aus 2 Hälften erkennen lässt, schon vor dem Austreten des 2. Richtungskörpers seinen Platz im Mittelpunkte des Eies verlässt und sich in die Nähe des Richtungspoles begibt. Die Figuren 10, 11 und 12 auf meiner Tafel IX bringen diese Thatsache zur Ansicht. Unmittelbar nachdem der Richtungskörper das Ei verlassen hat, stehen sich die Chromatin-Elemente männlicher und weiblicher Provenienz so gegenüber, wie es Fig. 13 zeigt. Ich werde, der Kürze halber, im Folgenden von diesen Elementen als vom männlichen und weiblichen Mitoblasten sprechen, möchte aber von vornherein dem Gedanken vorbeugen, dass ich mit dieser Bezeichnung eine Ge-
schlechtsdifferenz zum Ausdruck zu bringen beabsichtige. Ich erinnere hierbei an das, was ich auf S. 155 vorliegender Abhandlung über diesen Punkt ausgeführt habe.

Fig. 13 stellt den Beginn des Befruchtungsactes dar. Das unmittelbar darauf folgende Stadium ist in Fig. 14 veranschaulicht. Wir sehen, dass sich um je eine Hülle des männlichen (mm) und des weiblichen Mitoblasten (wm) eine Höhlung im Dotter gebildet hat, welche von letzterem durch eine deutliche Membran abgegrenzt ist. Es entstehen auf solche Weise zwei kernartige Gebilde, deren jedes den gleichen Anteil von chromatischer Substanz enthält, aber so, dass dieselbe dabei immer in der Anordnung von $\frac{1}{2}\text{wm} + \frac{1}{2}\text{mm}$ vorhanden ist. Die chromatischen Elemente sind der Kernmembran (denn eine solche liegt vor) stets ganz dicht angelegt, und wenn sie mehr nach dem Mittelpunkte des Kerns hin gerückt erscheinen, so ist dieses abweichende Verhalten durch die Stellung zu erklären, welche das Ei zufällig in Rücksicht auf den am Mikroskop sitzenden Beobachter einnimmt. Weiterhin zeigt sich nun, dass die Mitoblastantheile in kleine kügelche zerfällt werden, zwischen welche sich eine nicht tingirbare Substanz einlagert. Es bilden sich so erst größere, perlschnurähnliche Fragmente, welche sich mehr und mehr verzweigen und verfeinern, so dass zuletzt in den beiden Kernen, welche ihren Platz am Richtungspole unverändert beibehalten, eine netzartige Vertheilung der chromatischen Substanz hervorgebracht wird, wie dies unsere 15. Figur auf Taf. IX zeigt. Der Vorgang dieser allmählichen Verzweigung und Verfeinerung ist sehr schwer in einer Abbildung darzustellen und ich habe es darum vorgezogen, es bei der blossen Beschreibung bewenden zu lassen.

Der geehrte Leser wird nunmehr auch die Bezeichnung „Mitoblast“ (Fadenbildner) für die mit einander verschmelzenden Chromatin-Elemente gerechtfertigt finden, denn die augenfälligste Function derselben besteht in der Produktion eines Fadengerüstes innerhalb der von ihnen occupirten Höhlungen.

Dass jene beiden Kerne, in welchen Chromatin männlicher und weiblicher Provenienz aufs Innigste mit einander vermischen ist, nicht mehr den Namen von „Vorkernen“ (Pronuclei) verdienen, ist selbstverständlich. Es sind vielmehr Conjugationskerne im eigentümlichsten Sinne des Wortes, und es hängt mit der eigenthümlichen Erscheinung, welche ich in einem früheren Capitel germo-
nati\ven Dualismus genannt habe, zusammen, dass im Ascaris-Ei immer zwei derartige Kerne zu gleicher Zeit entstehen. Nachdem dieselben vollständig ausgebildet sind und das in Fig. 15 dargestellte Aussehen zeigen, rücken dieselben von ihrer Ursprungsstätte weg und nehmen eine mehr äquatoriale Stellung ein, wie Jedem bekannt ist, der ein legereifes Ascaris-Ei unterem Mikroskop besichtigt hat.

Anstatt eines einheitlichen Furchungskernes finden wir also bei A. megaloecephala zwei derartige Gebilde vor, welche man im Hinblick auf ihre merkwürdige Entstehungsweise ganz passend als Halb-Kerne bezeichnen könnte. Denn jeder von beiden enthält nur die Hälfte von dem Chromatin männlicher und weiblicher Herkunft, welches sonst in einem Furchungskern der gewöhnlichen Art enthalten zu sein pflegt. Beide Kerne benehmen sich aber bei der Mitose des Ascaris-Eies wie ein einheitlicher Furchungskern, insofern sie gemeinschaftlich den Mutterstern der ersten Furchungskugel bilden, nachdem erst jeder für sich zwei Chromatinschleifen producirft hat, welche eine Vförmige Gestalt besitzen (vergl. Fig. 25 und Fig. 26 auf Taf. X).

Durch die Entdeckung, dass wir es im entwickelungsreifen Ei von A. megaloecephala mit bereits conjugirten Kernen und nicht mit Pronuclei zu thun haben, wird das Factum, dass diese Gebilde nicht mit einander verschmelzen, sehr erklärlich und der Ausspruch v. Beneden's „les deux Pronucleus ne se confondent jamais“ verliert jede Spur des Befremdenden, was ihm bisher anhaftete. Die Hertwig'sche Theorie 1), wonach ein geformter Kerntheil des Spermatozoons sich mit einem geformten Kerntheil des Eies verbinden muss, um den Befruchtungsact perfect zu machen — diese Theorie erhält also an dem Object, mit dem wir uns in dieser Abhandlung beschäftigen, kein Dementi, sondern im Gegentheil eine neue Bestätigung der bündigsten Art.

Es kommt am Ascaris-Ei jedoch häufig auch der Fall vor, dass die Verschmelzung der männlichen und weiblichen Chromatinelemente nach der Formel $\frac{1}{2} \text{mm} + \frac{1}{2} \text{wm}$ unterbleibt und dass jeder der beiden Mitoblasten für sich allein die Kernform annimmt, indem er sich mit einer Membran umgiebt. Diesen Fall habe ich

in Fig. 16 vorgeführt. Hier treten nun zwei Möglichkeiten ein, von denen sich die eine stets verwirklicht. Entweder nämlich wird die verfehlte Verschmelzung von Seiten beider Kerne alsbald nachgeholt, bevor sie noch dazu gekommen sind, ihr Fadengerüst vollständig auszubilden (Fig. 17), oder jeder der beiden Kerne reift für sich heran und bildet ein Netzwerk in seinem Innern aus, welches genau so fein verzweigt und constituirt ist (vergl. Fig. 20), wie das der conjugirten Kerne in Fig. 15.

In diesem letzteren Falle, aber nur in diesem, haben wir wirkliche Pronuclei (im Sinne der Hertwig'schen Auffassung) vor uns, denn der eine enthält nur Chromatin männlicher Provenienz, der andere solches, welches dem Eikern entstammt.

Ich füge hier bei, dass auch Nussbaum und Carnoy mit Sicherheit eine Verschmelzung von Kernen im Ascaris-Ei constatirt haben. Allerdings lassen die bezüglichen Abbildungen beider Forscher nicht viel mehr erkennen, als eben die Thatsache der Verschmelzung selbst. (Vergl. M. Nussbaum: Ueber die Veränderungen der Geschlechtsprodukte etc. 1884, Archiv f. mikr. Anatomie, 23. B., Taf. X, Fig. 40 und B. Carnoy: Cytodiéresé II, 1886, Taf. V, Fig. 5).

In ganz vereinzelten Fällen (Fig. 19, Taf. X) bilden sich nicht bloss 2, sondern 4 Pronuclei, indem sich jedes der im Ei vorhandenen Chromatin-Elemente mit einer Membran umgiebt und Kernform annimmt. Wie es mit der Verschmelzung in diesen pathologischen (?) Fällen steht, kann ich nicht sagen. Möglicherweise tritt eine solche überhaupt nicht ein.

Es mag noch in Erinnerung gebracht werden, dass L. Auerbach¹) s. Z. auch am lebenden Nematoden-Ei (Strongylus anriuen-

¹) Organologische Studien. 3. Abschnitt, 1874, p. 214.
laris und Rhabdonema nigrovenosum) die Verschmelzung der beiden Vorkerne und die Vorbereitungen dazu beobachtet hat. Seine Abbildungen lassen darüber keinen Zweifel aufkommen. Wie es dabei des Näheren zugeht, das vermag man jedoch nur an gut conservirten Präparaten zu beobachten. Nach einem solchen ist die Zeichnung in Fig. 21 angefertigt. Ich habe mich bei Erforschung dieser feinsten Detailverhältnisse einer homogenen Immersion (1/16 Zoll) aus dem Atelier von E. Leitz in Wetzlar bedient, und ich nehme Gelegenheit, diesem Objective das beste Zeugniss in Betreff seiner Leistungsfähigkeit auszustellen.

Es erscheint (vergl. Fig. 21) sehr bemerkenswerth, dass sich zu Beginn der Verschmelzung das Chromatin hauptsächlich in den Meridianen der beiden Kernkugeln anordnet, so dass die Stränge förmliche Strassen bilden, die, von einem polar gelegenen Centrum aus, nach der Fusionsstelle hinstreichen. Dabei werden die Ballbani-Pfitzner'schen Kugelchen nach dieser Stelle zu immer winziger, so dass man annehmen kann, es müsse bei der Verschmelzung selbst die innigste Mischung zwischen den Elementen männlicher und weiblicher Herkunft stattfinden. Allmählich fließen beide Pronuclei vollständig mit einander zusammen und bilden einen Furchungskern von doppelter Grösse. Das Fadengerüst desselben zeigt später ein ähnliches Aussehen, wie dasjenige der beiden separirten Conjugationskerne in Fig. 15.

In der Folge, dies mag hier vorausgeschickt werden, geht aus diesem einheitlichen und durch Verschmelzung entstandenen Kern ein Mutterknäuel (Fig. 22) hervor, welcher einen continuirlichen Chromatinfaden (Fig. 23, Taf. X) repräsentirt, der in der mannigfaltigsten Weise gekräuselt und verschlungen ist.

Ich stelle also, wie der geehrte Leser sieht, das gelegentliche Auftreten wirklicher Pronuclei bei A. megaloecephala keineswegs in Abrede, sondern behaupte nur, dass die zuerst geschilderte Form des Befruchtungsactes die allgemeiner vorkommende ist. Herrn Prof. v. Beneden gegenüber gestatte ich mir zu bemerken, dass in dem Falle, wo Pronuclei in seinem Sinne gebildet werden, auch eine Verschmelzung derselben stattfindet, und dass somit die O. Hertwig'sche Theorie ihre volle Bestätigung gerade an dem Object erhält, welches bisher eine Ausnahmestellung einzunehmen schien.

Ich habe mich schliesslich noch über einen Punkt mit B. Carnoy auseinander zu setzen. Dieser Forscher hat, wie schon
Neue Untersuchungen über die Copulation der Geschlechtsprodukte etc.

oben erwähnt wurde, die Verschmelzung der beiden Kerne im As-
caris-Ei gleichfalls beobachtet, aber da er sie in einer überwiegend
grossen Anzahl von Fällen nicht eintreten sah, so schliesst er
(La Cytodiörese II, S. 68): „que le fait de la fusion ou de la non-
fusion des noyaux, avant la cinèse, ne peut avoir aucune impor-
tance physiologique“. Und weiterhin heisst es nochmals bei Car-
noy: „Quoi qu'il en soit, fusionnés, ou non, les noyaux de conju-
gaison entrent en cinèse."

Dieser Schlussfolgerung gegenüber verweise ich auf meine
Schilderung des Befruchtungsvorganges bei A. megaloccephala.
Das Vorhandensein eines zweifachen Modus, wie sich die Copula-
tion der Geschlechtsprodukte beim Pferdespulwurm (und wohl auch
bei anderen Nematoden) vollzieht, erklärt die Fälle der Verschmel-
zung sowohl, wie die der Nichtverschmelzung in gleich zufrieden-
stellender Weise. In Betreff der Fälle, wo bereits conjugirte Kerne
(Halbkerne) zur Bildung des Mutterkernes der ersten Furchungs-
kugel zusammen treten, hat v. Beneden Recht, wenn er sagt: „Les
deux noyaux ne se confondent jamais.“ Im andern Falle, d. h.
 wenn wirkliche Pronuclei zur Ausbildung gelangt sind, bestätigt
sich die Wahrnehmung derjenigen, welche (wie M. Nussbaum)
der Kernverschmelzung das Wort reden.

In jedem dieser beiden Fälle geht aber mit dem Befruch-
tungsvorgange eine innige Vereinigung von männlicher und weiblicher
Chromatinsubstanz Hand in Hand und es verhält sich nicht so,
dass bloss „eine gemeinsame Kernhöhle die beiden Kerngerüste
umschliesst“ — wie E. Strasburger auf Grund der v. Bene-
den'schen Beobachtungen anzunehmen geneigt ist1). Da, wo der
Fall eintritt (vergl. S. 120 dieser Abhandlung), dass männliche und
weibliche Chromatin-Antheile von einer gemeinsamen Membran um-
schlossen werden, da findet auch, wie ich zweifellos constatirt habe,
eine wirkliche Verschmelzung derselben statt. Es bildet sich ein
Fadengerüst innerhalb der betreffenden Kernhöhlung aus, welches
so fein verzweigt und homogen gebaut ist, dass es ganz unmöglich
wird, einen Dualismus in seiner Zusammensetzung mit Hilfe des
Mikroskops zu entdecken. Dass dennoch ein solcher Dualismus
vorhanden sei, steht Einem frei zu behaupten; aber man thut da-
mit den ersten Schritt in das Bereich willkührlicher Annahmen.

1) E. Strasburger, Neue Untersuchungen über den Befruchtungs-
vorgang bei den Phaneorgamen etc., 1884, p. 87.

Ich schliesse dieses Kapitel mit einem Hinweis auf die Fig. 18, Taf. IX, welche denen, welche sich zum ersten Male mit Ascaris megaloecephala beschäftigen, eine gute Orientirung darbietet.

Die betr. Abbildung stellt die beiden Uteri eines mittelgrossen Weibchens dar. v bezeichnet die 7—10 mm lange Vagina, welche im vorderen Fünftel des Wurmleibes ventralwärts ausmündet. Der hierauf folgende dickste Abschnitt der Uteri (E) enthält die ältesten Eier, d. h. solche, welche bereits in Furchung begriffen sind, oder die beiden Halbkerne, resp. die Pronuclei zeigen. Zu bemerken ist, dass innerhalb des lebenden Weibchens eine Furchung der Eier nicht einzutreten scheint. Die abgestorbenen Würmer hingegen beherbergen stets Furchungsstadien, falls sie nicht gerade einer sehr niedrigen Temperatur ausgesetzt gewesen sind. In den mit D bezeichneten Uteruspartieen trifft man die verschiedenen Stadien der Befruchtung und die Ausstossung des zweiten Richtungskörpers an. Bei C die vorbereitenden Stadien zur Ausstossung und die Bildung des zweiten Richtungskörpers selbst. Die mit B bezeichneten Abschnitte enthalten Eier mit dem ersten Richtungskörper bis zu seinem Austritt, und die dünnen (obersten) Theile des Uterus (resp. die untersten des Oviducts A) liefern bei vorsichtiger Präparation alle Stadien der Copulation von Ei und Samenkörper.

VI. Die Furchung des Eies von A. megaloecephala.

Es bleibt mir noch übrig, die Theilung der Eizelle und die Bildung der ersten Blastomeren zu schildern, wie ich diese Vorgänge an vorzüglich klaren und wohlgelungenen Präparaten beobachten konnte. Herr Prof. W. Flemming in Kiel hat die für diese Stadien von mir in Anwendung gebrachte Präparationsweise begutachtet und sehr probat gefunden. Ich nehme mir die Frei-
heit, diese Thatsache ausdrücklich hervorzuheben, weil es lediglich die Exactheit der Präparation gewesen ist, wodurch ich in den Stand gesetzt wurde, einige bisher noch zweifelhafte Punkte definitiv klarzustellen.

Das Ascaris-Ei ist wegen seiner Grösse ein ganz vorzügliches Object, um die Vorgänge, durch welche der Furchungsprozess eingeleitet wird und letzteren selbst mit Genauigkeit verfolgen zu können.

Betrachten wir zunächst den Fall, wo durch die Verschmelzung zweier Pronuclei ein wirklich einheitlicher Furchungskern entstanden ist. Dass ein solcher Fall überhaupt vorkommt, dies wird bekanntlich von v. B ened en in Bezug auf Ascaris megaloecephala rundweg in Abrede gestellt, insofern der genannte Forscher sagt: „Chez l'ascaride du cheval il ne se produit pas un noyau unique aux dépens des deux pronucleus; il n'existe pas un Furchungskern dans le sens, que O. Hertwig a attaché à ce mot“). Dem gegenüber ist aber von N ussbaum, Car noy und mir die Verschmelzung in vielen Fällen wirklich nachgewiesen worden, sodass die v. Bened en'sche These nur noch mit einer starken Einschränkung Gültigkeit beanspruchen darf. Es existirt thatsächlich in zahlreichen Eiern des Pferdespulwurmes ein einheitlicher Furchungskern und dessen Veränderungen wollen wir uns jetzt näher betrachten.

Der erste vorbereitende Schritt zur Ei-Theilung besteht bei A. megaloecephala darin, dass sich das vielfach verzweigte, äußerst zarte Fadengerüst des Furchungskernes in einen einzigen Chromatinstrang von ausreichender Länge verwandelt, welcher in der Form eines Knäuels die Kernhöhlung fast ganz ausfüllt (Fig. 22, Taf. X). Wie es bei dieser Umwandlung im Speziellen zugeht, darüber kann man sich nur durch den Vergleich einer grossen Anzahl von Präparaten eine Meinung bilden. Eine directe Beobachtung ist selbstverständlich ausgeschlossen. Was ich gesehen habe, kann ich in folgender Schilderung restitiren. Die färbbare Substanz scheint von zwei polaren Bezirken her nach dem Aequator der Kernkugel hinzufließen und sich hier zu einem dicken Chromatinfaden zu sammeln, der in leichten Schlangeln rings um den ganzen Kern herumläuft. Es ist als ob unzählige kleine Riemsale und Bäche

1) v. B ened en, Recherches etc. p. 403.
zunächst größere Flüsse bildeten, um zuletzt samt und sonders in den äquatorialen Hauptstrom einzumünden. Während dies geschieht, bläht sich die Kernmembran stark auf, so daß die davon umschlossene Höhlung mindestens ein halb Mal größer wird, als sie vorher war. Der dicke äquatoriale Faden verläuft anscheinend an der Innenwand des Kerns und beschreibt, je mehr er an Länge zunimmt, immer steiler geschlängelte Windungen, die mehr und mehr zusammenrücken, so daß endlich der Augenblick eintritt, wo sie auf der Innenfläche der Kernmembran keinen Platz mehr haben. Ein weiteres Längenwachstum des Fadens führt nun dazu, ihn von der Kernwand ab und in die Höhlung hineindrängen, die er alsbald mit seinen zahlreichen Krümmungen und Windungen ausfüllt (Fig. 22). Es ist dies das Stadium des sogenannten „dichten Knäuels“. Bei Ascaris megalcephala besteht dieses aus einem einzigen Chromatinfaden (Fig. 23), wie sich deutlichst zeigt, nachdem die Kernmembran geschwunden ist. Die letzten erkennbaren Elemente dieses Fadens sind kleine, stark lichtbrechende Kugeln, welche sich in Essigkarmin sehr intensiv färben. Balbiani und Pfitzner wiesen zuerst auf diese chromatischen Kugelchen der Kerngerüstfäden hin. Mit den besten optischen Hilfsmitteln nehmen wir gerade noch wahr, daß diese winzigen Elemente in ein nicht färbares Substrat eingelagert sind. Möglicherweise müssen die Kugelchen selbst als eine Verdichtung dieser achronomischen Substanz aufgefasst werden, wofür ein beachtenswerther Grund durch die Thatsache geliefert wird, daß sich Übergänge von ganz intensiv gefärbten Kugelchen bis zu solchen constatiren lassen, deren Tingirbarkeit beinahe gleich Null ist. Ein ganz durchgreifender und wesentlicher Unterschied zwischen den beiden Substanzien, aus denen sich der Knäuelfaden des Kerns zusammensetzt, wird sich demnach wohl nicht behaupten lassen.

Nach Auflösung der Kernmembran liegt der Knäuelfaden frei im Innern der Dotterkugel des Eies. Ob er zu dieser Zeit noch eines weiteren Längenwachstums fähig ist, dürfte sehr schwer zu entscheiden sein. Oft freilich ist er von ganz erstaunlicher Länge, so daß er mit seinen hin- und hergehenden Schleifenwindungen das ganze Eiprotoplasma durchsetzt. Die nächste Veränderung, die mit ihm vorgeht, besteht nun darin, daß er in zwei gleiche oder annähernd gleiche Hälften zerfällt, welche sich nach einiger Zeit nochmals theilen (Fig. 24), so daß der ursprünglich einheit-
liche Chromatinfaden nunmehr durch vier Fragmente (Fig. 25) repräsentiert wird. Jedes derselben nimmt schliesslich eine Vförmige Gestalt (Fig. 26) und eine solche Lage in Bezug auf die drei anderen an, dass eine Stern-Figur entsteht, welche in einer durch den Mittelpunkt des Eies gehenden Ebene gelegen ist. Dies sieht man am besten in Fig. 30 und Fig. 31, wo die sternförmige Anordnung der Vförmigen Schleifen ziemlich perfect geworden ist. Letzteres geschieht nämlich nicht eher als im Beginn der sich wirklich vollziehenden Theilung der Dotterkugel. Bevor wir in die detaillierte Schilderung dieses Stadiums eintreten, wird es angemessen sein, erst noch den häufiger vorkommenden Fall zu betrachten, in welchem das Ei keinen einheitlichen Furchungskern, sondern zwei Halbkerne dieser Art enthält, deren Entstehungsweise im V. Abschnitt bereits geschildert wurde.

In diesem Falle bildet sich in jedem der beiden Kerne, welche nahe aneinander gerückt sind, ein continuirlicher Chromatinfaden aus (vergl. Fig. 27, 28 und 29), der genan ebenso in der äquatorialen Zone der Kernwandung seinen Ursprung nimmt, wie dies oben bereits für den Faden des einheitlichen Furchungskernes angegeben wurde. Später bricht jeder der beiden Fäden in zwei Fragmente (Fig. 25) aneinander und die weitere Gestaltung der mitotischen Verhältnisse ist ganz dieselbe, wie im erstbeschriebenen Falle. In Fig. 29 habe ich den Moment dargestellt, wo die Membran der beiden Kerne im Schwinden begriffen ist und die Chromatinfäden frei werden.

Zuweilen kommt es vor, dass diese Fäden in Fragmente von ungleicher Länge zerfallen. Die Schleifen des Muttersternes würden dadurch eine verschiedene Grösse erhalten und die ferneren Entwickelungsstadien des Eies kämen vielleicht in die Gefahr gestört zu werden. Aber die Natur scheint dieser Eventualität vorgebeugt zu haben, indem — wie es aussicht — in den kürzeren Fadenfragmenten eine Vermehrung der chromatischen Kugelchen (nach der Längsrichtung) eintritt, so dass nach Verlauf einer gewissen Zeit alle Schleifen thatsächlich gleich gross sind. Ursprünglich liegen diese vier Constituenten des Muttersternes in verschiedenen Ebenen und ziemlich ungeordnet beieinander. Auch sind die Scheitel der einzelnen Schlingens (Fig. 26) noch nicht um ein gemeinsames Centrum gruppiert. Dagegen sind schon zu dieser Zeit die Pole der achromatischen Theilungsspindel (Fig. 30) und die äusserst zier-
Dr. Otto Zacharias:

liche Strahlung im Protoplasma des Eies deutlichst wahrzunehmen. Ich finde die Beobachtung v. Beneden's, dass die Spindelfigur der ersten Furchungskugel aus zwei Kegeln bestehe, welche mit ihren Basen aneinander stossen (Fig. 31) vollkommen bestätigt, wie ich überhaupt der detaillirten Beschreibung, welche der belgische Forscher von der Furchung des Ascaris-Eies gegeben hat 1), nur wenig hinzufügen kann.

Jene Kegel repräsentiren sich als aus sehr feinen glänzenden Fäden bestehend, die mit ihren Enden an den chromatischen Schleifen angeheftet sind, während ihre Spitzen frei in das Protoplasma hineinragen und von mächtigen Strahlensystemen umgeben werden. Im Mittelpunkte jeder dieser Sonnen findet sich häufig (aber nicht immer!) ein scharf contourirtes helles Körperchen vor, welches v. Beneden „corpuscule polaire“ nennt. In Fig. 30 und Fig. 31 (Taf. X) sind diese Befunde dargestellt. Bei einer gewissen Einstellung des Mikroskops sieht man an jedem der beiden Kegelenden auch noch ein kugelförmiges, scharf umschriebenes Gebilde (Fig. 31) auftauchen, welches v. Beneden für „une formation morphologique distincte“ erachtet und als sphère attractive bezeichnet. Ich habe mich längere Zeit hindurch dieser Meinung gleichfalls hingegangen. Aber schliesslich bin ich zu der Überzeugung gelangt, dass man es bei diesen „Attractionskugeln“ mit einer blossen Refractionsercheinung zu thun hat, welche durch die dicht zusammengedrängten Polstrahlen hervorgebracht wird. Zu wiederholten Maleu und zu sehr verschiedenen Zeiten (bei träbem Himmel, bei hellster Mittagsbeleuchtung und auch bei Lampenlicht) habe ich mir jene problematischen Kugeln auf ihre Natur hin angesehen, aber nichts gefunden, was mich veranlassen könnte, sie für mehr als eine lediglich optische Erscheinung zu halten. Über den Ursprung der achromatischen Spindel-Figur habe ich noch keine eigenen Forschungen angestellt, aber es ist mir sehr wahrscheinlich, dass ihre Fäden (Fibrillen) aus einem Material bestehen, welches in ähnlicher Weise aus der umgewandelten Membran der Furchungshalbkerne hervorgeht, wie der achromatische Theil der ersten Richtungsfigur aus der Membran des Eikernes. Auch Prof. v. Beneden (vergl. Recherches, p. 333) neigt sich dieser (zumächst allerdings noch hypothetischen) Ansicht zu; nur dass

1) Recherches etc. p. 314—352.
er, wie dies bei seiner Auffassung nicht anders möglich ist, von Vorkernen spricht, wo ich von Furunkelkernen rede.

Von einem der Pol-Enden der Teilungsfigur her betrachtet, sieht man die Scheitel der chromatischen Schleifen zuletzt in der Weise um einen Mittelpunkt angeordnet, dass ein typischer Mutterstern gebildet wird. Derselbe liegt stets in einer Ebene, welche mitten durch die Dotterkugel geht, und man spricht deshalb auch von einer „Aequatorialplatte“ (Disque équatorial), um die relative Lage der chromatischen Elemente gleich mit zum Ausdruck zu bringen. Die Formierung dieser Aequatorialplatte bezeichnet zu gleicher Zeit den Eintritt des Stadiums der sogenannten Metakinese, welches dadurch eingeleitet wird, dass sich die 4 primären chromatischen Fadenschleifen der Länge zu spalten beginnen, wodurch 8 secundäre oder Tochterschleifen entstehen. Die Spaltung geschieht auf dem Wege einer eigen tümlichen Theilung der chromatischen Kugelchen in den primären Fäden und kann oft schon zu einer Zeit beobachtet werden (Fig. 32), wo die sternförmige Anordnung zu einer Platte noch gar nicht stattgefunden hat. Die bereits deutlich unterscheidbaren secundären Schleifen eines und desselben primären Fadens sieht man oft mit ihren Enden noch zusammenhängen, wie dies gleichfalls aus Fig. 32 ersichtlich wird.

Bevor ich die Metakinese oder Umordnung der Tochterfäden etwas näher beleuchte, muss ich eine Bemerkung einfügen.

In dem Kapitel über die Befruchtung (Recherches, p. 403) und am Schlusse seiner Abhandlung überhaupt zählt Prof. v. Beneden die Hauptresultate seiner Forschungen in Betreff der Befruchtungerscheinungen auf, und er kommt zu dem Schlusse, dass man nicht mit O. Hertwig sagen könne, die Befruchtung bestehe in der Verschmelzung eines weiblichen und eines männlichen Zellkernes. Denn die Beobachtung des Eies von A. megaloecephala zeige, dass in keinem Theilungsstadium desselben männliches und weibliches Chromatin zusammenfließe. Wenn aber dennoch eine Verschmelzung stattfinden sollte, so könne diese nur in den Kernen der beiden ersten Blastomeren sich vollziehen. Indessen gebe es Gründe zu der Annahme, dass auch dann noch männliches und weibliches Chromatin von einander geschieden bleibe (Recherches, p. 404).

Zu dieser Auffassung ist v. Beneden gelangt, weil es ihm
Dr. Otto Zacharias:

nie geglückt ist, die Verschmelzung von Vorkernen im Ascaris-Ei zu beobachten und weil er die Natur derjenigen Kerne des nämlichen Eies, welche in der That nicht mit einander verschmelzen (weil sie schon männliche und weibliche Elemente in sich enthalten) gänzlich verkannt hat. Er hielt diese letzteren für Vorkerne, während sie diese Bezeichnung — wie ich im Vorhergehenden gezeigt habe — gar nicht verdienen.

Unter diesen Umständen erweisen sich die Befunde an dem sich zur Theilung anschickenden Ascaris-Ei gänzlich ungeeignet dazu, um die Hypothese vom cellulären Hermaphroditismus zu stützen. Es ist nicht wahr, dass die erste Furchungskugel bei Ascaris megalocephala 2 chromatische Schleifen männlicher und 2 ebensole Gebilde weiblicher Provenienz enthält; vielmehr sind in diesen beiden Schleifenpaaren die chromatischen Bestandtheile von beiderlei Geschlechtsproducten bereits aufs Innigste mit einander vereinigt. Entweder fand die Verschmelzung unmittelbar nach Ausstossung des 2. Richtungskörpers statt, oder die unabhängig von einander entstandenen Pronuclei produiren, indem sie sich conjugiren, einen einheitlichen Furchungskern. In jedem Falle aber findet eine Verschmelzung in dem Sinne der Hertwig'schen Befruchtungslehre statt.

An einer einzigen Stelle seines Werkes (p. 404) kleidet Prof. v. Beneden die sonst ganz positiv ausgesprochene Behauptung (dass die beiden Kerne im legereifen Ascaris-Ei Pronuclei seien) in die Form eines bedingten Satzes ein, indem er sagt: „Si le pronucleus mâle et le pronucleus femelle méritent ces dénominations, qui impliquent leur sexualité, les noyaux cellulaires sont manifestement hermaphrodites.“ Damit ist indirect natürlich gegeben, dass die Hypothese des cellulären Hermaphroditismus fallen muss, wenn auf die Frage, welche der erste Theil des obigen Satzes involvirt, mit einem unbedingten „Nein“ geantwortet werden.
muss. Denn diejenigen Kerne, welche — nach Prof. v. Beneden's eigenem Zeugniss — Fadenschleifen liefern, ohne vorher in Conjuga
tion zu treten, verdienen — meinen Untersuchungen zufolge —
die Bezeichnung „Vorkerne“ nicht, weil sie nach der Formel
$\frac{1}{2} \text{mm} + \frac{1}{2} \text{wm}$ (vergl. S. 159 dieser Abhandlung) bereits con-
jugirt sind.

Hiermit werden für mich alle diejenigen Schlussfolgerungen
hinfällig, welche aus der Prämisse, dass jene beiden Kerne ge-
schlechtlich differenter Natur seien, von Prof. v. Beneden ge-
zogen worden sind.

Ich fahre nunmehr in der Schilderung des Furchungsprozesses
fort, der sich mir nur in einigen wenigen Punkten anders dar-
stellt, als v. Beneden ihn beschreibt. Die Differenzen erklären
sich aber hinlänglich aus der Verschiedenheit der angewandten
Conservirungsmethoden. Ich glaube, dass durch die meinige das
Detail der karyokinetischen Vorgänge besser zur Anschauung ge-
bracht wird, als auf dem Wege der monatelangen Alkoholbehand-
lung, welches Verfahrens sich v. Beneden bediente (vergl. Re-
cherches, p. 281 und 282). Ich habe neuerdings meine Me-
thode noch mehr vervollkommnet, so dass es mir jetzt möglich ist,
die dickschaligen Ascaris-Eier (mit den Furchungsstadien) binnen
20 Minuten zu fixiren.

Der Vorgang der Metakinese vollzieht sich nach meinen Prä-
paraten in der Weise, dass die beiden Tochtersterne (disques sub-
äquatoriaux) allmählich nach entgegengesetzten Richtungen (Fig.
33, Taf. X) auseinanderweichen, aber so, dass die central gele-
gen Schenkel der Schleifen rascher eine subäquatoriale Stellung
gewinnen, als die Enden derselben. Man kann das mikroskopische
Bild, welches die beiden sich trennenden Dyastern darbieten, am
besten imitiren, wenn man die ausgespreizten, aber etwas nach
einwärts gekrümmten Finger beider Hände mit ihren Spitzen zu-
sammenlegt, hierauf noch mehr einkrümmt und dann sie durch
einen langsamen geraden Zug von einander trennt. Es entstehen
auf solche Weise chromatische Figuren von Kronen- oder Korbform.
Annähernd wenigstens stimmt dieser von Flemming herrührende
Vergleich. Meistentheils bleiben die nach entgegengesetzten Rich-
tungen sich fortbewegenden Tochterchleifen eine kurze Zeit noch
an ihren Endpunkten miteinander verbunden, wie dies auch aus
Fig. 33 ersichtlich wird. Ja selbst dann noch, wenn sie (Fig. 34)
Dr. Otto Zacharias:

schon sehr beträchtlich auseinander gewichen sind, stellen zarte achromatische Fäden, in welche da und dort feinste Chromatin-kugelchen eingebettet sind, einen deutlichen Zusammenhang zwischen ihnen her. Bei recht aufmerksamer Musterung solcher Ansichten erhält man durch ganz directe Anschauung den Beweis dafür geliefert, dass ein nicht färbbares Substrat vorhanden ist, welches in Verbindung mit einer für Farbstoffe empfanglichen Substanz die Fadenstructuren der Kerne anbildet.

Schliesslich tritt aber doch eine endgültige Trennung zwischen den beiden Tochterstern-Figuren ein. Diese geht Hand in Hand mit der Einschnürung der Dotterkugel, resp. der Bildung der ersten ringförmigen Furchen, durch welche das Ei in zwei ganz gleiche Theilhälften zerlegt wird, die später wieder oberflächlich mit einander verschmelzen. Der erste Act des Furchungsdramas ist aber erst dann abgeschlossen, wenn die chromatischen Faden-Fragmente in den beiden Blastomeren die Form ruhender Kerne angenommen haben.

Ich kann mit aller Bestimmtheit versichern, dass erst wieder ein Knäuelstadium durchlaufen wird (Fig. 35), ehe die wirkliche Ruheform (Fig. 36) zur Ausbildung gelangt. Prof. v. Beneden stellt diese Thatsache in Abrede (Recherches, p. 345), indem er sagt: „Je n'ai pas réussi à trouver, au milieu des milliers d’œufs en segmentation que j'ai observés, un seul œuf montrant la cinquième phase de Flemming, c'est-à-dire le stade de pelotonnement des noyaux filles. Ce stade fait défaut dans les blastomères en voie de division de l’ascaride du cheval." Und einige Seiten weiter (p. 351) heisst es nicht minder positiv: „Tant dans l’œuf que dans les blastomères, chez l’ascaride du cheval le stade de pelotonnement manque totalement dans la régénération des cellules filles."

Hieraus und aus den Abbildungen, welche v. Beneden auf Taf. XIX (siehe dortige Fig. 10 und Fig 11) von dem in Frage kommenden Stadium gegeben hat, geht klar hervor, dass es ihm mit seiner Methode nicht gelungen ist, das Knäuelstadium (stade de pelotonnement) zur Ansicht zu erhalten. Es existirt aber sicher. Herr Prof. W. Flemming, dem ich die entsprechenden Präparate einsandte, hat sich autoptisch von der Richtigkeit meiner Behauptung überzeugt. Diese Angelegenheit ist also zweifellos und vollständig klargestellt. Die fünfte Phase Flemming's fehlt keines-

Die Form der ruhenden Tochterkerne und die Umordnung ihres Fadengerüstes habe ich in Fig. 36 zur Anschauung zu bringen versucht. Ich mache aber ausdrücklich darauf aufmerksam, dass meine Präparate viel besser sind, als meine Zeichnungen. Dies möge man bei einer Kritik der von mir gemachten Angaben beständig in Rechnung ziehen. Auch werden diejenigen, welche sich mit dem Ascaris-Ei durch eigene Anschauung vertraut machen, meine Aussage alsbald bestätigt finden.

In Fig. 40 habe ich eine Form der ruhenden Tochterkerne abgebildet, welche mir sehr bemerkenswerth erscheint. Man entdeckt hier bei anfänglichem Zusehen ein achromatisches (oder nahezu achromatisches) Fadennetz, dessen einzelne Maschen eine rautenförmige Gestalt besitzen und sich über die ganze Kernmembran ausbreiten. In den Ecken der rautenförmigen Figuren liegen Chromatinkörnchen und so macht das ganze Gebilde den Eindruck, als ob es ein Product allerfeinster Filigran-Arbeit sei.

Die Mitose der Tochterkerne (Fig. 37) beginnt mit der Ausbildung eines ganz ähnlichen Fadenknäuels wie seiner Zeit derjenige war, den wir im Furchungskern des Eies (Fig. 22) auftreten sahen, oder wie er (vergl. Fig. 27 und Fig. 28) in den beiden Halbkernen anzutreffen ist, welche zusammen die Bedeutung eines einheitlichen Furchungskernes besitzen.

Die beiden Tochterkerne haben im Ruhezustande eine nahezu ovoide Gestalt. Ihr langer Durchmesser läuft parallel mit der ersten Theilungsebene der Dotterkugel. Der Ort, wo sich der chromatische Faden in ihnen ausbildet, ist wiederum (vergl. Fig. 37 und Fig. 44) eine ganz bestimmte, rings um jeden Kern herum-
laufende Zone, welche ebenfalls als äquatorial bezeichnet werden kann, da von zwei Polen her die chromatische Substanz dort zusammenströmt. Eine Pol- und eine Gegenpolseite im Sinne C. Rabl's\(^1\) lässt sich also hier nicht unterscheiden, sondern es sind zwei gleichwerthige Polfelder (pf\(_1\) und pf\(_2\) in Fig. 44) vorhanden, die ihren Charakter bis zum Schwinden der Kernmembran consequent behaupten. Derselbe Fall liegt auch an den kugeligen Kernen der ersten Furchungskugel (Fig. 27 und Fig. 28) vor, von denen ich einen in der Polansicht (Fig. 43) dargestellt habe.

Bei den Tochterkernen sind mir Zweifel darüber entstanden, ob der dicke chromatische Faden, welcher aus dem Zusammenfluss der färbbaren Substanz (von den beiden Polfeldern her) entsteht, an der Innenwand der Kernmembran oder auf deren äusserer Oberfläche verläuft. Ich erhielt sehr oft Bilder, welche mir letzteres wahrscheinlich machten. Der Faden trat dann wie im Relief hervor, wenn sich der Tubus vom Object entfernte. Unterstützt wurden derartige Beobachtungsergebnisse durch die direkte Wahrnehmung einer Abhebung des chromatischen Fadens von der Kernoberfläche (Fig. 41), so dass ich es jetzt mindestens unentschieden lassen muss, ob der lockere Knäuelfaden, wie er nach Aufgabe des Ruhestadiums in den Tochterkernen auftritt, diesseits oder jenseits der Kernmembran sich befindet. Die bereits angezogene Fig. 41 macht den ersten Theil der Alternative zwar sehr wahrscheinlich, aber dennoch bleibt die Möglichkeit nicht ausgeschlossen, dass, bei der üppigen Entwicklung des Fadens im Innern der Kernmembran, letztere an irgend einer Stelle eine Ruptur erhalten hätte, so dass ein Hervortreten des Fadens an dieser Stelle erfolgen konnte. Hiertüber bin ich durch meine bisherigen Untersuchungen noch nicht in's Reine gekommen.

Dagegen scheint es mir, dass ein anderer nicht unwichtiger Punkt durch meine Beobachtungen am Ascaris-Ei eine etwas scharfere Beleuchtung erfahren hat. Ich meine den, welcher das von W. Flemming aufgestellte Gesetz betrifft, dass die Tochterkerne in umgekehrter Reihenfolge die Stadien der Mutterkerne wiederholen sollen\(^2\).

Das hierauf bezügliche „Repetitionsschema“ ist zwar allgemein bekannt, es mag hier aber nochmals in deutliche Erinnerung gebracht werden:

Mutterkern.

(Ruheform) 1) Knäuel 2) Stern 3) Umordnung (Metakinese).

Tochterkern.

(Ruheform) 5) Knäuel 4) Stern

...
Rechte mit seinem Gesetz, denn dann folgen die entsprechenden Stadien progressiv und regressiv in ganz übereinstimmender Weise aufeinander. Es fragt sich nun aber, ob es nicht natürlicher sein würde, das Ruhestadium als Ausgangspunkt zu wählen, und die mitotischen Vorgänge in den einzelnen Zellgenerationen als rhythmisch wiederkehrende und in demselben Sinne sich abspielende Erscheinungen aufzufassen.

Ich selbst möchte mich mit R a b l für diese letztere Auffassung entscheiden, und zwar unter Hinweis auf das im Thier- und Pflanzenreich ganz unverbrüchlich herrschende Gesetz, dass die Nachkommen stets die Entwicklungsstadien der Vorfahren in gleicher Reihenfolge und niemals im umgekehrten Sinne durchlaufen.

In den Figuren 38 und 39 habe ich noch zwei weitere Entwicklungsstadien dargestellt. Aus der ersten Abbildung wird ersichtlich, dass aus dem Knäuelfaden des Tochterkernes 4 Fadenschleifen hervorgehen und diese Erscheinung kehrt in allen Blastomeren, so weit ich sie habe verfolgen können, wieder. Die Schleifen spalten sich der Länge nach genau auf die nämliche Weise, wie die homologen Gebilde des Muttersternes und nehmen die Korb- und Kronenform nach Passirung des Äquatorialplattenstadiums ebenso an, wie dies in dem entsprechenden früheren Stadium (Fig. 33 und Fig. 34) der Fall gewesen ist. In Bezug auf die beiden Blastomeren ist zu bemerken, dass dasjenige davon, an welchem der zweite Richtungskörper angeheftet bleibt, stets die primäre Ektodermzelle darstellt, während das andere den meso- und entodermalen Elementen den Ursprung giebt).

Fig. 39 zeigt, dass auch in den weiteren Furchungsstadien die 5. Flemming'sche Phase vorkommt und zwar in derselben typischen Klarheit, wie dies schon bei der ersten THEILUNG der Eizelle der Fall war.

In Fig. 42 bringen a und b die Folgen einer mangelhaften Präparationsweise (mittels Alkohol) zur Anschauung. Die Chromatinfäden und Kerne haben hier ein verkümmertes und annormales

1) Vergl. P. H a l l e z, Recherches sur l'embryogénie de quelques nématodes, Paris. 1885, p. 21 u. ff.
Ausschen. Die betreffenden Eier entstammten Ascaris-Weibehen, welche etwa ein Jahr lang in 50\% igem Alkohol gelegen hatten.

Fig. 42 e repräsentirt gleichfalls ein anormales Stadium, inssofern das eine Blastomer einen sehr langen, das andere nur einen kurzen und dünnen Tochterkernfaden enthält.

Zum Schluß dieser Abhandlung sei es mir noch gestattet, eine kurze Betrachtung allgemeinere Inhalts anzustellen.

Die materielle Grundlage für das Leben des Zellorganismus bilden die beiden Substanzen, aus denen er sich constituiert: das Cytoplasma und das Chromatin. Versuche über die künstliche Theilung einzelliger Wesen (Infusorien) haben gelehrt\(^1\), dass der Zellenleib nur dann lebens- und regenerationsfähig bleibt, wenn Kernsubstanz in die einzelnen Theilstücke mit übergeht. Sobald dies nicht der Fall ist, sterben sie nach einiger Zeit ab. Es gewinnt hiernach den Anschein, dass dem Chromatin ganz bestimmte physiologische Functionen zur Erfüllung obliegen, die nur in Verbindung mit denen, welche das Protoplasma der Zelle zu leisten hat, den Fortbestand des Lebens garantiren. Man muss es aber für sehr wahrscheinlich halten, dass eine Art von Arbeitstheilung zwischen diesen beiden Substanzen besteht, und zwar ergeben die Beobachtungen über die specielle Betheiligung der chromatischen Elemente an den Reife-, Befruchtungs- und Furchungsersccheinungen des Ascaris-Eies, dass diese Processe in engster Beziehung zu den Structurveränderungen stehen müssen, welche das Mikroskop in periodischer Wiederkehr an diesen Elementen zu constatiren vermag. Es würde der chromatischen Substanz somit die Aufgabe zu fallen (so scheint es wenigstens) den Ablauf der Theilungsvorgänge des Eies zu regeln, und sozusagen ihren Rhythmus zu bestimmen, wenn dieser bildliche Ausdruck erlaubt ist; dem Protoplasma hingegen würden die Nahrungsaufnahme, die Excretion, die Bewegungsersccheinungen der Zelle (Pseudopodienbildung) und damit auch die Initiative zur Einleitung neuer Anpassungsprocesse beizumessen sein. Inssofern aber, wie wir gesehen haben, nur kernhaltiges Protoplasma die letzterwähnten

physiologischen Thätigkeit auszuüben vermag, kommt sicher auch dem Chromatin ein gewisser Anteil an denselben zu, wie auch die umgekehrte Voraussetzung zutreffen wird, dass das Protoplasma die karyokineticen Erscheinungen zu beeinflussen im Stande ist. Dafür sprechen sogar eine ganze Anzahl neuerer Beobachtungen auf's Deutlichste.

Unter solchen Umständen ist es misslich, einem der beiden Bestandtheile des Zellenleibes ein physiologisches oder histogenetisches Primat zuschreiben zu wollen. Es ist vom Kern mehr als einmal gesagt worden, dass er der „wichtigste Theil“ der Zelle sei. Aber dies ist eine wenig wissenschaftliche Art und Weise die Sache anzusehen. Ein Kriterium für die Wichtigkeit eines oder des andern Zellbestandtheils würden wir nur dann besitzen, wenn wir den ganzen molecularen Mechanismus des cellulären Lebens zu durchschauen vermöchten. Dass damit bis jetzt aber kaum mehr als ein schwacher Anfang (wenn überhaupt ein solcher!) gemacht worden ist, wird Jeder, der in diesen Dingen arbeitet, sich selbst sagen können. Oder man müsste geneigt sein, die Gründe, mit denen A. Brass¹) seine Ansicht motivirt, dass das Keimbläschen „der hauptsächlichste Theil der Eizelle“ sei, für ausschlaggebend halten, was sie aber keinesfalls sind.

Ich vermöge jedoch auch die entgegengesetzte Ansicht nicht zu theilen, nach welcher das Protoplasma der Hauptbestandtheil des Zellorganismus sein soll. Das ist die Meinung von P. Hallez, der vor Kurzem in einer besonderen Broschüre schankweg die Behauptung aufgestellt hat: „Le protoplasmme cellulaire est la partie principale de la cellule“²). Nach diesem Forscher haben die Kerne nur eine secundäre Bedeutung für das Leben der Zelle. Wenn manche Biologen anderer Ansicht in Bezug auf diesen Punkt seien, sagt Hallez, so komme dies daher, weil die Kerne durch ihre ostensible Betheiligung an den karyokineticen und Befruchtungsscheinungen die Aufmerksamkeit in weit höherem Maasse als der Zellenleib auf sich zögen. „En un mot — so heisst es am Ende der bezüglichen Betrachtung — le protoplasmme semble être à la fois architecte et matériel de construction, posant hi-

¹) A. Brass, Beiträge zur Zellphysiologie 1884, p. 27.
²) P. Hallez, Pourquoi nous ressemblons à nos parents. Paris 1886, p. 23.
mème les jalons autour desquels sa propre substance se distribue avec symétrie. 6

Im Hinblick auf diese beiden sich einander gegenüberstehenden Ansichten scheint es mir nicht unangemessen, daran zu erinnern: dass der Forscher das nicht scheiden soll, was die Natur so untrennbar vereinigt hat. Wir sind vorläufig nicht in der Lage zu sagen, welcher von den beiden Haupttheilen der Zelle der hauptsächlichste Lebensträger ist; wir wissen nur, dass keiner ohne den anderen im Stande ist, die Aufgaben zu erfüllen, welche den Fortbestand des cellulären Lebens verbürgen. Dabei müssen wir zunächst verharren. In dem Punkte freilich, dass wir zur Zeit den Kernen eine gar zu exclusive Aufmerksamkeit zuwenden, mag Hallez ein wenig Recht haben. Indessen stehen wir dabei im Banne einer historischen Notwendigkeit, insofern der Entwicklungsgang der Biologie die karyokinetischen Erscheinungen aus vielen Gründen in den Vordergrund des wissenschaftlichen Interesses gerückt hat. Es wird den späteren Generationen vorbehalten sein, diese Einseitigkeit, wenn es eine solche war, zu korrigieren und das Zellprotoplasma in sein verkanntes Recht einzusetzen.

Dass ich in vorstehender Abhandlung die einschlägige Literatur nicht in grösserem Umfange berücksichtigt habe, erklärt sich aus den kleinstädtischen Verhältnissen meines Wohnortes. Dadurch wird mir die Benutzung von Instituts- und Universitätsbibliotheken nur in geringem Umfange möglich. Umsomehr bin ich aber Herrn Geheimrath Prof. Dr. R. Leuckart (Leipzig) und Herrn Prof. Dr. M. Nussbaum (Bonn) zu Dank verpflichtet, weil mich dieselben jetzt und schon früher in so liebenswürdiger Weise durch Litteraturzusendungen unterstützt haben. Z.
Erklärung der Abbildungen auf Tafel VIII—X.

Tafel VIII.

Fig. 1. Keulenförmiges Ovarial-Ei von *A. megaurocephala*. Kbl. Keimbläschen.
Fig. 2. a, b und c führt das Keimbläschen in verschiedener Lage (in Rück- sicht auf den Beobachter) vor, um die periphere Stellung des Keimkörperchens zu zeigen.
 d, e und f veranschaulichen die Metamorphose des Keimbläschens und seines chromatischen Körpers.

Fig. 3. Die parallel gestellten Halbspindeln des ersten Richtungskörpers mit ihren „globules chromatiques“.

Fig. 4. Ein Spermatozoon aus dem Vas deferens des Ascaris-Männchens.

Fig. 5. Vier verschiedene Typen von Spermatozoen aus dem oberen Theile des weiblichen Geschlechtsschlauches.

Fig. 6. Copulation des Samenkörpermens mit der Eizelle. sz Samenzelle; dh die abgehobene Dotterhaut. 1 rk erster Richtungskörper.

Fig. 7. Das Spermatozoon ist eingedrungen und rückt nach dem Centrum des Eies vor.

Fig. 8. Beginnende Auflösung der protoplasmatischen Theile des Samenkörpers. k glänzender Körper (corps refringent), g gehäuseartige Kappe des Spermatozoons (Membrane caudale v. Beneden's). mm männlicher Mitoblast (Nucleus chromatiq, v. Beneden).

Fig. 9, 10 and 11 stellen verschiedene Stadien des Eindringens von Sperma- tozoen dar.

Fig. 12 and 13 veranschaulichen die Thatsache, dass bei *Ascaris suilla* das Spermatozoon an sehr verschiedenen Stellen in das Ei eindringt.

Fig. 14. Krankes resp. anormales Ei von *A. megaurocephala*, in welches mehrere Spermatozoen eindringen.

Fig. 15. Eigenthümliche (drüsige) Zellen aus dem Epithel des männlichen Sexualschlauches.

Fig. 16. Eine größere mehrkernige Zelle derselben Art mit längeren Aus- läufern (f); st cilienartiger Strang.

Fig. 17. Vas deferens und Hodenschlauch eines Ascaris-Männchens in dop- pelter natürlicher Grösse. Die schraffirte Stelle bezeichnet die Hauptfundstätte der in Fig. 15 und 16 dargestellten Zellen.

Tafel IX.

Fig. 1—4. Bildung des ersten Richtungskörpers im Ei von *Ascaris megaurocephala*.

Fig. 5. Ausstossung des ersten Richtungskörpers.
Neue Untersuchungen über die Copulation der Geschlechtsprodukte etc. 181

Fig. 6—9. Verschiedene Stadien, welche die Bildungsweise des zweiten Richtungskörpers und seine achromatische Spindelfigur zur Anschauung bringen.

Fig. 10, 11 und 12 zeigen den zweiten Richtungskörper unmittelbar vor seinem Austritt und markieren den Ortswechsel der mitoblastischen Elemente des Spermatoozoons.

Fig. 13. Die Chromatinportionen männlicher und weiblicher Provenienz (mm und wm) stehen sich nach Ausstossung des zweiten Richtungskörpers gegenüber, und werden alsbald (1/2 mm mit 1/2 wm) in eine gemeinsame Kernhöhle eingeschlossen. Auf diese Weise entstehen zu gleicher Zeit zwei Furchungs-Halbkerne.

Fig. 14 führt dieses Stadium vor.

Fig. 15 zeigt die betreffenden Halbkerne in ihrer vollständigen Ausbildung.

Fig. 16. In dieser Figur ist die beginnende Pronucleusbildung veranschaulicht.

Fig. 17. Die beiden Pronuclei haben sich noch vor ihrer definitiven Ausgestaltung conjugirt.

Fig. 18. Die beiden Uteri eines mittelgrossen Weibchens von A. megalcephala. v Vagina.

Tafel X.

Fig. 19. Anormale Bildung von 4 Vorkernen (2 männl. und 2 weibl.).

Fig. 20. Die Pronuclei nach ihrer definitiven Ausbildung.

Fig. 21. Dieselben zur Zeit der Conjugation.

Fig. 22. Der chromatische Fadenknäuel im Innern der Höhlung des Furchungskernes.

Fig. 23. Der einheitliche Chromatinfaden des Mutterknäuels.

Fig. 24. Zerfall desselben in einzelne Fragmente.

Fig. 25. Bildung der 4 chromatischen Schleifen.

Fig. 26. Anordnung derselben um ein gemeinschaftliches Centrum (Mutterstern).

Fig. 27, 28 und 29. Ausbildung des Fadenknäuels in den beiden Furchungshalbfernern.

Fig. 30. Die Mitose der Dotterkugel im Anfangs stadium. pk Polarkörperchen.

Fig. 31. Dasselbe Stadium in mehr seitlicher (äquatorialer) Ansicht.

Fig. 32. Spaltung der primären Fadenschleifen.

Fig. 33. Fortschreitende Mitose (Korbfigur Flemming's).

Fig. 34. Beginnende Theilung der Dotterkugel mit der Kronenfigur Flemming's.

Fig. 35. Knäuelstadium der Tochterkerne (5. Phase des Flemming'sehen Schema's).

Fig. 36. Ruhende Tochterkerne.

Fig. 37. Knäuelstadium der Tochterkerne.

Fig. 38 und 39. Zwei aufeinanderfolgende Furchungsstadien, um die homologe Schleifenbildung in den Blastomeren zu zeigen.

Fig. 40. Ruhestadium eines Tochterkernes mit rautenförmiger Feldung.
Fig. 41. Tochterkern mit einem Chromatinfaden ausserhalb der Kernmembran.
Fig. 42. Die einzelnen Abbildungen (a, b und c) veranschaulichen die Wirkungen einer ungeeigneten Präparation der Eier.
Fig. 43. Furchungshalbkern von der Polseite (pf) her gesehen.
Fig. 44. Tochterkern mit äquatorialem Chromatinfaden und den 2 Polfeldern pf₁ und pf₂.
Untersuchungen über die Horngebilde der Sägethierehaut.

Von
Friedrich Reinke,
Assistent am anatomischen Institut in Kiel.

I.
Ueber den Haarwechsel und die Unna'sche Lehre vom „Beethaar“.

Hierzu Tafel XI.

2) Archiv für mikroskopische Anatomie IV, p. 273, 1868.
Friedrich Reinke:

„Erstens ist der direkte allmähliche Uebergang der Stachelzellen in den Beethaarschaft an feinen Schnitten ebenso genau zu verfolgen, wie an der Nagelmatrix der Uebergang von Stachel- in Nagelzellen. Ich nehme deshalb einen wirklichen Zuschuss zum Haare auch erst dort an, wo das letztere in die mittlere produktive Balgregion eintritt. Wo sich das aufsteigende Haar noch aufgehellten Stachelzellen gegenüber befindet, finde ich keinen direkten Uebergang, was sich besonders schön an den Vibrissen beobachten lässt. Ich kann also für den Menschen nicht das von Schulin hauptsächlich vom Ochsen demonstrierte, continuirliche Wandern der Einstrahlung in dem Haarknopf von der Papille bis zum Haarbeet zugeben, sehe übrigens zwischen Schulin’s Auffassung und der meinen keinen prinzipiellen Unterschied.“

1) Archiv f. mikr. Anatomie XII.
2) Zeitschrift für Anatomie und Entwickelungsgeschichte Bd. II.
5) v. Ziemssen’s Handbuch der speciellen Pathologie u. Therapie 1883.
Untersuchungen über die Horngebilde der Säugethiertierhaut.

"Zweitens wandert körniges Pigment aus den Gefässen des Bindegewebsstranges in den Epithelfortsatz und in das Haarbeet, soweit kann und muss dasselbe vom Lymphstrom verschleppt sein. Da dasselbe aber von hier aus auch hoch in das Beethaar gelangt, müssen beim Fortfall weiterer Lymphwege die Stachelzellen des Balges zu Haarzellen geworden sein."

"Viertens bildet eben das Haarbeet einen eigenen Haarschaft weit einfacherer Struktur, der sich auf das Schema des Papillenhaares in keiner Weise zurückführen lässt. Man hat sich freilich mit der Marklosigkeit dieser Haarschläfte immer einfach zu helfen gewusst, indem man annahm, die Papille bilde einmal Mark und bald darauf wieder keines, gleichsam ad libitum, doch muss ich solche Willkür durchaus ablehnen. Das Papillenhaar bildet immer Mark und die marklosen Haare sind keine Papillenhaare. Damit ist nicht ausgeschlossen, dass das Mark auch ganz umschriebenen Stellen im Papillenhaare fehlen kann, so an der Spitze und an den feinsten Lanugohärchen, an denen der Schaft noch nicht dick genug ist, um im Centrum überhaupt Mark zu bilden. Obige Aufstellung gilt jedoch für alle grösseren Körperhaare. Das Fehlen des Oberhäutchens am Beethaare konnte bisher deshalb übersehen werden, weil die Haarzellen selbst sich dachziegelähnlich decken, übrigens nicht anders wie am Papillenhaar auch."

Man sieht, dass Unna seine Theorie durch mancherlei Gründe zu stützen weiss, ohne jedoch einen entscheidenden Beweis für die Richtigkeit derselben zu liefern.

Schon damals betonte er, dass es für die Unna'sche Lehre vom Beethaar von entscheidendem Interesse sein müsste, das Auftreten der Mitose im Haarbeet zu untersuchen, und Unna hat durch freundliche private Mittheilung anerkannt, dass eine Prüfung seiner Lehre auf diesem Wege wünschenswerth sei.

Auf diese Anregung unterzog ich mich der interessanten Aufgabe.

1) „Monatshfte für praktische Dermatologie“ III. Bd., 1884, Nr. 5, p. 2.
2) Archiv f. mikr. Anatomie 1887.

Da die Mitosen schon bei 200 facher Vergrösserung bequem gefunden werden können, so benutzte ich nur in zweifelhaften Fällen homogene Immersion und stärkere Vergrösserungen. Als Kriterium für die richtige und gelungene Anwendung der Methode diente mir die Auffindung der Theilungen in den Haarmatrizen

¹) Einige der Präparate wurden von meinem Freunde, Herrn Dr. Bierrhiertz selbst, angefertigt, der sie mir freundlichst zur Benutzung überliess.
²) Morpholog. Jahrbuch Bd. IV.
³) Archiv für mikroskop. Anatomie VII.
Friedrich Reinke:

und der gesamten äussern Wurzelscheide, oft auch in dem subcutan vordringenden neunen Epithelfortsatz.

Zum Vergleich erwähne ich, dass, wie auch Flemming 1) am Meerschweinchen constatirte, die Mitosen in den Matrizen des Papillenhaares so massenhaft auftreten, dass in etwa 100 Schnitten durch den Haarknopf sich 300—400 Theilungsfiguren finden. So dann beim Igel, der nicht ganz so produktiv wie das Meerschweinchen zu sein scheint, kommen immerhin auf 50 Schnitte gegen 200 Mitosen.

Somit erscheint mir die Annahme als ob von dieser Stelle aus ein Zuschuss zum Kolbenhaar erfolge, mindestens sehr zweifelhaft zu sein.

Ich begnügte mich nun aber mit diesem Resultate noch nicht, sondern suchte der Wahrheit noch auf andern Wegen näher zu kommen.

Ranvier 2) hatte die oben erwähnten Doppelhaare der Schnauze des Kaninchens rasirt, sowie die Haare an seinem eignen Handrücken abgeschnitten. Im ersten Falle bemerkte er, dass das eine Haar absolut stehen blieb, während das andere weiter wuchs. Im zweiten Fall blieben einige Haare ebenfalls stehen. Aus diesem

1) l. c.

Ich habe nun durch zahlreiche Untersuchungen festgestellt, dass das eine der Doppelhaare in der Schnauze des Kaninchens stets ein Kolbenhaar ist, ferner habe ich mich überzeugt, dass das Kolbenhaar in den meisten Fällen durch das durchbrechende Papillenhaar keineswegs gelockert wird, da eine ziemliche Kraft dazu gehört ersteres herauszureissen und dann demselben meistens ein Stück der äussern Scheide folgt. Da ferner das Kolbenhaar sehr lange Zeit hindurch neben dem Papillenhaar sitzen bleibt, oft so lange, bis dieses die gleiche Länge und Stärke erreicht hat, so scheint mir dieses Objekt ausgezeichnet zu sein, um daran beweiskräftige Messungen vorzunehmen.

Im Ganzen beobachtete 12 abgeschnittene Kolbenhaare, durch einen Zeitraum von 8—14 Tagen. Ich wählte dabei solche Exemplare, bei denen das Papillenhaar mit seiner Spitze eben erst zum Balge herausgekommen war. Während ich nun bei meinen Messungen, die von 3 zu 3 Tagen erfolgten, das Papillenhaar 3 mm bis 8 mm gewachsen fand, blieb das Kolbenhaar absolut stehen. Einige Mal glaubte ich schon ein Wachsen des Kolbenhaares constatiren zu können, allein es stellte sich dann jedesmal heraus, dass dasselbe gelockert, sich zum Herausfallen anschickte und der Schaft ein Ende zum Balge herausgetreten war.

Freilich steht diese Methode der ersteren an Feinheit weit nach; aber wenn ich sie auch deshalb nur nebenbei benutzte, so ist das Experiment doch zu schlagend, um hier nicht Erwähnung zu finden.

Zu diesen beiden Resultaten, die mit der Lehre vom „Beethaar“, d. h. dem Fortwachsen des Kolbenhaars im Widerspruch stehen, gesellt sich ein drittes, aber besonders wichtiges Argument, zu dessen näherer Erörterung ich auf die Begründung etwas genauer eingehen muss.

Sodann sagt Unna, der Schaft des Kolbenhaares sei viel einfacher als der des Papillenhaares und lasse sich nicht auf das Schema des letzteren zurückführen, es fehle ihm Mark und Cuticula. Nun kann man sich aber leicht überzeugen, wie auch Waldeyer l. c. hervorhebt, dass im Papillenhaar, im letzten Stadium seiner Existenz, das Mark sehr häufig eine kürzere oder längere Strecke nicht vorhanden ist.

Ferner fehlt dem „Beethaar“ keineswegs die Cuticula, wie ich mich durch eingehende Untersuchung überzeugt habe. Schon V. Ebner\(^2\) war durch einfache Betrachtung des Haarkolben- schafte zu der Ansicht gekommen, dass dieser grade so gut eine Cuticula habe, wie der Schaft des Papillenhaares; allein er versäumte den Nachweis, dass das Schuppenbild des Kolbenhaares eine wirkliche Cuticula sei. Ein taktischer Fehler, den Unna dadurch sich zu Nutze machte, dass er erklärte, das Bild der Cuticula würde durch die äusserste Lage der Rinden- zellen, die sich ebenfalls dachziegelartig deckten, hervorgerufen und dadurch eine Cuticula vorgetäuscht.

Bei den Igelhaaren fiel es mir auf, dass das Profil und die

2) Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften LXXIV. Bd., III. Abth. 1876.
Untersuchungen über die Horngebilde der Säugethierhaut.

Dieser freigelegte Theil sieht dann im Ganzen, falls das Haar nicht zu stark macerirt war, so aus, wie die kurze, cuticulafreie Stelle am Kolben, also im Allgemeinen faserig, mitunter einige hervorspringende Schuppen erkennen lassend. Besonders deutlich werden aber diese Verhältnisse, wenn man die mit Schwefelsäure behandelten Haare noch mit einer sauren Lösung von Methylgrün
führt. Dann zeigt sich der Fusstheil der Cuticulazellen nur schwach, der übrige Theil intensiv grün gefärbt, während die Rindenfaserzellen bedeutend matter erscheinen.

An allen von mir untersuchten „Beethaaren“ konnte ich auf diese Weise eine wohl charakterisirte Cuticula nachweisen, die nicht mit der äussersten Zellenschicht der Haarrinde verwechselt werden kann. Ich bemerke noch, dass bei den Barthaaren die Cuticula sich vom „hellen Wurzelende“ weit leichter zur Lösung bringen lässt, wie bei den Cilien, doch gelingt dies nach einigen Versuchen bei diesen auch.

Wenn nun aber die Kolbenhaare eine wohl ausgebildete Cuticula besitzen, diese aber bekanntlich von einer eignen Matrix aus wächst, so ist damit ein Fortwachsen des Kolbenhaares, nach Ablösung von der Papille, nicht vereinbar; man müsste dann mit Schöbl auf den Einfall kommen, die Cuticula für eine unmittelbare Fortsetzung des Rete Malpighii zu halten.

Uebrigens ist es, wenn man nur Längsschnitte von menschlichen Kolbenhaaren vor Augen hat, leicht begreiflich, die Zacken der Cuticula für die einer äussersten Rindenschicht zu halten. Während nämlich beim Papillenhaar die pigmentlose Cuticula sich scharf von der dunklen Rinde abhebt, geht beim hellen Ende des Kolbenhares die Grenze so in einander über, dass man versucht sein könnte, die Zacken des Profils für eine äusserste Lage von Rindenzellen zu halten, was sie in der That nicht sind.

Die Lehre vom „Beethaar“ in der Form wie Unna sie aufgestellt hat ist also nicht haltbar. Dies ergiebt sich aus dem Fehlen zahlreicher Mitosen im „Haarbeet“, aus dem Nichtwachsen abgeschnittener Kolbenhaare und aus dem Nachweis der Cuticula am Schaft des Kolbenhaares.

Darum möchte ich aber doch nicht ganz auf den alten Standpunkt zurückkehren, von dem aus das Kolbenhaar einfach als ein

1) l. c.
Untersuchungen über die Horngebilde der Säugetierhaut. 193

Während der Periode des Haarwechsels, so lange als das neu entstehende Papillenhaar zu seinem Wachsthum braucht, um das alte Haar vollständig zu ersetzen, übernimmt dieses, in Gestalt des Kolbenhaars, die Funktionen des eigentlichen Haars, und diese Zeit kann z. B. bei den Cilien, besonders bei älteren Individuen, eine ausserordentlich lange sein. Es scheint mir daher die bisherige Darstellung der Lehrbücher, nur das Papillenhaar als Haarkatexochen zu beschreiben und das Kolbenhaar als Merkwürdigkeit nur so nebenbei abzubilden, den thatsächlichen Verhältnissen nicht völlig zu entsprechen. Ein ideales Bild des complicirten Organs würde ein solches sein, dass das Kolbenhaar in seiner spindelförmigen Anscheuellung der aussern Wurzelscheide, in demselben Balg aber ein sich entwickelndes Papillenhaar zur Anschauung brachte.

Darf ich jetzt noch kurz auf das Verhältniss des Kolbenhaars zur aussern Wurzelscheide eingehen, so muss ich die Unna'sche Darstellung des „Haarbeets“ insofern ganz richtig nennen, als das Kolbenhaar, nachdem es im Balg ein Ende weit, bis kurz unterhalb der Einmündungsstelle der Talgdrüsen, emporgertückt ist, mit seinem aufgefederten Ende fest in einer spindelförmigen Anscheuellung der aussern Scheide sitzt, deren Zellen sich zwischen die
Friedrich Reinke:

auseinander gerückten Elemente des Kolbens schieben. v. Ebner¹) und Schulín¹) halten diese Anschwellung für eine Wirkung des arrector pili. Dem kann ich mich nicht unbedingt anschliessen. Freilich sieht man öfters eine mehr oder minder knopfförmige Ausbuchtung an der Insertionsstelle, die wohl durch die Wirkung des Muskels entstanden ist, und es kann, wenn grade das Papillenhaar das Kolbenhaar an die Seite der Scheide gedrängt hat, wo der Muskel inserirt, den Anschein gewinnen, als ob der Zug des Muskels besonden Einfluss hierauf ausgeübt hätte. Im Allgemeinen ist aber die Anschwellung durchaus eine gleichförmige Spindel, wie das Unna bereits an den Vibrissen, die keinen Muskel haben, nachgewiesen hat. Dasselbe kann ich von den Schnauzhaaren des Igelis anführen.

Allerdings scheinen mir die Verhältnisse beim Entstehen des „Haarbeets“ etwas complicirter zu sein, wie dieses Schema vermuten lassen könnte. Um ein volles Verständniss für die Bildung desselben zu gewinnen, muss man auf den Haarwechsel zurückgehen. Dieser Process leitet sich ein mit einer mehr oder minder hochgradigen Atrophie der Papille, die wie es scheint an der Spitze, dem Boden der Matrixzellen des Markes, zuerst ihren Anfang nimmt, wodurch die Bildung dieses Theiles zunächst sistirt wird. Sodann nimmt die Rindensubstanz eine mehr wie bisher hervortretende streifige Beschaffenheit an; der erste Anfang der

¹) l. c.
Untersuchungen über die Horngebilde der Säugethierraut.

Man hat mehrfach über die treibenden Kräfte, die bei dem dann folgenden Emporsteigen des Haars wirksam sind, diskutirt. Während Stieda\(^1\) meint, durch Kämmen, Bürsten und andere mechanische Zerrungen werde dieser Effekt hervorgebracht, eine Ansicht, die durch die von Unna beschriebenen Verhältnisse in Ovarialcysten und am Embryo nicht ganz bestätigt wird, nehmen Wertheim\(^2\) und Biesiadecki\(^3\) an, dass das Haar durch eine von unten nach oben fortschreitende Contraction des Haarbalges fortgeschoben würde. Neuerdings hat Stöhr\(^4\) die hie und da an menschlichen Haaren vorkommende Aufquellung der sogenannten homogenen Membran, die übrigens, wie Kölliker\(^5\), Haigh\(^6\)

3) Stricker's Handbuch.
5) Gewebelchre.
und besonders Bonnet 1) gezeigt haben, diese Bezeichnung nicht verdient, für die Austreibung verantwortlich gemacht.

Nach meiner Meinung kommt Schulin l. c. dem Thatsächlichen am Nächsten. Freilich in etwas phantastischer Weise nimmt er an, dass „das Haar", ähnlich wie Unna es meint, „nach Ablösung von der Papille noch weiter wachse, und zwar durch Wucherung und Verhornung seitens einer bestimmten Strecke des Haarbalgs, welche w a n d e r t". Weiter führt er dann fort: „Ein schiebendes Moment scheint mir hier, wie beim normalen Haarwachsthum nur in der Apposition des Keimlagers zu liegen, diese bewirkt ein absolutes in die Höherrücken des Haares, wie es sonst auch geschieht, nur unterscheidet sich der hier apponirte Theil etwas von der gewöhnlichen Haarsubstanz: er entbehrt des Marks und gleicht mehr dem Gewebe des Nagels. Ganz verschieden davon ist aber das r e l a t i v e in die Höherrücken des Haares, d. h. das seines untern Endes zur Hautoberfläche. Dieses geschieht durch das beschriebene Wander der das Haarwachsthum besorgenden Strecke der äussern Wurzelscheide. Dieses Wander, welches sich über die äussere Wurzelscheide, wie eine Welle über den Wasserspiegel, fortpflanzt, ist weder eine Folge nachweisbarer mechanischer Einflüsse, wie einer Contraction des Haarbalges, noch übt es einen Einfluss aus auf die Geschwindigkeit, mit der sich das Haar absolut in die Höhe bewegt, weil diese allein von der Wachstumsintensität an dem Ort abhängt, wo sich das Keimlager befunden." Aus meinen obigen Nachweisen geht hervor, dass an einem derartigen Wachsen des Kolbenhaars nicht festgehalten werden kann, und da durch die neuer Methoden gezeigt ist, dass in der ganzen äussern Wurzelscheide ein langsames aber durchaus gleichmässiges Wachsthum stattfindet, das nach der Mündung des Balges zu gerichtet ist, so ist jene „Welle" in's Reich der Phantasie zurückzuweisen. Nach meiner Meinung erklärt sich der Vorgang in besserer Weise folgendermaassen: Wie ja Flemming l. c. gezeigt hat, findet überall in der äussern Wurzelscheide eine gleichmässige aber nur langsane Zeilvermehrung statt. Der Ueberschuss der Zellen rückt sehr allmählich von unten nach oben, um schliesslich im Haarbalgrichter, wo bekanntlich eine beträchtliche Horn-

1) Morphol. Jahrbuch Bd. IV.
Untersuchungen über die Horngebilde der Säugethierhaut. 197

scheint sich findet, zu verhornen und abgestossen zu werden. Löst sich nun das Haar von der Papille, so wird es mit seinem aufgefederten Ende von den Zellen der äussern Scheide eingeklebt und mit diesen durch die Riffelfortsätze auf's Engste verbunden. Mit den höher rückenden Zellen der Scheide wird auch das Haar emporgetragen, bis es an eine Stelle im Balg kommt, wo eine Stanung stattfindet. Diese Stelle liegt dicht unter der Einmündung der Talgdrüsen, wo sich constant eine Einschnürung der äussern Scheide findet, um welche der Nervenring verläuft 1).

Diese selbst ist eine der interessantesten Fragen des Haarwechsels. Mit unsern unzulänglichen Erkennungsmitteln lässt sich freilich eine Differenz dieser Epithelzellen, aus denen sich so verschiedenartige Theile, wie Mark, Rinde, Cuticula und innere Wurzelscheide entwickeln, nicht erkennen. Die Annahme aber, dass sie durchaus indifferent, d. h. für untereinander gleichartig seien, scheint mir nicht erwiesen zu sein. Es ist das grade so als

1) Bonnet, Morphol. Jahrb p. 351 u. a. a. O.
2) Atlas p. 38.

Damit ist dann ja nicht ausgeschlossen, dass zugleich gewisse Druckverhältnisse die Zahl der Zellenlagen in den einzelnen Partien und ihre Formen beherrschen.

Nach vollständiger Entwicklung des neuen Haares treibt dies entweder das Kolbenhaar, nebst den eingekleisten, wohl meistens abgestorbenen Zellen der spindelförmigen Anschwellung zum Balge heraus, oder wo das nicht gelingt, bahnt es sich neben diesem einen Weg an die Oberfläche. Damit ist dann der Haarwechsel beendet.

II.

Ueber Differenzierungen verhornter Zellen. Vorstufen der Hornsubstanz.

Namentlich auf zwei verschiedenen Wegen ist es in neuerer Zeit gelungen zu zeigen, dass alle verhornten Zellen keineswegs in gleicher Weise gebaut und aus gleichartigem Material zusammengesetzt sind. Einmal ist es die Verdauungsmethode der wir diese Erkenntniss verdanken, sodann aber sind es gewisse Färberungen, die uns belehren, dass die Hornsubstanz allerlei interessante Modifikationen eingehen kann.

Mit der zuerst genannten Methode arbeiteten besonders Waldeyer \(^2\) und Unna. Den schönen Untersuchungen des ersteren

\(^1\) Microscopical Morphology, New-York 1883, p. 571.
\(^2\) Henle's Festgabe p. 149.
verdanken wir unsere Kenntniss des fibrillären Baues der Rindenzellen des Haares. Waldeyer wies nach, dass der Leib dieser Zellen sich in feinste Fibrillen differenzirt, die durch die Riffelfortsätze von Zelle zu Zelle zusammenhängen, während zwischen denselben eine interfibrilläre Kittsubstanz erhalten bleibt.

Während durch diese Untersuchungen Differenzierungen innerhalb der Zellen selbst nachgewiesen wurden, haben verschiedene Färbungsmethoden gezeigt, dass gewisse Schichten verhornter Zellen spezifische Färbungsvermögen haben.

Besonders die verhornten Zellen der innern Wurzelscheide zeigen ganz charakteristische Reactionen. Unna 2) gelang es mit Jodmethylanilin und Jodviolett die innere Wurzelscheide sowie seine „basale Hornschicht“ der Oberhaut isolirt zu färben. In beiden Theilen „stossen die Zellen mit farbloosen Rändern aneinander.“

Drei andre Farbenreactions verdanken wir Flemming. Mit seiner bekannten Methode 3) zur Darstellung der Kerntheilungsfiguren erhielt er neben elastischen Fasern (bräunlichroth) die verhornte innere Wurzelscheide der Haare (lichtroth) gefärbt. Ferner fand er im Jodgrün 4) ein vorzügliches Färbemittel für diese Hornzellen, und schliesslich gelang es ihm durch Doppelfärbung 3) von Pikrokarmin und Hämatoxylin an Kalibichromikumpräparaten der innern Wurzelscheide eine brillant lichtblaue Färbung zu geben.

Von der Flemmingschen Methode ausgehend habe ich mit Safranin und Gentiana an den verschiedensten Horngeweben Färbungsversuche angestellt und bin zu dem Resultat gekommen, dass

1) Ziemssen’s Handbuch Bd. XIV, p. 32.
2) Archiv für mikrosk. Anatomie Bd. XII, p. 72.
die verhornnten Zellen im Grossen und Ganzen eine besondere Neigung haben sich mit Anilinfarbstoffen zu färben, ähnlich wie Holz und Kork der Pflanzen. Haarmark, Haarrinde, Cuticula, innere Wurzelscheide, stratum corneum der Haut, die verhornnten Partien der Zunge, Nagel, Cornea, Federn und Hornschwamm (Euspongia), sie alle färben sich ganz oder teilweise prachtvoll intensiv mit Safranin und Gentiana. Alle diese Gewebe wurden in regressiver Weise gefärbt, und zwar so, dass sie mehrere Tage in concentrirter alkoholischer Lösung blieben, dann ganz kurz in Alkohol, der nur schwach mit Salzsäure angesäuert war, entfärbt wurden. Die Färbung gelingt sowohl an Präparaten, die im Flemming'schen Gemisch, als auch an solchen, die in Kalibichromikum oder Alkohol gehärtet sind.

Um mit der Haarrinde zu beginnen, so fangen die Zellen derselben an, sich intensiv zu färben nachdem sie schon einige Zeit vollständige Spindelzellen angenommen haben, die eigentliche Matrix bleibt ganz farblos, abgesehen von den Kernen. Etwas über der Höhe der beginnenden Verhornung der Huxley'schen Schicht hört aber schon die Färbung wieder auf und zwar so, dass die dem Mark anliegenden Zellen noch etwas länger gefärbt bleiben wie die äusseren. Der eigentliche Haarschaft ist vollkommen farblos. An ganz dünnen Schnitten überzeugt man sich leicht bei starker Vergrösserung, dass sich nicht der ganze Zellenleib gefärbt hat, sondern nur die von Waldeyer auf andre Weise dargestellten Fibrillen, während die Zwischensubstanz weiss bleibt. Diese Färbung ist also sehr brauchbar zur Demonstration dieser Fibrillen. Eigenthümlich dabei ist, dass einzelne sehr lange Fibriallen, die 2, 3 und mehr Zellen durchlaufen, bis in die ungefärbte Matrix herunter gehen, wodurch es den Anschein gewinnt,

Ist das Haar im Begriff sich abzulösen, so gestalten sich die Verhältnisse etwas anders. Dieser Vorgang wird bei Anwendung der hier besprochenen Tinktionen zuerst dadurch bemerkbar, dass sich ausser den der Papille ansitzenden rundlichen Zellen, die auch später persistiren, alle spindelförmigen Zellen intensiv färben. Wie schon im ersten Theil erwähnt scheint durch die Sprödigkeit der Zellen, die durch diese Verhornung bedingt wird, die Auflockerung und Ablösung des Haarschaftes sich einzuleiten. Dieser selbst färbt sich in diesem Stadium nicht mehr. Nach der Bildung des Haarkolbens bleibt dieser allein; sowohl während der Ausrückung im Balg, als auch später, wenn er in der Wurzelscheidenanschwellung fixirt ist, tingibel. Er bleibt also auf der Übergangsstufe der Verhornung stehen, bis zu seinem schliesslichen Ausfall.

Die Zellen der innern Wurzelscheide, sowie die des stratum corneum haben einen vom Haar ganz verschiedenen Verhornungstypus. Unna zog aus seinen durch Verdauung erhaltenen Resultaten, an den Zellen der Hornschicht der Haut, den Schluss, dass nur eine feine Membran wirklich aus Hornsubstanz bestehe, wäh-
Friedrich Reinke:

Bei meiner Färbung zeigt sich das Innere der Zelle an ganz dünnen Schnitten intensiv tingibel, während die äussere Membran vollkommen farblos bleibt. Die Grenzen sind auserordentlich scharf. Setzt man zu einem solchen Präparat schwache Natronlauge, so sieht man in demselben Moment, wo die Farbe zerstört wird, wie der gefärbte innere Theil aufquillt und die farblose Membran vor sich hertreibt. Darnach besteht der farblose Streifen zwischen je zwei gefärbten Partien aus den beiden Hornmembranen plus den stark verkürzten Riffelfortsätzen und den zwischen diesen befindlichen feinsten Lücken, stellt also den unverdaulichen Theil des stratum corneum dar. Diese Färbung geht ganz gleichmässig durch die ganze Hornschicht und nur bei energischerer Entfärbung wird die mittlere Schicht des stratum zuerst farblos.

Ähnlich verhalten sich die Zellen der innern Wurzelscheide, auch ihr Inneres färbt sich soweit die Schicht verhornt ist intensiv und lässt eine allerdings schmalere äussere Zone farbloser Substanz erkennen.

Fragt man sich nach der Ursache dieser Verschiedenheit der verhornten Zellen, so ist die Antwort nur nach Vermuthung zu geben. Stratum corneum, innere Wurzelscheide und Mark des Haars stimmen in den beiden Punkten überein, dass sie alle drei keratohyalinhaltige tiefe Zellen besitzen und sich selbst in ihren ältesten Schichten intensiv färben. Es liegt nahe anzunehmen, dass die Verbindung des Keratohyalins mit dem Plasma der Zelle eine Substanz hervorbringt, die nur schwach verhornt und tingibel ist. Damit stimmt die Thatsache, dass der äussere Rand der Zellen des stratum granulosum, der zur Hornmembran wird, niemals Keratohyalin enthält. Möglicherweise könnte aber auch im stratum corneum die Verhornung des Innern der Zelle deshalb unvollkommen bleiben, weil die Hornmembran diese wie eine Keratinkapsel einschliesst, die die zur weiteren Verhornung nöthigen Ernährungssäfte abschliesst. Sehr wahrscheinlich scheint es mir zu sein, dass auch im stratum corneum, der innern Wurzelscheide und
Untersuchungen über die Horngebilde der Säugethiere Haut.

Während demnach Stratum corneum, innere Wurzelscheide und Haarmark eine Gruppe der Horngewebe bilden, sind auf der andern Seite Haarrinde und Cuticula als zusammengehörig anzusehen. Sie besitzen wie es scheint kein Keratohyalin, ihre Hornsubstanz geht bald vom tingibeln Prokeratin zum Keratin über und die Verhornung muss als vollständige angesehen werden.

Erklärung der Abbildungen auf Tafel XI.

Fig. 1. Uebersichtsbild des Haares. Grösseres Haar aus der Schnauze des Meerschweinchens. a Papillenhaar. b Kolbenhaar (Unna's "Beethaas"). Die untern Theile der Rindensubstanz, das verhornte Mark und die verhornte innere Wurzelscheide (Henle'sche und

Fr. Reinke: Untersuchungen über die Horngebilde der Säugethierhaut.

Huxley'sche Schicht), sowie der Kolben des Kolbenhaars und das stratum corneum haben sich mit Anilinfarben tingirt (Prokeratin).

c Anschwellung der äussern Wurzelscheide (Unna's „Haarbeet“) in der der Kolben sitzt. d Einschnürung der äussern Wurzelscheide um die der Nervenring verläuft. e Talgdrüsen.

Fig. 2. Feiner Schnitt durch den Haarknopf, etwas schief. Die Markzellen nur theilweise getroffen. Man sieht wie die Rindensubstanzfibrillen in der Matrix wurzeln. Einzelne Kernteilungen. Starke Vergrösserung.

Fig. 3. Gefärbte Rindensubstanz aus dem untern Theil des Haarschafts, die Form der Zellen gut erkennbar. Starke Vergrösserung.

Fig. 4. Feines Kaninchenhaar, die Luft des Markes resorbiert, die eingetrockneten Markzellen intensiv gefärbt.

Fig. 5. Kaninchenhaar im Querschnitt mit dreizeiligem Mark. Die drei Säulendurchschnitte des Marks sind intensiv gefärbt.

Fig. 6. Stück aus dem stratum corneum der menschlichen Fingerbeere. Feiner Schnitt. Das Innere der Zellen ist intensiv gefärbt, die farblosen Membranen bilden ein bienenwabenartiges Horngerüst. Safraninfärbung.

Alle Präparate wurden gewonnen durch Behandlung des frischen Gewebes mit Chromosmiumessigsäure und Färbung mit Safranin oder Gentiana nach Flemmingscher Methode.
Über Theilungsvorgänge an den Wanderzellen, ihre progressiven und regressiven Metamorphosen.

Von

Professor Dr. Julius Arnold in Heidelberg.

Hierzu Tafel XII—XVI.

Einleitung.

Über das Vorkommen von Theilungsvorgängen bei „beweglichen“ und „sich bewegenden“ Zellen, sowie über die Typen, nach welchen sie sich vollziehen, stehen uns nur vereinzelt Beobachtungen zu Gebote. Es gilt dies nicht nur bezüglich der Beobachtungen am „lebenden“ und „überlebenden“ Objecte, sondern auch betreffs derjenigen am conservirten Präparate.

Unter dem Eindruck solcher Erwägungen stehend war ich zunächst bestrebt, eine an Zellen sehr reiche Lymph auf das Vorkommen von Theilungen zu untersuchen. Man gewinnt eine solche
Dr. Julius Arnold:

An solchen Objecten habe ich wiederholt Theilungen wahrungommen; aus später zu erörternden Gründen schienen mir aber derartige Beobachtungen nicht einwurfssfrei; überdies ist man auch bei ihnen bezüglich der Häufigkeit ihres Vorkommens noch zu sehr vom Zufall abhängig; als zum Studium von Theilungsvorgängen sehr geeignet hat sich eine solche an Zellen reiche Lymphphe nicht bewährt.

Wie mich eingehende und zu verschiedenen Zeiten angestellte Untersuchungen belehrten, ergaben sich am Mesenterium und der Froschzunge andere, wie es schien, unüberwindliche Schwierigkeiten. Wanderzellen, welche man stundenlang auf ihren Bahnen verfolgt hat, werden durch die an ihnen sich abspielenden Con-tractionsvorgänge oder ihre Lagerung im Gewebe undeutlich und entziehen sich einer weiteren oder wenigstens einer ununterbrochenen Beobachtung. Sehr häufig wird ihre gegenseitige Abgrenzung unklar, weil sie sich der Art aneinanderlegen, dass sie zu einem Gebilde zu verschmelzen scheinen, um früher oder später sich wieder zu trennen. An Zellen, welche über-, unter- und nebeneinander wegwandern und dabei bald an dieser, bald an jener Stelle längeren Halt machen, ist eine sichere Orientierung über Theilungsvorgänge nicht möglich. Man trifft im Gewebe nicht selten Zellen, welche durch zuweilen sehr lange und dünne Fäden
Ueber Theilungsvorgänge an den Wanderzellen etc. 207

zusammenhängen. Ueber ihre Entstehung, sowie ihr weiteres Verhalten ist es sehr schwer sich Gewissheit zu verschaffen, weil die Fäden so fein werden können, dass sie nicht mehr wahrzunehmen sind. Diese Formen alle als in Theilung begriffene Zellen aufzufassen ist nicht zulässig; manchmal nähern sie und vereinigen sich wieder und stellen mehrkernige Gebilde dar, über deren weiteres Geschick in jedem einzelnen Fall Aufschluss zu erhalten aus- sightslos ist.

Andererseits will ich nicht unterlassen hervorzuheben, dass ich wiederholt eine Zerreissung solcher Fäden und schliesslich eine definitive Trennung solcher Zellen nachweisen konnte. Die Zahl der Beobachtungen ist aber im Verhältniss zu derjenigen der Ver- suche keine so grosse, dass ich mich für berechtigt hielt auf eine gesetzmässige Erscheinung zu schliessen.

Die Wahrnehmung der Theilungsvorgänge an den in den Gewebsspalten enthaltenen Wanderzellen wird ferner durch die an der Oberfläche der betreffenden Organe mit der Zeit in grosser Menge sich sammelnden Zellen erschwert. Diese selbst sind aber — das Vorkommen von Theilungen an ihnen vorausgesetzt — wegen ihrer dichten Lagerung und lebhaften Ortsveränderung nicht zu solchen Untersuchungen geeignet; überdies machen sich an ihnen bald Erscheinungen bemerkbar, welche auf einen beginnenden Zerfall schliessen lassen.

Um die nach der Oberfläche ausgewanderten Zellen mehr vereinzelt zur Beobachtung zu bekommen, ihnen gleichzeitig ausgiebige Stützpunkte zum Haften und Gelegenheit zur Ansiedelung, kurz in dieser Hinsicht ähnliche Verhältnisse wie im Gewebe zu schaffen, legte ich auf das Mesenterium kleine und feine Schnitt- chen von Hollundermark, aus welchen durch Humor aqueus oder physiologische Kochsalzlösung die Luft zuvor verdrängt worden war. Wie später ausführlicher beschrieben werden soll, wandern die Zellen schon nach wenigen Stunden in die Maschen ein und lassen sich auf den Septen sowie auf den Wänden nieder. Diese Versuchsanordnung und die bei derselben gewonnenen Resultate haben sich für das Stadium der Einwanderung der Zellen und die Benurtheilung der weiteren, fort- und rückschreitenden Metamorphosen derselben in der That als sehr werthvoll ergeben; auch das Vor- kommen von Theilungsvorgängen liess sich an den in die Maschen eingewanderten Zellen feststellen. Allein abgesehen davon, dass
die Versuchsanordnung eine etwas complicierte ist und eine gewisse Erfahrung in der Herstellung derartiger Objecte voraussetzt, ergeben sich andere nicht zu beseitigende Schwierigkeiten. Die Zahl der Zellen, welche sich auf den Septen und Wänden der Plättchen ansiedeln, wird bald eine so grosse, dass ihre gegenseitige Abgrenzung undeutlich wird; bei denjenigen Zellen aber, welche mobil sind, erschweren die ausgiebigen und zu den verschiedensten Zeiten sich vollziehenden Ortsveränderungen das Studium der Theilungsvorgänge. Dazu kommt, dass nach drei bis vier Tagen Kreislaufsstörungen und Zerfallserscheinungen an den Zellen auftreten, somit eine über längere Zeit fortgesetzte Beobachtung der allemfalls sich einstellenden fortschreitenden Umwandlungen gleichfalls nicht zu erwarten war. Um zu diesen Zielen zu gelangen, sah ich mich also genöthigt, eine weitere Versuchsreihe zu unternehmen.

Diese Methode bietet die Möglichkeit, die in den Maschen des Hollunders enthaltenen Zellen in den verschiedensten Phasen der Einwanderung und der weiteren Umwandlung und zwar, wenn man die Plättchen in eine Glaskammer bringt, in überlebendem Zustande vier bis fünf Tage lang unmittelbar unter dem Mikroskope zu beobachten. Selbstverständlich muss man auch bei dem Ein-

Bezüglich des Werthes und der Vorzüge der geschilderten Methoden will ich an dieser Stelle nur betonen, dass man an Objekten, welche nach diesen hergestellt sind, Gelegenheit hat, eine grosse Zahl von lebenden und überlebenden Zellen unter den denkbar günstigsten Verhältnissen zu beobachten; insbesondere gilt dies für die in den Häutchen eingeschlossenen Zellen. Dadurch, dass man einerseits die Plättchen beliebig lange, beziehungsweise bis zu ihrer vollständigen Einheilung in dem Lymphsack belassen, andererseits jeder Zeit den Versuch unterbrechen und die in dem
Plättchen, sowie die in ihrer häutigen Umhüllung eingeschlossenen Zellen der Beobachtung im überlebenden Zustande unterwerfen kann, ist die Möglichkeit geboten, nicht nur die im Folge der vor- und rückschreitenden Metamorphose zu Stande kommenden Formen zu untersuchen, sondern auch die Zellen in der Periode der größten Wachstum스energie und der voraussichtlich am häufigsten sich vollziehenden Theilung unmittelbar unter dem Mikroskope zu beobachten.

Ähnliche Versuche sind schon öfters angestellt worden. Mehrere Autoren haben poröse Körper — Stücke von Kork (Rind-
Über Theilungsvorgänge an den Wanderzellen etc. 211

Ueber Theilungsvorgänge an den Wanderzellen etc. 211

3) Ranvier, traité technique d'histologie. Paris 1877.

6) Zielonko, Ueber die Entstehung und Proliferation von Endothelien und Epithelien. Centralblatt für die medicinischen Wissenschaften 1873. Nr. 56.

9) Weiss, Ueber die Bildung und Bedeutung der Riesenzellen und über epithelähnliche Zellen, welche um Fremdkörper im Organismus sich bilden. Virchow's Archiv Bd. 68, 1876.

10) Rusticky, Untersuchungen über Knochenresorption und Riesenzellen. Virchow's Archiv Bd. 50. 1874.

11) Ziegler, Experimentelle Untersuchungen über die Herkunft der Tuberkelelemente etc. Würzburg 1875.

12) Ziegler, Untersuchungen über pathologische Bindegewebs- und Gefässneubildungen. Würzburg 1876.

erfolgte definitive Einheilung der Plättchen darf in diesem Sinne als beweisend angeführt werden.

Bei den meisten der früher citirten Arbeiten handelte es sich ausschliesslich oder vorwiegend darum festzustellen, ob und in wie weit die Wanderzellen an der Bildung von Riesen- und Bindegewebe beteiligt seien; das Studium der Kernteilungsvorgänge war Nebensache. So erklärt es sich, dass die Mehrzahl der genannten Autoren keine Veranlassung fanden, die bei solchen Beobachtungen üblichen Fixirungs- und Conservirungsmittel zu verwenden. Dass damit ein Vorwurf nicht ausgesprochen werden soll, ist selbstverständlich. Dagegen sind neuerdings Wanderzellen bei Gelegenheit der Untersuchung anderer nach diesen Methoden behandelter Gewebe mehrfach auf ihre Kernstructur und weiteren Umwandlungen geprüft worden, aber unter Verhältnissen, unter welchen eine fortschreitende Entwicklung nicht zu erwarten war und überhaupt die Bedingungen zu derartigen Studien als die denkbar ungünstigsten bezeichnet werden müssen, weil die Wanderzellen in andere Gewebe infiltrirt und mit anderen Zellarten in bunter Reihe durchmengt als ein brauchbares Object nicht angesehen werden dürften.

Von Conservirungs- und Fixirungsmitteln kamen in erster Reihe die von Flemming angegebenen schwachen und starken Gemische von Chrom-, Osmium- und Essigsäure, ferner Chromamainsäure nach der Angabe von Rabl und reine Chromsäurelösungen (und zwar 0,1% für 6 Stunden, 0,25% für 18 Stunden), in Anwendung. Die so behandelten Präparate wurden kurz in Wasser abgespült, dann in eine Mischung von Alkohol und Wasser (1:3) eingelegt; je nach Ablauf von sechs Stunden wechselte ich die Flüssigkeit, unter gleichzeitiger Erhöhung des Alkoholgehaltes (p. aeq. und 3:1); schliesslich kamen die Plättchen in absolutem Alkohol, Aether und Celloidin zu liegen, wie oben bereits erwähnt wurde. — An allen Objecten, welche der Einwirkung von Chromsäure oder der oben genannten Chromgemengen und zwar genau nach der Vorschrift der genannten Autoren ausgesetzt worden waren, sind die Kerne, insbesondere ihre fadigen Strukturen sehr deutlich. Auf der anderen

1) Flemming, Zellsubstanz, Kern- und Zellttheilung 1882 and Zeitschrift für wissenschaftliche Mikroskopie Bd. 1. 1884.
2) Rabl, Ueber Zelltheilung. Morphologische Jahrbücher Bd. X.
Seite haben sie den Nachtheil, dass sie den Leib der Zelle mangelhaft conserviren. Die peripheren Protoplasmaschichten sind in Form einer Membran abgehoben, in fadenförmige Aushäufler ausgezogen oder aber zerfallen, so dass der Contour der Zellen wie angenagt erscheint; am besten ist der Zellleib noch bei den schwachen Flemming'schen Gemischen erhalten; dagegen ist das starke Chromosimumessigsäuregemenge, so gute Dienste es bei der Auffindung der Mitosen leistet, in allen Fällen zu vermeiden, in denen es auf den Nachweis der Struktur der Kerne sei es in ruhendem Zustand, sei es in dem der mitotischen oder amitotischen Theilung ankommt.

Aus Befunden an solchen Präparaten auf das Vorkommen oder das Nichtvorkommen amitotischer Kerntheilungsvorgänge z. B. in den Lymphdrüsen zu schliessen, ist nicht zulässig. — Sehr brauchbar ist gleichfalls die Brass'sche Flüssigkeit; doch gibt sie in Bezug auf die Erhaltung des Zellleibes auch keine besseren Resultate als das schwache Flemming'sche Gemisch; noch weniger hat sich die Pikrinsäure (Loewit) 1) bewährt. — Da es mir gerade bei den Wanderzellen sehr wichtig schien, das Verhalten des Zellleibes an solchen Präparaten, an welchen dieser gut erhalten ist, zu prüfen, so machte ich zunächst noch mit Sublimatlösungen, in welchen sie abgetötet wurden, die mannichfaltigste Gestalt darboten; der beste Beweis für die günstige Wirkung dieses Reagens auf die Conservierung des Zellprotoplasmas. Die Kerne sind etwas kleiner wie bei den Chromgemengen, ihre Struktur lässt sich aber nichtdestoweniger deutlich erkennen, insbesondere auch die Fäden derselben. Ganz ähnliche Resultate ergaben sich bei der Anwendung des Alkohols in concentrirter Form. Die Kerne sind meistens etwas geschrumpft, die Fäden in ihm schwerer aber deutlich zu erkennen. Etwas bessere Resultate erhielt ich in dieser Hinsicht, wenn ich den Alkohol in steigender Concentration in der oben angegebenen Weise einwirken liess, die Kerne sind dann grösser und ihre Struktur ist leichter wahrnehmbar. Der grosse Werth der Alkoholmethoden ist in der trefflichen Conservirung des Zellleibes.

ob neben mitotischen (indirekten) amitotische (directe) Kerntheilungsvorgänge sich abspielen, müssen die ersterwähnten Tinctionsmethoden noch zu Rathe gezogen werden.

Beschreibung der Versuche und Darstellung der Versuchsergebnisse.

Geschichte der Wanderzellen in den auf dem Mesenterium liegenden Plättchen.

Beobachtungen am lebenden Objecte.

Schon nach wenigen Stunden pflegen vom Rande her, sowie durch die Poren und Lücken des Plättchens Zellen in die an der oberen und unteren Fläche desselben gelegenen Maschenräume einzuwandern, über die Scheidewände wegzukriechen und in den Alveolarräumen in die Höhe zu steigen, beziehungsweise sich in die Tiefe zu begeben. Ob eine Einwanderung durch die Scheidewände

1) Thoma, Beitrag zur mikroskopischen Technik. Virchow's Archiv Bd. 65. 1875.
an Stellen, an denen keine präformirten oder arteficiellen Communicationen bestehen, stattfindet, ist mir zweifelhaft; wenigstens war ich nicht im Stande einen solchen Vorgang nachzuweisen. Diese Locomotionen werden unter den lebhaftesten Gestaltveränderungen vollzogen und es kommen dementsprechend die verschiedensten Formen vor, welche aber als allgemein bekannt einer Beschreibung nicht bedürfen. Die Grösse der einwandernden Zellen ist wechselnd. Im Allgemeinen überwiegen die kleineren, dazwischen kommen aber häufig grössere vor. Gerade an diesen nimmt man zuweilen eigenthümliche Gestaltveränderungen der Art wahr, dass dieselben, nachdem sie sich mit dem einen Ende an einem Septum festgelegt haben, das andere weit in den Maschenraum vorschieben und sich in lange und schmale Bänder umwandeln, welche vereinzelt oder in grösserer Zahl den Alveolarraum überspannen, manchmal sich aber wieder ablösen und weiter wandern; auch verästigte Formen sieht man entstehen und wieder vergehen. An anderen gleichfalls länglichen Zellen trifft man in ziemlich gleichen Abständen Einschnürungen, als ob sie aus kugligen Abschnitten sich zusammensetzten.

An den grösseren, namentlich den in die Länge gezogenen Zellen habe ich wiederholt Theilungen beobachtet, indem sie sich an einer, zwei oder mehreren Stellen unter Ausführung lebhafter Bewegungen abschnürten, nachdem die Theilungsglieder zuvor die verschiedenartigsten winkligen Stellungen zu einander angenommen hatten. Ich will nicht unterlassen, auf einige Täuschungen hinzuweisen. Die Zellen, namentlich die länglichen reihen sich manchmal, indem sie seitlich vorbeiwandern, der Länge nach aneinander und täuschen auf diese Weise eine lange Zelle und bei der Trennung die Theilung einer solchen vor. Auch die kleineren Zellen legen sich vorübergehend aneinander an, um sich dann wieder zu trennen. Eine dauernde Verschmelzung zweier oder mehrerer Zellen habe ich am lebenden Object, so sehr meine Aufmerksamkeit auf diesen Gegenstand gerichtet war, niemals nachweisen können. Ein wichtiges Kriterium, ob eine grössere runde oder längliche oder irgendwie geformte Zelle als ein einheitliches Gebilde aufzufassen ist, ergibt sich in dem Vollzug der amöboiden Bewegungen. Es mögen zwei bei einander liegende Zellen noch so innig mit einander verbunden erscheinen, sobald sie amöboide Bewegungen ausführen, documentirt sich ihre Selbständigkeit auch

Nach 12 Stunden hat sich bereits auf vielen Scheidewänden eine einfache Reihe kuglicher glänzender Zellen gebildet. Zwischen diesen Zellen wandern neue, die ersteren verdrängend, ein, bis eine Reihe dicht gelagerter, sich gegenseitig abplattender Zellen entstanden ist; darauf folgt in derselben Weise die Bildung einer zweiten oder selbst dritten Reihe. Sehr bald erfahren die Zellen eine Änderung in der Lichtbrechung und Form; sie werden viereckig, platt, cylindrisch oder keulenförmig, verlieren ihren Glanz und werden matt; die Kerne sind gewöhnlich nicht nachweisbar. Gleichzeitig verwischen sich die gegenseitigen Begrenzungen, so dass die Septen auf den ersten Blick mit einer mehr einheitlichen Protoplasmamasse belegt erscheinen.

In ganz ähnlicher Weise vollzieht sich die Ansiedelung der Zellen auf den Wänden der Maschenräume; zunächst lassen sich auch hier nur einzelne, dann mehrere Zellen nieder; zwischen diese schieben sich immer wieder neue ein und endlich hat sich ein vollständiger Belag gegenseitig sich abplattender Zellen gebildet, an welchen dieselben Umschmiedungen in Bezug auf Form und Lichtbrechung sich einstellen. Bemerken will ich noch, dass
sollen Beläge von Zellen nicht nur an der dem Mesenterium, sondern auch an der dem Deckglas zugewendeten Fläche der Hollunderplättchen sich bilden; auch hier kommt es nicht selten vor, dass einzelne Zellen wieder auswandern, andere wieder zuwandern.

Die wandständigen Zellen sind manchmal durch bald schmale, bald dickere Protoplasmabrücken verbunden, an welchen ich öfters Durchschnürungen beobachtet habe. Ob dieser Vorgang im Sinne einer Zelltheilung zu deuten sei, mag fraglich erscheinen; denn man kann sich auch vorstellen, dass solche Stränge durch Verschmelzung der Protoplasmafortsätze zweier Zellen entstehen; allerdings habe ich derartige Vorgänge am lebenden Object niemals wahrgenommen.

Am zweiten Tag nimmt die Zahl der grösseren Zellen zu, diejenige der kleineren ab und zwar, wie die directe Beobachtung lehrt, nicht nur wegen der vermehrten Ansiedelung der ersteren, sondern auch wegen der Umwandlung der kleineren Zellen in grössere. — Auch in dieser Periode ist das Object für das Studium der Theilungsvorgänge nicht besonders geeignet; die Zellen liegen zu dicht, die Abgrenzung ist an den ruhenden und wandernden Zellen zu unbestimmt.

Länger wie über drei bis vier Tage die Dauer dieser Versuche anzudehnen ist mir nicht gelungen. Es treten nach dieser Zeit Stockungen des Kreislaufes, welche von Blutungen gefolgt werden, auf oder aber es häufen sich zwischen Deckglas und Hollunderplättchen solche Mengen von Zellen an, dass eine weitere Beobachtung unmöglich ist. Ausserdem machen sich Zerfallserscheinungen an den ausgewanderten Zellen bemerkbar. An den

Befunde an den conservirten Plättchen.

Die bei der oben beschriebenen Versuchsanordnung am lebenden Object sich ergebenden Befunde lassen sich leicht controliren, wenn man die Plättchen nach 12, 24, 36, 48, 60 und 72 Stunden in Chromosmiumessigsäure oder Chromameisensäure einlegt und nach den oben mitgetheilten Vorschriften behandelt. Waren die Plättchen sehr dünn, so ist es nicht nöthig Schnitte von ihnen anzufertigen; man erhält dann an solchen Objecten ein naturgetreues Bild über die Lagerung der Zellen zu den Septen und den Wandungen der Maschen an der oberen wie unteren Fläche der Plättchen und zwar in ihrer ganzen Ausdehnung. Ja man kann dieselben Stellen, welche man während des Lebens beobachtet hat, am conservirten Präparate sehr leicht wieder finden, wenn sie in irgend einer Weise gezeichnet wurden. Für manche Zwecke ist es ferner sehr zu empfehlen, das Plättchen in seiner Lagerung auf

1) Lange, Ueber die Entstehung der blutkörperchenhaltigen Zellen und die Metamorphosen des Blutes im Lymphsack des Frosches. Virchow's Archiv Bd. 65. 1875.

2) J. Arnold, Ueber Diapedesis; eine experimentelle Studie. II. Abtheilung. Virchow's Archiv Bd. 58. 1873.
dem Darm zu belassen, die ganze Darmschlinge möglichst vorsichtig abzuschneiden und in die Conservirungsfüssigkeit zu übertragen; später entfernt man das Darmstückchen und erhält auf diese Weise ein aus dem Hollunderplättchen und Mesenterium bestehendes Object, welches einer Untersuchung mit stärkeren Vergrösserungen noch zugängig ist und die Möglichkeit bietet, das Verhalten des Mesenteriums am Rand des Plättchens und an dessen unterer Fläche zu prüfen.

Sind die Plättchen zweimal 24 Stunden auf dem Mesenterium belassen worden, so zeigen sich die Septen und Alveolenwände mit mehrfachen Reihen von Zellen dicht besetzt, deren Kerne grösser, etwas heller gefärbt und weniger reich an Körnchen und Fäden sind; dazwischen liegen aber immer bald mehr, bald weniger Zellen, welche kleiner erscheinen und dunkle vielgestaltige Kerne enthalten. Ausserdem trifft man da und dort in die Länge gezogene und verzweigte Zellen mit einem oder mehreren Kernen, sowie vereinzelte vielkernige Zellen, welche runde, längliche, verzweigte und vielfach verschlungene dunkle Kerne enthalten, sowie Haufen von zusammengesinterten Zellen. Es werden diese verschiedenen Zellformen später ausführlicher beschrieben werden müssen; hier ist es nur meine Aufgabe, auf deren Vorkommen in
Dr. Julius Arnold:

den Plättchen in so früher Zeit und die Uebereinstimmung des Befundes am lebenden und conservirten Objecte hinzuweisen. — Auch für die Degenerationserscheinungen, welche an Zellen und Kernen getroffen werden, gilt dies. Es finden sich auffallend dunkle Körnchen in den Kernen, eigenthümliche intensiv sich färbende, durch Stränge verbundene Verdickungen der Kernmembran, wie sie oben beschrieben wurden. Andere Kerne werden lichter und färben sich nicht, ihre Contouren werden unscharf und sind mehrfach unterbrochen, bis sie endlich der Wahrnehmung sich entziehen. Desgleichen sind die Zerfallserscheinungen am Zellleib als solche nicht zu verkennen.

Es erübrigen noch einige Bemerkungen bezüglich des Verhaltens des Endothels, welches bald an dem Mesenterium, bald an der unteren Fläche der Plättchen haften bleibt. An vielen Endothelzellen nimmt man Degenerationserscheinungen wahr. Andere stellen sich als grosse vielstrahlige Körper dar, deren Ausläufer unter einander anastomosiren; an einzelnen derselben haben sich Kerntheilungsvorgänge nach dem Typus der Fragmentirung vollzogen; Mitosen konnte ich nicht sicher nachweisen, zweifle aber nicht an dem Vorkommen derselben, namentlich unter anderen Verhältnissen. (Herr Dr. Schottländer wird nächstens über den Befund einfacher und mehrfacher Mitosen an dem Endothel der hinteren Hornhautflächen ausführlichen Bericht erstatten.) Ein continuous Hier einwachsen der Endothelzellen vom Rande her in die an der oberen Fläche der Plättchen gelegenen Alveolarräume oder Gefässentwicklung habe ich auch an den conservirten Präparaten nicht wahrnehmen können, sowie ja auch die Beobachtung am lebenden Object ergab, dass die Zellen an diese Stellen nur mittelst Wanderung gelangen. Ob diese Wanderzellen ausschliesslich als ausgewanderte weisse Blutkörper und Lymphkörper oder auch als Abkömmlinge der Endothelien zu betrachten sind, soll weiter unten erörtert werden. Was die Abkunft der Zellen angeht, welche in den an der unteren Fläche der Plättchen befindlichen Räumen sich abgelagert haben, so lehrt die direkte Beobachtung, dass auch die Mehrzahl dieser eingewandert ist; doch kann ein directes Hier einwachsen der Endothelzellen oder fixen Bindegewebskörper für die untere Fläche der Plättchen nicht mit derselben Sicherheit ausgeschlossen werden, wie für die obere.
Verhalten der Wanderzellen an den in die Lymphsäcke eingeführten Plättchen.

Beobachtungen am überlebenden Object.

Wie zu erwarten sind die Befunde an Plättchen, welche nach 1, 2 und 3 Tagen den Lymphsäcken entnommen wurden, im Wesentlichen dieselben, wie bei den Plättchen, welche entsprechend lang auf dem Mesenterium gelagert hatten; nur schienen mir an den ersteren die progressiven Umwandlungen raschere Fortschritte gemacht zu haben, als an den letzteren.

Ein principieller Unterschied zwischen den Zellen mit runden bläschenförmigen und denjenigen mit polymorphen Kernen besteht demnach nicht. Im Inneren der runden Kerne erkennt man glänzende Körnchen und Fäden und zwar in sehr wechselnder Menge und Anordnung. Bald finden sich nur wenige Körner und Fäden, welche eine mehr oder weniger ausgesprochene radiäre Aufstellung darbieten; bald sind diese Gebilde zahlreicher und mehr gerüstartig verbunden. Die übrige Kernsubstanz ist mehr matt. Die polymorphen Kerne der mobilen Zellen haben gewöhnlich einen starken Glanz; eine Structur kann in denselben manchmal überhaupt nicht wahrgenommen werden; ist dies möglich, so erscheinen die Körnchen und Fäden weniger zahlreich; oft trifft man nur einen oder zwei lange Fäden, welche fast die ganze Länge der Kerne in Anspruch nehmen und an den Enden in zwei glänzende Körner auslaufen, von denen wieder feine Fäden abgehen. Ich glaube an denselben Kernen bald eine mehr matte Lichtbrechung, bald einen starken Glanz der Substanz und eine Abhängigkeit dieses wechselnden Verhaltens von den Formveränderungen der Zelle und des Kernes beobachtet zu haben, sowie überhaupt diese Vorgänge auf die Wahrnehmbarkeit und ganze Erscheinung der Kerne von grossem Einfluss sind. Wiederholt ist mir aufge-

Ausser den bisher beschriebenen Zellformen kommen in den ersten Tagen grösseere grobgranulirte Zellen vor, welche, wie ich an dieser Stelle schon bemerken will, in hohem Grade eosinophil sind. Sie besitzen runde oder am Rand mehrfach eingebuchtete, gewöhnlich helle Kerne, welche ziemlich zahlreiche Körner und Fäden führen.

Mit jedem Tage nimmt die Zahl der mobilen vielgestaltige Kerne führenden Zellen und die der grösseren Zellformen zu. Vom vierten bis zum zehnten Tage (Taf. XIII, Fig. 11) sind auf den Septen und Alveolarwänden rundliche abgeplattete und längliche ein- und mehrkernige Zellen gelegen; die Alveolarräume werden von länglichen spindelförmigen Gebilden über- spannt. Dazwischen finden sich da und dort enorm grosse runde
Ueber Theilungsvorgänge an den Wanderzellen etc.

und verästigte Zellen mit mehreren Kernen oder Kerngebilden von höchst complicirter Architectur. Sind rothe Blutkörperehenen in den Plättchen enthalten, wie dies zuweilen vorkommt, so führen diese grosse Zellen, zuweilen Bruchstücke solcher; auch Einschlüsse von anderen Zellen trifft man an (Taf. XIV, Fig. 14). — In den die Plättchen umhüllenden Membranen sind die Zellen meistens in die Länge gezogen und befinden sich im Zustande lebhafter Formveränderung und Wanderung.

Die Plättchen, welche 4—10 Tage in den Lymphsäcken verweilt haben, geben, wie schon früher erwähnt wurde, das für die Beobachtung der Theilungsvorgänge günstigste Objekt ab. Die dieselben umhüllenden Membranen sind in dieser Zeit schon so fest, dass man sie ganz leicht von den Plättchen ablösen kann, während sie früher leicht einreißen, später aber zu fest haften. Warum die Wahrnehmung der Theilungsvorgänge an den Plättchen selbst auch in dieser Periode schwierig ist und weshalb gerade diese Membranen und die aus ihnen hervortretenden Zellen dazu sich eignen, ist oben erklärt worden. An den letzteren lässt sich nicht nur bald diese, bald jene Phase der Theilung in allen ihren Einzelheiten verfolgen, sondern man hat auch Gelegenheit sämtlichen Stadien dieses Vorganges in ihrer Aufeinanderfolge nachzugehen; zu diesem Behufe ist allerdings eine manchmal stundenlange ununterbrochene Beobachtung erforderlich, welche um so anstrengender und ermüdender ist, als sie natürlich nicht in jedem Falle zum Ziele führt. Die Schwierigkeit solcher Beobachtungen wird leicht verständlich, wenn man überlegt, dass wir, was zunächst die Theilung der Kerne der Wanderzellen anbelangt, bestimmte Anzeichen der bevorstehenden Theilung nicht besitzen. Ich will in dieser Hinsicht nur erwähnen, dass bei Kernen, welche knäuelförmig gewunden, gelappt, eingebuchtet und glänzend sind, eher ein solcher Vorgang erwartet werden darf; doch kommen Theilungen auch an helleren Kernen vor, namentlich wenn sie etwas reicher an Körnchen und Fäden sind. Sehr häufig verharren aber die Kerne sehr lange in diesem Zustande, ehe sie sich trennen oder aber es bleibt eine Theilung überhaupt, wenigstens für die nächste Zeit aus. Da die Kerne die den verschiedensten Phasen der Theilung entsprechenden Formen bald kürzer, bald länger beibehalten können, ist es unmöglich aus diesen auf den weiteren Vollzug des Vorganges zu schliessen. Leichter gelangt man zu
einem Resultat bezüglich der Theilung des Zelleibes, namentlich wenn man Zellen wählt, bei welchen die Kerne mehr oder weniger getrennt und in verschiedenen, insbesondere entgegengesetzten Abschnitten der Zellen verteilten sind.

Es wäre unmöglich und, wie ich glaube, auch zwecklos, alle die verschiedenen Formen, welche bei der Theilung der Kerne und Zellen zu Stande kommen, zu beschreiben (Taf. XII—XIV). Es mögen einige Bespiele genügen, welche in Fig. 1—10 abgebildet sind; gleichzeitig finden sich die Fristen, innerhalb welcher die einzelnen Veränderungen sich vollzogen haben, vermerkt. Es ist durch diese Angaben nicht beabsichtigt, massgebende Thatsachen darüber zu registrieren, in welcher Zeit die einzelnen Vorgänge sich vollziehen. Eine solche Verwerthung derselben würde schon deshalb unzulässig sein, weil, wie oben bemerkt, die Kerne oft lange Zeit in demselben Stadium der Theilung verharren; ähnliches gilt auch in manchen Fällen bezüglich der Abschnürung des Zelleibes; überdies folgen die einzelnen Phasen der Theilung bald sehr schnell, bald langsam aufeinander.

Bei der in Fig. 1 (Taf. XII) abgebildeten Zelle ist der Kern an beiden Enden ziemlich tief eingefurcht, in der Mitte eingeschnürt. Schon 5 Minuten später hatte sich eine Trennung des Kerns vollzogen. Die beiden Hälften sind mit den spitz zulaufenden Enden gegeneinander gerichtet. Der Trennungsstelle des Kerns entsprechend findet sich eine Einschnürung; nach 30 Minuten sind die beiden Hälften der Zelle nur noch durch einen Faden verbunden, welcher nach weiteren zwei Minuten verschwindet.

In ganz ähnlicher Weise vollzog sich die Theilung des sehr in die Länge gezogenen Kerns und der Zelle, welche in Fig. 2 (Taf. XII) dargestellt sind. In beiden Fällen wurde der Kern später unsichtbar, während bei der in Fig. 3 (Taf. XII) abgebildeten Theilung der Kern niemals vollständig der Wahrnehmung sich entzog. Bei manchen Zellen war zuerst kein Kern wahrnehmbar, dann kam er zum Vorschein, um im weiteren Verlauf der Theilung wieder undeutlich zu werden. In den Fig. 4, 5 und 6 (Taf. XII u. XIII) sind Beispiele von mehrfachen Theilungen und die manchmal eigentümlichen Stellungen der Theilungsstücke abgebildet.

Die Kerne der sich theilenden Zellen sind sehr häufig glänzend und nur vereinzelte Körnchen und Fädchen in ihnen zu er-
kennen; in manchen Fällen ist die Fadenstruktur deutlicher. Bei allen bisher erwähnten Formen waren während der Theilung ziemlich lebhafter amöboide Bewegungen vorhanden. Dasselbe gilt von der grobgranulirten Zelle (Fig. 7, Taf. XIII) in den beiden ersten Phasen und nach der Trennung; in den Zwischenstadien erschienen dagegen die beiden Hälften der Zelle mehr abgerundet, während eine andere Zelle, welche gleichfalls zu den granulirten gehörte (Fig. 8, Taf. XIII) gegen den Schluss der Theilung deutlicher amöboid wurde. Fig. 9, Taf. XIII und Fig. 12, Taf. XIV zeigen Zellen mit mehr plumpen Ausläufern und sehr langsamen Bewegungen in den verschiedensten Stadien der Theilung. In Fig. 10, Taf. XIII ist eine Theilung bei einer ruhenden Zelle abgebildet. Dieselbe ist im ersten Stadium in der Mitte eingeschnürt, später sind die beiden Hälften durch eine schmälere und längere Brücke verbunden, endlich erfolgte die Trennung, ohne dass in irgend einem Stadium deutliche amöboide Bewegungen vorhanden gewesen sind. Die beiden Kerne waren schwach glänzend, liessen aber deutliche Fadenstruktur erkennen.

Zunächst mögen noch einige Mittheilungen über Beobachtungen an Riesenzellen (Fig. 12, 13, 14, Taf. XIV) folgen. Es wurde oben bereits darauf hingewiesen, dass dieselben contractil sind. Man nimmt feinere und dickere Fortsätze an ihnen wahr, von denen die ersteren keine Kerne führen, während sie in den letzteren nicht selten nachzuweisen sind. Solche kernhaltigen Fortsätze können sich unter Ausführung bald lebhafter, bald träger Bewegungen abschnüren (Fig. 12, Taf. XIV). Dabei erfahren die Riesenzellen eine diesem Vorgang entsprechende Verkleinerung. — Eine wie ich glaube sehr interessante Beobachtung ist in Fig. 14, Taf. XIV dargestellt; es handelt sich um eine mehrkernige grosse Zelle, welche einen rothen Blutkörper in ihrem Inneren beherbergte. Derselbe war entsprechend der Form der Zelle beträchtlich in die Länge gezogen und erfuhr bei der später sich vollziehenden Theilung der Zelle eine Zerkleinerung in rundliche Kugeln. Auch grosse Gebilde, in welche kleinere vollkommen entwickelte Zellen eingeschlossen waren, habe ich beobachtet und bei einer derselben den Austritt einer solchen wahrgenommen.

Was die Degenerationserscheinungen anbelangt, so stimmten sie vollständig mit denjenigen überein, welche von den Zellen, die in den mesenterialen Plättchen enthalten waren, berichtet wurden,
Ich will deshalb nur hervorheben, dass auch hier häufig von den Zellen kernlose Protoplasmastückchen sich abschnürten und weiter wanderten, später aber zu Grunde gingen.

Beobachtungen am conservirten Präparate.

Von den Zellformen, welche in den Plättchen gefunden werden, wenn sie innerhalb der drei ersten Tage den Lymphsäcken entnommen worden sind, will ich zunächst der granulirten gedanken (Fig. 15, Taf. XIV). In der lichten Substanz des Zellleibes sind ziemlich grosse glänzende Körner eingebettet, welche mit Eosin sich intensiv färben. Ihre Kerne sind einfach oder mehrfach, bläschenförmig und hell; besitzen aber manchmal einen eigenthümlichen Glanz, dessen Intensität entsprechend die Kernsubstanz sich diffus färbt. In denselben Zellen kommen helle schwach und dunklere stärker tingirte Kerne vor. In allen Fällen sind in die Kernsubstanz intensiv gefärbte Fäden und Körnchen eingebettet, deren Zahl wechselt, aber nicht selten zu einem dichten Gerüstwerk sich gestaltet (Fig. 15, Taf. XIV). Manchmal glaubte ich eine gewisse Gesetzmässigkeit in der Anordnung dieses erkennen zu können; doch war es mir nicht möglich darüber Gewissheit zu erreichen.

Die zweite Art von Zellen ist meistens etwas kleiner, zuweilen erreichen sie aber dieselbe Grösse wie die granulirten. Die Gestalt der Zellen wechselt sehr, bald sind sie mehr rundlich oder eckig, bald in die Länge gezogen, mehr oder weniger verästigt (Fig. 16, 17, 18 und 19, Taf. XIV). Das Zellprotoplasma ist fein granulirt, die Körnchen sind aber oft so fein und liegen so dicht, dass der Zelleib ein mehr homogenes Ansehen hat. Zum Theil mag diese Differenz in dem Verhalten von dem angewandten Conservierungsmittel abhängig sein; gewiss spielt der Zustand, in welchem das Protoplasma bei diesen contractilen Formen im Moment der Abtödtung sich befindet, eine Rolle. Es wurde oben erwähnt, dass an den in Sublimat conservirten Präparaten die Zellen eine den amöboiden Bewegungen entsprechende vielgestaltige Form darbieten; an denselben hat das Protoplasma sehr häufig diese glänzende Beschaffenheit. Die Kerne sind bei diesen Zellen seltener bläschenförmig und rund, häufiger vielgestaltig, an den Rändern mehrfach eingekerbt oder vollständig gelappt, spiralig oder selbst knäuelförmig gewunden, mit knospenförmigen Anläufen.
versehen oder verzweigt; auch ringsförmige, mehrfach eingeschnürte und kettenartig aneinander gereihte Kerne kommen vor (Fig. 20, Taf. XIV). Die Kerne sind häufiger einfach als mehrfach; wenn diese Angabe mit der allgemein verbreiteten Annahme, die Kerne dieser Zellen seien vielkernig, nicht übereinstimmt, so ist dieser Widerspruch nur ein scheinbarer. Untersucht man die Zellen in lebendem Zustande, so erscheinen sie in der That sehr häufig vielkernig, weil man die Verbindungen zwischen ihnen oder bei stark gewundenen Formen ihr gegenseitiges Lagerungsverhältniss und ihre Zusammengehörigkeit nicht zu erkennen vermag; dasselbe gilt be treffs der Einwirkung einer ganzen Reihe von Reagentien. Dass Zellen mit vollständig getrennten Kernen vorkommen, steht ander seits fest. — Die Lichtbrechung und Structur sind bei den Kernen dieser zweiten Zellform sehr wechselnd. Sehr häufig zeigen sich die Kerne so stark und gleichmässig gefärbt, dass man nur bei sehr intensiver Durchleuchtung Fäden in ihnen nachweisen kann; andere Male ist diese diffuse Färbung eine weniger intensive oder schwache; selten mangelt eine solche vollständig. Die Vertheilung der sich färbbenden Substanz ist nicht immer eine gleiche, die Kernmembran und ihre Umgebung sind am meisten, das Centrum dagegen heller tingirt. Fast immer lassen sich im Innern der Kerne intensiv gefärbte Fäden und Körner nachweisen, welche im Allgemeinen dieselbe Anordnung darbieten, wie bei der erst be schriebenen Zellform. Sehr auffallend ist das Verhalten mancher diffus gefärbten Kerne, welche gegen die Zellsubstanz sehr wenig sich abgrenzen; merkwürdiger Weise färbt sich in solchen Fällen das Zellprotoplasma etwas mit. Ich vermutete zunächst, dass Degenerationserscheinungen vorliegen; die sehr stark verästigte Form solcher Zellen lässt eine solche Annahme nicht sehr plausibel erscheinen; vielleicht handelt es sich um den Ausdruck von Con tractionszuständen.

Die dritte Form von Zellen (Fig. 20, Taf. XIV und Fig. 21, Taf. XV), welche innerhalb der drei ersten Tage in den Maschenräumen der Plättchen vorkommt, ist ausgezeichnet durch ihre beträchtlichere Grösse, lichteres Protoplasma und hellere grössere bläschenförmige Kerne. Die Grösse derselben schwankt beträchtlich. Ihre Gestalt kann eine rundliche, eckige oder mehr längliche sein; häufig sind sie mehr platt und an den Rändern mit Fortsätze versehen. In dem lichten Protoplasma finden sich feine Granula. Die bald einfachen,
bald mehrfachen Kerne zeigen zuweilen Einkerbungen oder wirkliche Lappung und Schlängelung; die Substanz der Kerne ist nur ausnahmsweise intensiver und diffus gefärbt; eine schwache Tintion dieser Art ist bald vorhanden, bald fehlt sie vollständig; auch die Kernmembran pflegt sich weniger stark zu färben als bei der vorigen Form. Die Fadenstruktur der Kerne ist meistens sehr deutlich und ausgebildet.

Die spindelförmigen, fadigen, verzweigten Zellen (Fig. 28, Taf. XV), welche man schon in den ersten Tagen findet, besitzen gewöhnlich ein helles feinkörniges Protoplasma, ovale, längliche, stäbchenförmige oder verzweigte Kerne, welche bald schwächer, bald intensiver diffus gefärbt sind oder aber eine solche Tintion vollständig vermissen lassen; niemals werden in ihrem Inneren Fäden und Körner in bald grösserer, bald geringerer Zahl vermisst.

Ein höchst merkwürdiges Verhalten zeigen bezüglich Gestalt und Structur die grossen vielkernigen Zellen (Fig. 22, 23, 24, 25, 26, 27, Taf. XV), welche man schon in diesen Tagen in den Plättchen findet. Zunächst bieten sie einen beträchtlichen Wechsel bezüglich der Grösse dar; desgleichen ist ihre Form eine sehr verschiedene. Dieselben erscheinen rund oder länglich, besitzen eine mehr abgerundete Oberfläche oder sind mit Ausläufern versehen und verzweigt. Das Protoplasma ist gewöhnlich hell und feinkörnig, andernmal grob granulirt; in manchen Fällen färbt sich das Protoplasma ziemlich dunkel. Noch grösserem Wechsel sind diese vielkernigen Zellen betreffs der Zahl, Form, Lagerung und Structur der Kerne unterworfen. Die Form der Kerne kann eine rundliche, längliche, geschlängelte und verzweigte sein. In manchen Zellen hat man es überhaupt nicht mit mehreren Kernen, sondern mit einer sehr complicirten Kernfigur zu thun, welche sich aus kettenartig aneinander gereihten oder vielfach verschlungenen Kernabschnitten zusammensetzt; ob wirkliche netzförmige Verbindungen zwischen diesen bestehen oder ob es sich nur um verzweigte Kerne handelt, war ich nicht im Stande, mit Sicherheit zu ermitteln. Die Kerne liegen bald in der Mitte oder sie sind über die ganze Zelle mehr gleichmässig vertheilt; manchmal bleibt das Centrum frei und die Kerne bilden einen an der Peripherie gelegenen Kranz. Auch die Lichtbrechung der Kerne und das Verhalten gegen Farbstoffe sind sehr verschieden; bald erscheinen dieselben mehr oder weniger
intensiv diffus gefärbt bald vollkommen hell; ja man trifft nicht selten in derselben Zelle helle und dunkle Kerne. Fäden und Körnchen sind fast immer vorhanden; in den dunklen Kernen sind sie allerdings sehr schwer nachzuweisen.

Ich darf die Beschreibung dieser verschiedenen Zellarten nicht abschließen, ohne erwähnt zu haben, dass zwischen allen Übergänge zu treffen sind; zweifelhaft ist mir dies nur bezüglich der ersten grobgranulirten Form. Dagegen finden man Zwischenformen zwischen den kleineren lebhaft sich bewegenden mit polymorphen Kernen versehenen Zellen und den grösseren mehr platten Zellen mit hellen Kernen; wie das ja nach dem Befund am lebenden Object nicht anders zu erwarten war. Auch bei den grossen vielkernigen Zellen, so abweichend die einzelnen nach Gestalt und Struktur des Protoplasmas und der Kerne auf den ersten Blick erscheinen mögen, fehlt es nicht an Übergängen, desgleichen zwischen diesen einerseits und den kleineren Zellen andererseits. Es darf in dieser Hinsicht auf die citirten Figuren (Taf. XIV und XV) verwiesen werden.

Bezüglich des Vorkommens der oben beschriebenen Formen in späteren Tagen will ich noch erwähnen, dass schon vom fünften Tage an die beiden erst beschriebenen Arten an Zahl ab, die anderen aber zunehmen. Insbesondere gilt dies für die platten Zellen einerseits, die spindelförmigen fadigen und verästigten andererseits. Mit den ersteren trifft man die Alveolen vollständig wie mit einem Epithel austapeziert, während die letzteren die Flächen der Plättchen vollständig umspinnen, aber auch noch mehr oder weniger weit in die Alveolarräume sich hinein erstrecken. — Was die Riesenzellen anbelangt, so sind sie vom vierten bis zwölften Tage am häufigsten; man trifft solche aber auch noch nach vierzig und sechzig Tagen.

Es wird noch zu erörtern sein, ob an den conservirten Präparaten bezüglich der Theilungsvorgänge Befunde sich ergeben haben, welche mit den am lebenden und überlebenden Objecte angestellten Beobachtungen in Uebereinstimmung sich bringen lassen. Bezüglich der Theilungsvorgänge an den kleineren Zellformen muss ausgesagt werden, dass man am conservirten Präparate alle die Phasen wiederfindet, welche am lebenden Objecte sich feststellen liessen. Es darf in dieser Hinsicht auf die Fig. 18, 19 u. 20 (Taf. XIV) verwiesen werden. Es erstreckt sich diese Ueberein-
Dr. Julius Arnold:

stimmung namentlich auf die Formen der sich theilenden Kerne und Zellen. Bezüglich der Structur der Kerne hat sich im Allgemeinen ergeben, dass die Zahl der Fäden gewöhnlich eine grössere ist, als man nach der Wahrnehmung am lebenden Object erwarten sollte; auch betreffs der fadenförmigen Verbindungen der Kerne und schliesslichen Trennung derselben erhält man an den conservirten Präparaten besseren Aufschluss als an den lebenden Zellen, an welchen nicht nur die feinen Fäden, sondern auch die einzelnen durch diese verbundenen Kernabschnitte schwer zu sehen sind. Da aber an solchen conservirten Präparaten nur mit einer gewissen Wahrscheinlichkeit auf Theilungsvorgänge aus der Form der Kerne und Zellen geschlossen werden darf, ist die in dieser Hinsicht entscheidende Beobachtung am lebenden Object um so bedeutungsvoller.

Nachdem oben der Nachweis geführt wurde, dass an lebenden Riesenzellen Abschnürungsvorgänge vorkommen, werden die entsprechenden Erscheinungen an den conservirten Präparaten wohl in diesem Sinne aufgefasst werden dürften.

Es ist früher der Zerfallserscheinungen gedacht worden, welche an dem lebenden Object sich nachweisen lassen. Auch an Prä-
Ueber Theilungsvorgänge an den Wanderzellen etc. 233

Die Formen dieser sind sehr verschiedene (Fig. 30, Tafel XVI). In den einen Zellen blassen die Kerne ab, die Körnchen und Fäden verschwinden und die Substanz derselben nimmt ein mehr gleichartiges lichtes Aussehen an. Die Kernmembran wird dünnere und an einzelnen Stellen unterbrochen, wie angenagt, bis sie endlich verschwindet. Es sind dies die Erscheinungen, wie sie bei der anämischen Necrose unter pathologischen Verhältnissen häufig genug sich einstellen.

Bei anderen Zellen erscheinen die Kerne im Gegentheil sehr dunkel; auch bei der stärksten Durchleuchtung kann man in ihnen weder Körner noch Fäden nachweisen. Diese dunklen Kugeln sind auffallend klein. Sehr häufig trifft man an ihnen eine helle Stelle in der Mitte oder deren mehrere symmetrisch über dieselben verbreitet (Fig 30 c, f, k, l, q, y). In dem ersten Fall nehmen die Kugeln die Gestalt von dunklen Ringen an; in dem letzteren entsteht das Bild von rundlichen und eckigen, der Kernmembran aufliegenden, durch Bälkchen vereinigten Figuren; wenn die letzteren verschwinden, erscheint die Kernmembran an sich entsprechenden Stellen aufgetrieben (Fig. 30 g, v, w, x, e', l', m', n', o').

Sowohl die ringförmigen als die kugeligen Verdickungen werden immer kleiner und endlich so wie der ganze Kern unsichtbar. Manchmal erfolgt von einer oder mehreren Seiten eine Einspaltung der an der Stelle des Korns gelegenen Kugel; es zerfällt diese in mehrere kleinere kuglige oder etwas eckige Gebilde von bald gleicher bald verschiedener Grösse; auch sie werden immer kleiner und entziehen sich endlich der Wahrnehmung (Fig. 30 r, s, t, u). An manchen dieser Kugeln habe ich eine lichte sehr feine Streifung wahrgenommen, welche um so deutlicher und ausgedehnter zum Vorschein kam, je weiter sich die gefärbte Sub-
Dr. Julius Arnold:

stanz gegen den Kernekontour zurückzog. Die ganze Zeichnung erinnert sehr an diejenige bei der achromatischen Spindel und bot eine gewisse Regelmäßigkeit dar (Fig. 30, 39. v, x, o, m', n', Taf. XVI). Waren an dem Kernekontur z. B. drei knüpfte dreieckige oder halbmondförmige intensiv gefärbte Gebilde gelegen, so zogen nach diesen lichte Fäden von der Mitte gegen die Peripherie in divergierender Richtung; bei der Anwesenheit von vier solchen entsprach diesen die Anordnung der streifigen Figur.

Ob der Kern nun einfach verschwindet oder erst die zuletzt beschriebenen Veränderungen eingeh, in allen Fällen zeigt der Zellleib charakteristische Veränderungen (Fig. 30 Taf. XVI). Der Contour der Zelle wird undeutlich, unregelmäßig, durch Körner unterbrochen oder sieht wie angenagt aus; die Substanz selbst ist eigenthümlich körnig und macht den Eindruck einer lockeckern Fügung oder eines beginnenden körnigen Zerfalls. Bei Tinction mit Eosin nimmt der Zellkörper oft eine intensivere Färbung an. Der Umfang des Zellkörpers erscheint ausnahmslos reduziert.

Auch an den Riesenzellen kann man häufig Degenerationser scheinungen wahrnehmen (Fig. 30, 39. Taf. XVI) und zwar vollziehen sich dieselben gleichfalls in verschiedener Weise. Manchmal werden die Kerne, nachdem Körner und Fäden verschwunden sind, heller; die Kernmembran wird gleichfalls undeutlich und entzieht sich endlich der Wahrnehmung. Andere Mal werden die Körner dunkler und gehen die zuletzt beschriebenen Veränderungen ein. Waren complieirtere Kernfiguren vorhanden, so nehmen diese zunächst in ihren einzelnen Abschnitten gleichmässig oder verschieden an Dicke ab, so dass oft die eigenthümlichsten Formen zu Stande kommen und die Kerne aus versehmälernten da und dort wie angenagten Bälkchen sich zusammensetzten. — Einer Form muss ich an dieser Stelle noch gedenken, von welcher es mir allerdings zweifelhaft ist, ob sie als ein Degenervationsproduct aufgefasst werden darf. Man trifft zuweilen grosse Gebilde von kugliger oder verästiger Form, welche auf den ersten Blick als dunkle gleichartige Körper sich darstellen, an denen man aber bei genauerer Untersuchung zahlreiche symmetrisch angeordnete hellere rundliche oder eckige Stellen wahrnimmt. Einige Mal glaubte ich in den einzelnen Abschnitten der Kernfigur deutliche Körnchen und Fäden gesehen zu haben, andere Mal war ich ausser Stande, einen solchen Nachweis zu führen. Während das Protoplasma der
Riesenzenellen, welche degeneriren, dieselben Zerfallserscheinungen darbietet, wie die kleineren Zellen, habe ich solche Anzeichen der Degeneration an diesen Gebilden vermisst.

Endlich muss ich noch die Degenerationserscheinungen erwähnen, welche an den Gebilden, die Zellen einschliessen, vorkommen. Der Kern der Mutterzelle ist sehr häufig degenerirt blass oder in eine glänzende Masse umgewandelt; aber auch an den Kernen der eingeschlossenen Zellen kommen solche Zerfallserscheinungen vor.

In den folgenden Tagen (Fig. 31 und 32, Taf. XVI) nimmt die Zahl der Zellen im Thrombus und in den Maschenräumen der äussersten Reihe dank einer ausgiebigen Einwanderung in den Thrombus und von da in die Maschen zu. Die Zellen im Thrombus sind meistens vielgestaltig, desgleichen ihre dunklen Kerne; dagegen erscheinen die Zellen in den Maschen, namentlich die den Wandungen aufsitzenden, schon etwas grösser. Es wurde früher
Dr. Julius Arnold:

Nach drei und vier Wochen ist der Thrombus zum grössten Theil durch rundliche, platte und spindelförmige Zellen ersetzt; da und dort erkennt man auch jetzt noch Reste einer hyalinen Substanz. Dieselbe Gewebmasse füllt auch die Räume der äussersten Maschen aus; in der zweiten Reihe finden sich vorwiegend wandständige platte Zellen, in den folgenden, wenn sie überhaupt
ueber Theilungsvorgänge an den Wanderzellen etc. 237

noch Zellen enthalten, sehr häufig, namentlich an den im Inneren der Räume gelegenen Degenerationserscheinungen. Nur an dünnen Plättchen, welche höchstens aus fünf Reihen von Maschenräumen bestanden, habe ich eine vollständige Erfüllung sämtlicher Räume oder mindestens einer grossen Mehrzahl derselben mit Zellenmassen beobachtet. In dieser Zeit trifft man in den äussern Lagen der Gewebsmassen, welche an Stelle des Thrombus getreten sind, Gefässe; sie erreichen aber fast niemals die Oberfläche der Plättchen. In solchem Zustande habe ich die Plättchen noch nach zwei (Fig. 33, Taf. XVI), drei und dreieinhalb Monaten gefunden, eingehüllt in ein lichtes Gewebe, sehr häufig der Haut des Lymphsackes nicht platt aufliegend, sondern wellig verlaufend oder aufgerollt. An einem Plättchen, welches 113 Tage in dem Lymphsack verweilt war, zeigten sich die peripheren Reihen der Maschen mit grossen, zum Theil sehr in die Länge gezogenen Zellen gefüllt; auch die folgenden Maschensysteme enthielten Zellen, allein sie boten mehr oder weniger weit gediehene Zerfallserscheinungen. Anzeichen von Eiterung waren nicht vorhanden, die Wunde zeigte sich vollständig vernarbt und die Plättchen erschienen in ein hyalines Gewebe eingehüllt.

Riesenzellen kommen an solchen Durchschnitten selten im Thrombus, häufig zwischen diesem und der Oberfläche der Plättchen, sowie in der äussersten, spärlicher in der zweiten Maschenreihe vor. Von dem zweiten Tage an bis zu der dritten Woche nehmen sie an Häufigkeit zu, dann wieder ab. Doch fehlen sie auch an Plättchen, die 3—4 Monate im Lymphsack gelegen hatten, nicht vollständig.

Zusammenstellung der Befunde in den Plättchen, geordnet nach der Dauer der Versuche.

I. Tag.

Experiment 1 b. Auch hier sind die mit dunklen polymorphen Kernen ausgestatteten Zellen der Zahl nach vorwiegend; dazwischen kommen Zellen mit grösseren bläschenförmigen Kernen, sowie spindelförmige, verästigte und vereinzelte vielkernige Zellen vor. An der Peripherie ein dicker Lymphthrombus.

Experiment 4 a. In den äusseren Alveolenreihen, sowie im Thrombus werden zahlreiche Zellen mit polymorphen, sowie einzelne Zellen mit bläschenförmigen Kernen getroffen.

II. Tag.

Experiment 15 a. Zwischen zahlreichen Zellen mit polymorphen Kernen finden sich grössere Zellen mit bläschenförmigen Kernen, sowie fadenförmige und verästigte Gebilde und spärliche Riesenzellen.

Experiment 22 a. Im Wesentlichen derselbe Befund; die Umwandlung ist etwas weiter vorgeschritten.

III. Tag.

Experiment 18 a. Die Zellen mit polymorphen Kernen sind weniger zahlreich; dagegen haben die Zellen mit bläschenförmigen Kernen, die spindeligen und verästigten Zellen, sowie Riesenzellen zugenommen.
Experiment 22 b. An der äusseren Seite des Thrombus liegen grössere und kleinere Zellen, sowie Riesenzellen; dieser selbst ist von länglichen und verästigten Zellen durchsetzt; an seiner inneren Seite, sowie in der angrenzenden Alveolenreihe finden sich Zellen mit polymorphen und solche mit bläschenförmigen Kernen und Riesenzellen.

Experiment 25 a. Der Thrombus ist weniger dick, die Zellen mit hellen Kernen etwas zahlreicher, die Riesenzellen etwas spärlicher, sonst im Wesentlichen derselbe Befund.

IV. Tag.

Experiment 20 a. Im Wesentlichen derselbe Befund.

V. Tag.

Experiment 7 a, b und c. In den Maschen sehr zahlreiche Zellen mit hellen grossen Kernen, spärliche fadige und verästigte Zellen und Riesenzellen.

Experiment 18 b. Ein dicker Thrombus umgibt nach allen Seiten die Plättchen. Die Maschenräume enthalten grosse epithelioide Zellen und Riesenzellen; an der Oberfläche finden sich spinDELFORMIGE und verästigte Zellen.

Experiment 20 b. Derselbe Befund.
VI. Tag.

Experiment 13 b. Geschichtete Plättchen von dickeren Thrombenmassen umhüllt, durch dünnere von einander getrennt; in allen Räumen Zellen, die einen mit polymorphen, die anderen mit bläschenförmigen Kernen; einzelne Riesenzellen in den Maschen, welche an den intermediären Thrombus angrenzen.

VII. Tag.

Experiment 18 d. Ziemlich zahlreiche Zellen mit hellen grossen, spärliche Zellen mit polymorphen Kernen, verästigte Zellen und Riesenzellen; Degenerationserscheinungen.

Experiment 8 a, b, e und d. An der Peripherie der Plättchen ein mächtiger Lymphthrombus; an seiner äusseren Zellen der verschiedensten Form; ebensolche in grosser Zahl im Thrombus selbst, sowie an seiner inneren Seite; an den Wandungen epithelioiden Zellen; Riesenzellen nicht sehr zahlreich.

Experiment 25 b. In dem ziemlich dicken Lymphthrombus die verschiedensten Zellarten; in den Alveolen vorwiegend epithelioiden Zellen und Riesenzellen.

VIII. Tag.

Experiment 15 e. Auf den Wänden der Alveolen liegen grosse epithelioiden Zellen, in den Räumen ebensolche, dazwischen vereinzelte Zellen mit polymorphen Kernen.

Experiment 1 e. Mehrere Alveolarsysteme sind mit Zellen
gefüllt; die in den innersten gelegenen Zellen zeigen Degenerationerscheinungen, die in den äußersten dagegen sind epithelioid.

IX. Tag.

Experiment 9 a. Mächtiger Lymphthrombus; in den äußersten Alveolenreihen epithelioidene Zellen.

XI. Tag.

Experiment 25 b. In dem Lymphthrombus verhältnismässig spärliche Zellen; die Alveolen mit epithelioiden Zellen und Riesenzellen gefüllt.

XIII. Tag.

Experiment 25 c. Vorwiegend epithelioidene Zellen und Riesenzellen in den Alveolen; nur wenige Zellen mit polymorphen Kernen; spärliche degenerierte Zellen.

XIV. Tag.

XVII. Tag.

Experiment 5 b. Ein die Plättchen nach allen Richtungen abschliessender Blutthrombus; in der äusseren Maschenreihe Riesenzellen und epithelioidene Zellen.

Experiment 10. Geschichtete Plättchen; in den sie umgebenden und zwischen ihnen gelegenen Lymphthromben spärliche Zellen mit grossen bläschenförmigen Kernen.

Experiment 3 b. Der Lymphthrombus ist von zum Theil degenerirten Zellen durchsetzt; in den Maschen epithelioidene Zellen, von denen einzelne gleichfalls degenerirt sind.

XXIII. Tag.

Experiment 6 a. Das Plättchen nach der einen Seite von einem dicken Blutthrombus, nach der anderen von einem Lymphthrombus umgeben. Der letztere enthält in seinen äusseren Lagen
spindelförmige Zellen, dazwischen Reste hyaliner Substanz; an der inneren Seite ist noch mehr hyaline Substanz erhalten. In der äußeren Maschenreihe finden sich überall epithelioiden Zellen, welche stellenweise eine mehr längliche Form angenommen haben und mehr senkrecht zu den Alveolenwänden stehen.

XXV. Tag.

Experiment 5 c. Nach allen Richtungen ist das Plättchen von einem ziemlich starken Lymphthrombus umgeben, in ihm spärliche Zellen; die Maschenräume mit epithelioiden Zellen erfüllt; in den inneren Maschen Degeneratiouserscheinungen an den Zellen.

XXVI. Tag.

Experiment 5 b. Der Lymphthrombus in seinen äußeren Schichten stark von spindelförmigen Zellen durchsetzt; zwischen ihnen noch Reste hyaliner Substanz. Die Alveolen sind fast ganz mit Zellen erfüllt, die theils mehr platt, theils mehr länglich sind; an den am meisten nach innen gelegenen Degeneration.

XXVII. Tag.

XXXII. Tag.

Experiment 6 b. An der äußeren Seite des Thrombus weite Gefässe, welche aber nur in die äussersten Schichten desselben eindringen; die inneren Schichten sind gefässlos, dagegen von allen Zellarten durchsetzt, da und dort noch Reste hyaliner Substanz; in den Maschenräumen epithelioiden Zellen und Riesenzellen, stellenweise Degeneration.

XXXV. Tag.

Experiment 6 c. Der Befund ein ähnlicher wie bei Experiment 6 b; auch hier finden sich nur in den äusseren Schichten des Thrombus Gefässe.

Experiment 6 d. Die Seitentheile der Plättchen sind von einem dicken Blutthrombus umgeben, welcher noch keine Spur einer Durchwachsung zeigt; wie an den Flächen so auch an diesen Stellen epithelioiden Zellen und Riesenzellen in den Maschen, von
Ueber Theilungsvorgänge an den Wanderzellen etc. 243

denen die ersteren sehr häufig eine mehr längliche Form und senkrechtige Stellung zur Wand des Raumes angenommen haben.

XLIII. Tag.

Experiment 23. Geschichtete Plättchen von einem lichten Gewebe umgeben, welches spindelförmige und epithelioide Zellen enthält; ebensolches Verhalten zeigt der zwischen den Plättchen gelegene Thrombus; in diesem sowie in den äusseren finden sich Gefässe; in den Maschenräumen epithelioide Zellen und Riesenzenellen, stellenweise Degeneration.

LVIII. Tag.

LIX. Tag.

Experiment 14 c. Die Plättchen von dicken Gewebsschichten umgeben, welche vorwiegend aus spindelförmigen Zellen bestehen; die Alveolen enthalten grosse keulenförmige und cylindrische Zellen; stellenweise Degenerationerscheinungen.

CXIII. Tag.

Experiment 14 d. Die Plättchen in dasselbe Gewebe eingeschaltet wie bei Experiment 14 c; in diesem finden sich Gefässe, welche aber nicht die Plättchen erreichen, die Maschen mit epithelioiden Zellen und Riesenzenellen gefüllt; die Zellen, welche in den innersten Räumen liegen, sind ausgedehnt degenerirt.

Verwerthung der Versuchsresultate.

Die Kern- und Zelltheilungsprocesse.

Form und Structur der Wanderzellen, sowie die amitotischen Theilungsvorgänge an ihnen.

Ueber die verschiedenen Gestalten, welche die weissen Blutkörper, Lymphkörper und andere verwandte Zellarten in ruhendem Zustande und bei ihren amöboiden Bewegungen annehmen, liegen zahlreiche Mittheilungen vor. Durch die Arbeiten von
Die Granula des Protoplasmas und deren Verhalten gegen Farbstoffe zum Gegenstand eingehender Studien gemacht, unter gleichzeitigiger Berücksichtigung der wechselnden Grösse und Gestalt von Kern und Zellleib bestimmte Formen unterschieden und auf deren Herkunft aus Knochenmark, Milz und Lymphdrüsen geschlossen.

3) Flemming, Zellsubstanz etc. 1882.

Die oben berichteten Thatsachen liefern weitere Belege dafür, dass in den Kernen der Wanderzellen manchmal schon in lebendem, häufiger noch in conservirtem Zustande eine complicirte Struktur der Kerne zu erkennen ist. Allerdings ergeben sich in dieser Beziehung an den verschiedenen Zellarten, sowie an den einzelnen Individuen derselben Zellart bemerkenswerthe Abweichungen. — Die grobgranulirten Zellen (Fig. 7, 8 und 11, Taf. XIII und Fig. 15, Taf. XIV) enthalten in ihren meistens hellen Kernen grössere und kleinere, rundliche und eckige Anhäufungen chromatischer Substanz, sowie derartige Fäden bald spärlicher, bald zahlreicher; auch die Kernmembran hat den Charakter einer chromatischen. Die übrige Kernsubstanz färbt sich bei manchen dieser Zellen, gewöhnlich aber nur in geringem Grade. Dieselbe Structur zeigen die bläschenförmigen Kerne der Zellen, deren Protoplasma feingekörnt oder homogen ist, mögen die Zellkörper etwas grösser oder kleiner, die Kerne rund, ge- lappt oder länglich sein.

Eine Sonderstellung nehmen die Wanderzellen ein, deren Kerne vielgestaltig oder zu mehreren vorhanden sind und im leben-

4) Carnoy, Biologie cellulaire. 1884.
5) Denys, La cytodierèse des cellules géantes et des petites cellules incolorès de la moelle des os. La cellule 1886.
Dr. Julius Arnold:

den Zustande einen starken Glanz besitzen (Fig. 1, 2, 3 und 5, Taf. XII und Fig. 11, Taf. XIII). Fäden und Körnchen fehlen auch hier nicht, sie scheinen aber spärlicher zu sein. An gefärbten Präparaten zeigen solche Kerne eine gleichmässige Tinction; ist diese nicht zu intensiv, so kann man im Inneren noch dunklere fadenförmige und körnige Anhäufungen chromatischer Substanz nachweisen (Fig. 16, 17, 18, 19, Taf. XIV).

1) Stricker, Beobachtungen über die Entstehung des Zellkernes. Sitzungsberichte der Wiener Akademie der Wissenschaften Bd. 76, Abth. III, 1877.

2) Unger, Ueber amöboide Kernbewegungen. Wiener medicinische Jahrbücher 1878.

4) Schleicher, Notiz über den Knorpelkern. Centralblatt für die medicinischen Wissenschaften Nr. 18, 1879.

6) Flemming, Zells substanz, Kern- und Zelltheilung 1882.

8) Frommann, Untersuchungen über Structur, Lebenserscheinungen und Reactionen etc. Jena 1884.
zu der einfachen Theilung in Beziehung stehen, stellt Lavdowsky deshalb in Abrede, weil er Kerne mit mehreren Buckeln und Einschnürungen gesehen hat, welche zu den früheren runden und ovalen Formen zurückkehrten.

Noch auf eine sehr bemerkenswerte Erscheinung — auf das zeitweise Verschwinden des Kerns — ist oben hingewiesen worden, welche auch von Stricker, Flemming, Frommann u. a. beobachtet wurde (Fig. 1, 2, Taf. XII und Fig. 6, Taf. XIII). Der Schlüsse, welche Stricker aus diesem Verhalten abgeleitet hat, ist oben bereits Erwähnung geschehen. Flemming, welcher zwar die Richtigkeit der Beobachtungen Stricker's anerkennt, betont, dass trotzdem die Kerne immer da sind und nur durch ihre passive Zerrung und Dehnung im Körper der kriechenden Zelle zeitweise
Über Theilungsvorgänge an den Wanderzellen etc.

Die verschiedenen Strukturen der Kerne sind oben beschrieben worden; es wird jetzt unsere Aufgabe sein zu prüfen, ob und in wie weit eine Beziehung derselben zu den Theilungsprocessen nachweisbar ist.

Was zunächst die Zellen mit hellen, mehr bläschenförmigen Kernen anbelangt, so bieten dieselben, wie oben erwähnt wurde, einen bald grösseren, bald kleineren Gehalt an chromatischen Körnern und Fäden dar; ausserdem ist aber die übrige Kernsubstanz fast immer in geringerem Grade diffus gefärbt. Bei Zellen, an denen aus den nachher anzuführenden Erscheinungen auf Theilungsvorgänge geschlossen werden darf, ergibt sich insofern keine
Beständigkeit bezüglich des Gehaltes an chromatischen Fäden und Körnern, sowie diffuser Färbung der übrigen Kernsubstanz als eine Vermehrung der ersteren, sowie eine Zunahme der letzteren zwar häufig vorhanden ist, zuweilen aber fehlt. Wenn auch aus diesem Verhalten noch nicht auf eine Verschiedenheit bezüglich der Anordnung der chromatischen Substanz bei der Teilung geschlossen werden darf, weil die Rückbildung der Kerne vor vollendeter Trennung derselben begonnen haben kann, so ist doch andererseits die Möglichkeit einer solchen Differenz nicht von der Hand zu weisen. Eine solche macht sich auch an den getrennten Kernen bemerkbar, welche bald reicher, bald ärmer an chromatischer Substanz sind.

Bei den Zellen mit glänzenden vielgestaltigen Kernen ist die auffallendste Erscheinung eben diese eigenthümliche Lichtbrechung am lebenden und die intensive diffuse Färbung am conservirten Object (Fig. 1—5, Taf. XII, Fig. 6, Taf. XIII, Fig. 16—19, Taf. XIV). Der Gehalt an chromatischen Körnern und Fäden, welcher namentlich an dem ersteren geringer sich darstellt, ist, wie die Beobachtung an dem letzteren lehrt, wenn nicht grösser, so doch der gleiche, wie bei der erst beschriebenen Zellform. Wegen der Lichtbrechung der übrigen Kernsubstanz ist es aber schwierig, beziehungsweise unmöglich die chromatischen Körner und Fäden am lebenden Objecte zu sehen. Auch an conservirten und gefärbten Präparaten ist der Nachweis dieser schwierig wegen der dunklen Tinction der Kernsubstanz. Behandelt man dieselben aber nachträglich mit Säuren, so wird, wie es scheint, ein Theil des diffusen Farbstoffes ausgezogen und es kommen dann mehr Körner und Fäden zum Vorschein. Wenn somit einerseits der Glanz und die dunklere Färbbarkeit dieser Kerne auf den grösseren Gehalt an tingibler Substanz zu beziehen sein wird, so mögen andererseits noch sonstige Verhältnisse und zwar in erster Linie die Gestaltsveränderungen, wie sie an den lebenden Kernen beobachtet wurden, zu berücksichtigen sein. Erwägt man, welchen Einfluss die Contraction des Zellprotoplasmas auf dessen Lichtbrechung im lebenden und conservirten Zustande ausübt, so wird man keinen Anstand nehmen, das in Rede stehende Verhalten der Kerne zu den Formveränderungen derselben in Beziehung zu bringen; ob aber dasselbe sich ausschliesslich auf die Contraotionszustände der Kerne, wie Denys meint, sich zurück-
führt lässt, scheint mir schon aus dem Grunde zweifelhaft, weil auch an ruhenden Kernen eine solche diffuse Tinctio getroffen wird.

Die Wanderzellen mit ihren dunklen vielgestaltigen Kernen sind vielfach als degenerirte Formen angesprochen worden. Dass diese so wie andere Wanderzellen degeneriren können, ist nicht zu bezweifeln. Ich habe bei früheren Gelegenheiten schon mehrfach diese Frage erörtert und werde später auf dieselbe zurückkommen. Es ist mir auch verständlich, wie man zu einer solchen Anschauung gelangt, wenn die Wanderzellen unter Verhältnissen zur Beobachtung kommen, bei welchen von vornherein der unter Degeneration sich vollziehende Abschluss ihrer Existenz erwartet werden darf, so z. B. bei der Abfuhr derselben nach der Oberfläche, wie sie unter normalen und pathologischen Bedingungen so häufig erfolgt oder bei der Ablagerung der Wanderzellen in Geweben, welche selbst eine Rückbildung eingehen oder für die Erhaltung der Wanderzellen ungünstige Bedingungen darbieten. Loe wit (l.c.) ist bei seinen Untersuchungen zu dem Resultat gelangt, dass unter den weissen Blutkörpern diejenigen mit polymorphen Kernen im kreisenden Blut überwiegen; ob es eben deshalb oder trotzdem gerechtfertigt ist, den Schluss zu ziehen, dass sie degenerative Formen seien, kann hier nicht weiter erörtert werden. Das Resultat dieser Ueberlegungen wäre somit, dass, wie die Wanderzellen überhaupt, so auch die Zellen mit polymorph Kernen unter verschiedenen Bedingungen degeneriren können und wirklich degeneriren — für die pathologischen Anatomien wenigstens keine neue Thatsache —. Die Frage ist aber die, ob diese in Rede stehende Form, sie möge vorkommen wo und wann sie wolle, ausnahmslos auf Degeneration schliessen lasse und einem solchen Vorgang ihre Entstehung verdanke. Berücksichtigt man, dass die Bewegungen des Protoplasmas nicht nur, sondern auch der Kerne besonders lebhaft bei dieser sind und dass der Glanz sowohl als auch die eigenartige Gestalt der letzteren zu diesen aktiven Bewegungen des Korns vermutlich in Beziehung stehen, so wird die Antwort nicht zweifelhaft sein. Dazu kommt, dass am lebenden Object die Umwandlung der hellen bläsehenförmigen Kerne in glänzende polymorphe und umgekehrt die der letzteren in erstere wahrzunehmen ist. Viel berechtigter will mir in Anbetracht dessen die schon früher von mir vertretene Vorstellung dienen, dass diese polymorphen Kerne im Zustande der Vorbereitung zur Theilung sich
befinden, in welchem sie bald nur kurze, bald längere Zeit ver-
harren. Dass sie manchmal eine solche gar nicht eingehen, weil
sie sich wieder zurückbilden oder zuvor degeneriren, ergibt sich
aus den obigen Erörterungen. Als entscheidend wird man die am
lebenden Object festgestellten Theilungsvorgänge an diesen Zellen
anerkennen müssen.

Soviel über die Structurverhältnisse der Kerne der verschie-
denen Arten von Wanderzellen vor, während und nach der Thei-
lung. Was den Akt der Theilung selbst und die dabei zu Tage
tretenden Formen anbelangt, so ist der buckelförmigen Aufrei-
bungen, der knospen- und sprossenförmigen, sowie verzweigten
Ausläufer der Kerne bereits mehrfach gedacht worden, ebenso der
Auflöllung der Kernen, der Knäuelung und spiraligen Drehung,
sowie der Verlängerung der ganzen Kerne. An solchen Kernab-
schnitten und Kernen treten Abfurchungen und Einschnürungen
auf; diesen entsprechend rücken die einzelnen Theile weiter von
einander und stehen dann durch erst breitere, später schmälere
Bänder und Fäden unter einander in Verbindung (Fig. 1—3, Taf.
XII). Zuweilen beginnen diese Einschnürungen an dem einen oder
an beiden Enden des Kerns und setzen sich in der Richtung der
Längsachse desselben fort, so dass es zu einer mehr oder weniger
vollständigen Längstheilung des Kerns kommen kann. Die mittelst
dieser Vorgänge entstehenden Kernfiguren haben oft sehr compli-
cirte Formen, wie die oben mitgetheilten Befunde lehren. Ihre
Bildungsweise ist eine so verschiedene, dass man sie weder auf
eine Knospung, noch auf eine Sprossung allein zurückführen kann.
Das Wesentliche scheint mir eine unter aktiver Betheiligung der
Kernsubstanz erfolgende Zunahme und daran sich anschliessende
Zerschnürung dieser in zwei und mehr Theile. Ob sprossen-
or knospen- oder buckelförmige Ausläufer entstehen oder ob der Kern
in der Länge anwächst oder an den Enden sich auflöllt oder im
Ganzen sich aufknäuelt, das mag hauptsächlich von der Richtung
seiner aktiven Bewegung abhängen. Die abgeschnürten Theile können
längere Zeit in Zusammenhang bleiben oder es erfolgt früher oder
später eine Trennung derselben. Dass man bald eine complicirte Kern-
figur, bald mehrere isolirte Kerne in einer Zelle vorfindet, wird damit
leicht verständlich (Fig. 1—5, Taf. XII und Fig. 6, Taf. XIII).

Die Theilungsvorgänge am Zelleib weichen insofern von
einander ab, als sie bald unter sehr lebhaften Gestaltungsveränderungen
der Zelle, bald unter sehr langsamen sich abspielen, zuweilen solche überhaupt nicht nachweisbar sind. In den beiden letzten Fällen entsteht entsprechend den Kernabschnitten, seien diese getrennt oder noch durch Fäden verbunden, eine Einschnürung, welche sich später zu einer erst breiteren, später schmäleren Brücke auszieht, bis endlich die vollständige Trennung erfolgt, nachdem eine solche der Kernverbindungen, insofern welche überhaupt noch vorhanden waren, vorausgegangen ist. In dem ersten Fall vollziehen sich diese Erscheinungen unter sehr lebhafter Bewegung des Zellkörpers, welcher bald nach dieser, bald nach jener Richtung einfache oder verzweigte, schmale oder breite Ausläufer aussendet. Bezüglich der Einzelheiten dieser Vorgänge darf auf die oben mitgetheilten und durch Abbildungen erläuterten Darstellungen verwiesen werden (Fig. 1—5, Taf. XII und 6—8, Taf. XIII). Dass die amöboiden Bewegungen auf die Lagerung der Kerne im Zelleib von Einfluss sind, dünkt mir sehr wahrscheinlich; ob eine Abhängigkeit zwischen den Bewegungen des Kerns und Zelleibes besteht, welcher Art diese sei, welche Rolle dabei den aktiven Eigenschaften beider Gebilde zufalle, darüber auch nur eine Vermuthung auszusprechen, wäre verfrüht.

Was die Mittheilungen Anderer über Strukturverhältnisse der Kerne der Wanderzellen bei der Theilung und über diesen Vorgang selbst anbetrifft, so sind mir solche, wie bereits bemerkt wurde, nicht bekannt; dagegen wird auf meine früheren Beobachtungen über derartige Prozesse an den kleineren Zellen des Knochenmarkes, der Lymphdrüsen, der Milz und weissen Blutkörper, sowie auf die diesen Gegenstand betreffenden Angaben Loewit's und Lavdowsky's hinzuweisen sein. An verschiedenen Stellen habe ich auf die Zunahme der chromatischen Fäden in den genannten Zellen und auf das Verhalten derselben bei den Theilungsvorgängen hingewiesen. Die Aehnlichkeit dieser Befunde mit den von Loewit geschilderten ergibt sich aus den Figuren 1—4 (Virchow's Archiv Bd. 95) und Figur 1 (Virchow's Archiv Bd. 91). Wenn Loewit die in anderen Abbildungen dargestellten Kernfiguren auf eine Verbackung und Verklumpung zurückführt, so liegt dieser Auffassung ein Missverständniss zu Grunde. Wie von mir vielfach hervorgehoben wurde, bestehen diese Kernfiguren aus aufgerollten und verschlungenen Bändern, an denen sich bei starker Durchleuchtung ausser einer chromatischen Kernmembran und diffus ge-
Dr. Julius Arnold:

färbter Kernsubstanz chromatische Fäden nachweisen lassen. Es haben diese Verhältnisse ja soeben eine ausführliche Besprechung erfahren; ich darf mich deshalb wohl mit diesen kurzen Bemerkungen an dieser Stelle begnügen; es sollte durch dieselben nur angedeutet werden, dass die Uebereinstimmung unserer Befunde vielleicht grösser ist, als dies nach der Darstellung Loewit’s und dessen Ausserrung: er habe zuerst bei der amitotischen Kernteilung eine Zunahme der chromatischen Substanz nachgewiesen, erscheinen möchte. — Lavdowsky unterscheidet ruhende und kineetische Kerne; von beiden nimmt er an, dass sie nach dem Typus der directen Theilung sich vermehren können. Er schildert diese unter Bezugsnahme auf R a n v i e r’s und K l e i n’s Mittheilungen mit folgenden Worten: „Bei der Theilung schnüren sich von der Substanz des Kerns ein oder mehrere Stückchen ab, bleiben einige Zeit in der Zelle frei; bald dann wird mit einem oder mit zwei solcher Stückchen auch ein Theil des Zellenleibes abgeschnürt. Bei den Leukoeyten findet noch ein abweichender Typus dieser Theilung statt.“ Lavdowsky bezeichnet denselben als gewaltsame Theilung; bei derselben werden die Kerne amöboiden Bewegungen des Protoplasmas entsprechend in die Länge gezogen. „Betrachtet man die Kerne genau, so sieht man jene klaren Körperchen (die Kernkörperchen) sich an den beiden Enden der Kerne gruppiren und zwar so, dass mit jedem Körperchen eines Kernendes ein sich verdünnender Faden der entgegengestellten Körperchenreihe im Zusammenhang steht.“ „Während die beschriebenen Veränderungen des Kerns fortduern, kann die Zelle auch sehr mannigfaltige Form annehmen. Die Kerne folgen aber zum Theil der Richtung des Protoplasmas nach und in den Pseudopodien, sogar an den Enden derselben, erscheint sie theils verkürzt, theils intact. Wird die Zelle noch mehr ausgestreckt, sowie die Kerne sich mehr und mehr verlängern, so beginnen sie sich abzuschnüren, oder sie zerreißen wie die Zelle selbst. Im ersteren Falle bekommt man die vielkernige homogene Zelle, in dem zweiten zwei neue Zellen; aber wie die Kerne, so stellen auch die neuen Zellen gleichsam gewaltsam entstandene Gebilde dar.“ — Durch diese Beschreibung Lavdowsky’s ist die Vorstellung erweckt worden, als ob es sich bei diesen Vorgängen nicht nur um eine Theilung im Sinne der Vermehrung, sondern um einen Zerfall handle. Solche Zelltheilungen, welche mit sehr starken amöboiden Bewe-
Ueber Theilungsvorgänge an den Wanderzellen etc. 255

Die wichtigsten auf die Theilung der Wanderzellen sich beziehenden Ergebnisse sind folgende:

Wie die Beobachtung an dem lebenden und conservierten Objecte lehrt, können sich die Wanderzellen nach dem Typus der Fragmentirung theilen.

Durch active Bewegungen vermittelte Formveränderungen des Kerns und wahrscheinlich der Zelle spielen dabei eine Rolle.
Vor, während und nach der Theilung ist der Gehalt an chromatischen Fäden sehr häufig vermehrt. Die diffuse Färbung namentlich der polymorphen Kerne entspricht sowohl dem Contractionszustand der Kerne als auch der Gehaltszunahme an diffuser tingibler Subtsanz.

Aus einer diffusen Färbung der Kerne darf nicht ohne Weiteres auf eine Degeneration geschlossen werden, insbesondere nicht in dem Sinne, dass die betreffende Form einer Degeneration ihre Entstehung verdanke.

Die zeitliche Aufeinanderfolge der einzelnen Theilungssabschnitte ist bei der Fragmentierung sehr häufig keines gesetzmässige; vielmehr können Kerne und Zellen in dem einen Stadium länger verharren. Das Vorkommen mehrkerniger, sowie durch Protoplasmastränge verbundener Zellen wird dadurch verständlich.

Ueber Form, Structur, Entstehung und Theilung der vielkernigen Zellen in den Hollunderplättchen.

Von den Abweichungen in Bezug auf Grösse und Gestalt abgesehen, betreffs welcher auf die oben mitgetheilten ausführlichen Beschreibungen und die zahlreichen Abbildungen (Fig. 12—14, Taf. XIV und Fig. 23—27, Taf. XV) verwiesen werden darf,
kann man zwei Formen dieser vielförmigen Zellen unterscheiden, solche mit getrennten Kernen und solche mit complicirten Kernfiguren; außerdem kommen noch derartige Gebilde vor, welche neben Kernfiguren getrennte Kerne enthalten. Die Kernfiguren bestehen bald aus kettenförmig aneinander gereihten Kernen, bald zeigen diese einen verzweigten Typus oder erscheinen als vielfach durchschlungene und aufgerollte Bänder (Fig. 12—14, Taf. XIV und Fig. 23—27, Taf. XV). In dem letzteren Falle ist es oft schwierig, ja sehr häufig unmöglich über die gegenseitige Lage rung und Zusammengehörigkeit der Kernabschnitte sich zu unterrichten. So war ich z. B. nicht im Stande, mit Sicherheit zu ermitteln, ob wie bei den Riesenzellen des Knochenmarkes zwischen den einzelnen Bestandtheilen der Kernfiguren netzähnliche Verbindungen vorkommen oder nicht. Dass zwischen den geschilderten Formen prinzipielle Verschiedenheiten wahrscheinlich nicht bestehen, geht schon aus dem Befunde getrennter Kerne neben complicirten Kernfiguren in derselben Zelle hervor.

Auch die Lagerung der Kerne ist eine sehr wechselnde (Fig. 12—14, Taf. XIV und Fig. 23—27, Taf. XV). Dieselben können central liegen, gleichmässig über den Zellkörper vertheilt oder randständig aufgestellt sein. Die letztere Anordnung hat man bekanntlich für Tuberkeleszenzellen als charakteristisch angesehen; dass und weshalb eine solche Annahme nicht gerechtfertigt ist, habe ich 1) schon früher erörtert.

Noch in einer anderen Hinsicht zeigen die vielförmigen Zellen in den Hollunderplättchen eine bemerkenswerte Verschiedenheit; ich meine die Structur der Kerne und Kernfiguren. Die Kerne sind bald hell von vereinzelten oder zahlreichen chromatischen Körnchen und Fäden durchsetzt, bald glänzend und enthalten scheinbar wenige Fäden; am gefärbten Präparate sind die letzteren tief tingirt. Auch hinsichtlich dieser Verschiedenheiten wird es sich nicht um prinzipielle handeln, weil in derselben Zelle helle und dunkle Kerne vorkommen.

Die Entstehungsweise der ketten- und kranzförmig aneinander gereihten Kerne, sowie der verästigten Kernfiguren kann kaum eine andere sein als diejenige nach dem Typus der Fragmentierung.

Dass bei diesen die Zunahme der chromatischen Substanz sehr wechselt, diese Erfahrung ist schon an den kleineren Formen der Wanderzellen gemacht worden; sowie ja überhaupt die Uebereinstimmung in der Architektur und Structur zwischen diesen und den grossen vielkernigen Zellen nicht zu verkennen ist.

Betreffs der Beurtheilung des weiteren Geschickes der Riesenzellen ist die am lebenden Object beobachtete Abschnürung von Zellen besonders bedentungsvoll (Fig. 12, 13 und 14, Taf. XIV). Indem ich bezüglich der Einzelheiten auf die obige Darstellung verweise, will ich hier nur hervorheben, dass sich die Abschnürung in doppelter Weise vollziehen kann. Bald zeigt die Riesenzelle kolbige, kernhaltige Ausläufer, welche, nachdem sie zuvor wiederholt eingezogen und wieder ausgesendet worden waren, endlich später oder früher abgeschnürt werden. Bald erfolgt die Abtrennung bei schwacher oder vollständig mangelnder Bewegung des Körpers der Riesenzelle in der Art einer vom Rande sich vollziehenden Ablösung. Dass bei vielen Riesenzellen eine fortschreitende Entwicklung überhaupt nicht stattfindet, wird später noch zu besprechen sein.

2) J. Arnold, Weitere Beobachtungen über die Theilungsvorgänge an den Knochenmarkzellen etc. Virchow's Archiv Bd. 97, 1884.
degenerative Erscheinungen an ihnen sich abspielen können, habe ich gleichfalls nicht unterlassen zu erwähnen.

Die Bedeutung der Arbeit Werner's 1) darf in dem Nachweis
von Abschnürungsvorgängen an dem Zellleib dieser Gebilde ge-
funfen werden. Auch ich habe in den Holländerplättchen ganz
ähnliche Bilder gesehen (Fig. 24 c, Taf. XV). Geelmuyden 2)
betont, dass das Bemerkenswertheste an den Myeloplasten ihr sehr
complicirt gebauter Kern sei. Derselbe bestehe aus kleinen Kügel-
chen und Bändern, welche durch feine Fäden verbunden sind
und die verschiedenartigsten Figuren darstellen.
Sehr eingehend hat sich Denys 3) mit den Riesenzellen des
Knochenmarkes beschäftigt. Die complicirte Architektur der Kerne
und Kernfiguren wird bestätigt; dagegen erkennt Denys eine Zu-
nahme des geformten und diffusen Chromatins nicht an. Die
dunkle Färbung der Kerne, welche er gleichfalls beobachtet hat,
wird auf eine durch Retraction der Kerne bedingte Annäherung
der Schlingen des Nucleinfadens zurückgeführt. Die Entstehung
der complicirten Kernfiguren erklärt Denys durch Verschmelzung
der buckelförmigen Hervortreibung der Kerne. Die Möglichkeit
einer Einwanderung von Kernen und deren Verschmelzung weist
Denys zurück. Derselbe hat an den Riesenzellen randständige
Abschnürung und endogene Zellbildung beobachtet. Bezüglich der
Ansicht, dass die dunkle Färbung der Kerne lediglich auf eine
Annäherung der chromatischen Fäden zu beziehen sei, will ich nur
bemerken, dass oben bereits erörtert wurde, in wie weit der eigen-
thümliche Glanz der lebenden Kerne und deren intensive Färbung
am conservirten Objekte auf die von der Aktivität der Kerne ab-
hängigen Veränderungen der Dichtigkeit der Kernsubstanz zurück-
zuführen sei. Das Resultat dieser Erwägungen war, dass die Licht-
brechungsverhältnisse der Kerne durch diese Vorgänge sehr wahr-
scheinlich beeinflusst werden, von einer Zunahme der chromatischen
Substanz aber schon deswegen nicht abzusehen sei, weil auch die-
jenigen Kerne, an welchen Contractionserscheinungen nicht nach-
weisbar sind, eine grössere Zahl von chromatischen Fäden und

1) Werner, Ueber Theilungsvorgänge in den Riesenzellen des Knochen-
marks. Virchow's Archiv Bd. 106, 1887.
2) Geelmuyden, Das Verhalten des Knochenmarks in Krankheiten etc.
Virchow's Archiv Bd. 105, 1886.
3) Denys, La cytodie rée des cellules géantes etc. Extrait de la Revue
"La Cellule" Bd. II, 1886.

Man hat gegen die von mir beschriebenen complicirten Kernfiguren die schon vielfach missbrauchte Einwendung gemacht, dass sie durch Reagentienwirkung erzeugte Artefakte seien. Ich hatte
Dr. Julius Arnold:

gehofft einer solchen Deutung durch den Hinweis vorbeugen zu können, dass die verschiedenartigsten und insbesondere die bei solchen Untersuchungen gebräuchlichen Conservierungsmittel in Anwendung gekommen sind. Nachdem durch die angeführten Mittheilungen das Vorkommen solcher zusammengesetzten Kerngebilde bestätigt ist, finden sich vielleicht noch Andere bereit, diese zum Gegenstand einer eingehenden Untersuchung zu machen.

Die in den obigen Zeilen über Architectur, Structur, Entstehung und Theilung der vielkernigen Zellen mitgetheilten Erfahrungen lassen sich in folgenden Sätzen zusammenfassen:

Aus grösseren und kleineren Wanderzellen können nach dem Typus der Fragmentierung vielkernige Zellen entstehen, wenn eine Theilung des Zelleibes zunächst ausbleibt.

Bei diesen Vorgängen kommt es zuweilen zu der Bildung sehr complicirter Kernfiguren, manchmal zu einer einfachen Abschnürung der Kerne.
Eine Zunahme der chromatischen Substanz wird zwar häufig, aber nicht immer beobachtet.

Von den Riesenzenellen können sich, wie die Wahrnehmung am lebenden Objecte lehrt, theils mittelst Bildung von Fortsätzen, theils randständig kernhaltige Zellen abschnüren.

Das Vorkommen mitotischer Kerntheilungsfiguren in den Plättchen.

Der Befund von Mitosen in den Plättchen ist deshalb so bedeutungsvoll, weil er den Schluss nahe legt, dass die Wanderzellen sich nicht nur nach dem Typus der amitotischen, sondern auch nach demjenigen der mitotischen Theilung vermehren können. Durch den Hinweis, dass solche Kernfiguren erst am vierten Tag auftreten, also zu einer Zeit, in welcher vielleicht der Theilung der Wanderzellen bereits die Bedeutung eines von spezifischer Leistung (etwa einer Bildung von Fibroblasten) begleiteten Vorganges zukommt, wird diese Vorstellung nur an Interesse gewinnen können. — Zunächst wird aber zu prüfen sein, ob an verwandten Zellarten das Vorkommen mitotischer Kerntheilungen festgestellt ist.

An den farblosen Zellen des Blutes sind Mitosen vielfach beobachtet und auf Theilungsvorgänge an den weissen Blutkörpern bezogen worden (Pere meshek o, Flemmi ng, L a v d o w s k y, Bi z o z z e r o und ich). Gegen diese Auffassung hat Loe wit den Einwand erhoben, dass es sich in diesen Gebilden um irgend

Noch weniger eindeutig wie die Befunde am Blut sind in dieser Hinsicht diejenigen am Knochenmark. Dass in diesem mitotische Theilungen jeder Zeit in grosser Zahl vorkommen, das ist durch die Untersuchungen Flemming’s, von mir, Loewit’s Werner’s, Deny’s, Geelmuyden’s u. A. festgestellt; ja es darf dieses Object als ein zum Studium dieses Theilungsmodus besonders geeignetes bezeichnet werden. Ob aber die mitotischen Kernfiguren weissen Blutkörpern oder Uebergangsformen zu rothen oder fixen Bindegewebszellen oder sonstigen Knochenmarkzellen angehören, darüber liegen entscheidende Beobachtungen nicht vor. Besonders grosse Erwartungen betreffs der Lösung der Frage, ob weisse Blutkörper oder diesen verwandte Lymphocyten karyokinetisch sich theilen können, hat man an den Nachweis der Mitosen in den Lymphdrüsen geknüpft, wie er zuerst von mir 2) für

1) Kultschizky, Karyokinesis in farblosen Blutkörpern. Centralblatt für die medicinischen Wissenschaften 1887, Nr. 6.

\(^1\) Flemming, Studien über Regeneration der Gewebe. Archiv für mikroskopische Anatomie Bd. XXIV, 1884 und Schlussbemerkungen über die Zellvermehrung in den lymphoiden Drüsen, daselbst.

Bei diesem Stand der Angelegenheit wäre es nun von Bedeutung, wenn auf Grund der Befunde in den Plättchen der Beweis zu führen wäre, dass die Wanderzellen nach dem Typus der Mitose sich theilen können und es scheint mir wohl der Mühe werth, die oben mitgetheilten Beobachtungen daraufhin zu prüfen. Leider ergeben sich aber sofort die Bedenken, ob nicht die mitotischen Figuren als verschleppte, in der Theilung begriffene rothe Blutkörper beziehungsweise verwandte Zellformen oder auf demselben Wege dahin gelangte Endothelien oder wandernde Theilungsprodukte dieser angesehen werden müssten. Gegenüber dem erst erwähnten Einwand lässt sich allerdings geltend machen, dass dieselben auch in solchen Plättchen gefunden werden, in welche rothe Blutkörper nicht hineingelangt sind und dass Hämatoblasten, wie Loewit behauptet, nicht wanderungsfähig sind, sowie dass sie zu Zeiten wahrgenommen werden, in welchen ein mehr oder weniger weit gediehener Zerfall, aber nicht eine Neubildung solcher Zellarten erwartet werden darf. Ähnliche Gründe lassen sich auch gegen den zweiten Einwand in's Feld führen; es mag als sehr unwahrscheinlich angesehen werden, dass verschleppte Endothelien sich durch Mitose vermehren. Schwieriger wird die Ab-
weise der Möglichkeit sein, dass Endothelien oder fixe Bindegewebszellen, welche mobil geworden sind, unter solchen Verhältnissen nach diesem Typus sich teilen.

Mit Rücksicht auf die eben erörterten Verhältnisse wird man vielleicht sagen dürfen: es ist als wahrscheinlich anzuerkennen, dass die Wanderzellen nach dem Typus der Mitose sich vermehren können; aber eindeutige Thatsachen liegen nicht vor. Jedenfalls muss aber mit Rücksicht auf die beschränkte Zahl der Mitosen die Annahme zurückgewiesen werden, dass die Wanderzellen nur mitotisch sich teilen können. Der Befund von zahlreichen Fragmentierungen am lebenden Objecte und conservirten Präparaten darf in dieser Hinsicht als entscheidend angesehen werden. Wollte man gegen die Beobachtung am ersteren einwenden, dass mitotische Vorgänge an lebenden Wanderzellen nicht mit Sicherheit wahrgenommen und dass die vermeintlichen Fragmentierungen verkannte Mitosen seien; der Nachweis zahlreicher solcher Fragmentierungen an conservirten Präparaten muss als entscheidend zugegeben werden. Andererseits beweist die Beobachtung am lebenden Objecte, dass der Fragmentierung des Kerns eine Theilung des Zelleibes folgen kann.

Sollte durch spätere Untersuchungen zweifellos festgestellt werden, dass die Wanderzellen nach dem Typus der Mitose sich teilen können, so wird man dennoch in den Rückschlüssen auf das Vorkommen solcher bei den weissen Blutzellen, Lymphkörpern und den Zellen des Knochenmarkes, der Milz und Lymphdrüsen, sowie ungekehrt die grösste Vorsicht walten lassen müssen. Ob alle Wanderzellen ohne Weiteres als ausgewanderte weisse Blutoder Lymphkörper angesehen werden dürfen, muss als fraglich bezeichnet werden; ferner ist es sehr zweifelhaft, dass die weissen Blutkörper für sich, sowie diese einerseits, die Zellen der genannten Organe andererseits in morphologischer und biologischer Hinsicht identisch sind. Aber selbst wenn dem so wäre, so müsste man bei solchen Erwägungen immer noch die Möglichkeit in Rechnung bringen, dass diese Zellarten nach ihrem Uebertritt in Blut und Lymphpe, beziehungsweise in die Gewebe ihre auf die Theilung bezüglichen Eigenschaften ändern. Die Vorstellung, dass diese Zellen unter den einen Verhältnissen, so z. B. bei der Bildung transitorischer Gewebe nach dem Typus der Fragmentierung, unter den anderen, wenn ihnen eine höhere Leistung zugemuthet wird,
z. B. bei der Entstehung bleibender Gewebe, nach demjenigen der Mitose sich vermehren, ist gewiss werth, auf ihre Berechtigung geprüft zu werden.

1) J. Arn o ld, Beobachtungen über Kerntheilung in den Zellen der Geschwülste. Virchow's Archiv Bd. 78, 1879 (Taf. VI, Fig. 35 u. 36).
2) E ert h, Ueber Kern- und Zelltheilung. Virchow's Archiv Bd. 67, 1876.
4) W aldstein, Ein Fall von progressiver Anämie etc. Virchow's Archiv Bd. 91, 1883.
Ueber Theilungsvorgänge an den Wanderzellen etc. 269

glaubt hat, zwischen den Beobachtungen Martin's und den mei-
nigen Widersprüche finden und demselben den Nachweis der mehr-
fachen Theilung nach dem Typus der Mitose zuzumuten zu sollen.
— Später sind mehrfache Kerntheilungen dieser Art auch von
Anderen in Geschwülsten und sonstigen pathologischen Objecten,
sowie im Knochenmark beobachtet worden (Pinto da Gama\(^1\),
Mayzel\(^2\), Podwysocki\(^3\), Denys\(^4\), Cornil\(^5\), Siegenbeck
van Heukelem\(^6\), Tizzoni e Poggi\(^7\)). Trotz dieser allmählich
ziemlich zahlreichen Beobachtungen darf dieser Typus der mehr-
fachen Kerntheilung dennoch als allgemein anerkannt nicht bezeich-
net werden. Neuerdings hat Aoyama\(^8\) in einer Arbeit, welche
allerdings recht wenig Sachkenntniss verräth, die von Flemming
früher ausgesprochene, von diesem selbst aber aufgegebene Vermu-
thung reproducirte, dass die von mir beschriebenen Kernfiguren
nichts anderes seien als misshandelte einfache Mitosen.

Wenn Siegenbeck van Heukelem hervorhebt, dass auf
 diese Weise mehrkernige Zellen entstehen können, so bin ich be-
 reit dem beizupflichten; damit ist aber ein Novum nicht zu Tage
 gefördert, wie aus meiner zuletzt citirten Arbeit hervorgeht, in
welcher ich die Beziehung der mehrfachen Mitose zu der Bildung

1) Pinto da Gama, Untersuchungen über intraoculare Tumoren.
Wiesbaden 1886.

2) Mayzel, Festschrift für Hoyer 1884. Wie ich aus den Angaben
Waldenyer's (Karyokinese, Archiv für Anatomic 1887) ersehe, hat Mayzel
bei einer Axolotl-Larve die mitotische Theilung einer Bindegewebszelle in vier
Stücke in vivo beobachtet. Ich bedaure genauerer Mittheilungen über diese,
sowie andere in dieser Schrift niedergelegten Beobachtungen nicht machen
to können, obgleich ich durch die Liebenswürdigkeit des Verfassers, dem wir
schon so vielseitige Aufschlüsse über Kern- und Zelltheilung verdanken, in
den Besitz der polnisch geschriebenen Schrift gelangt bin.

3) Podwysocki, Experimentelle Untersuchungen über die Regenera-
dtion der Drüsengewebe. Ziegler's Beiträge zur pathologischen Anatomic.

4) Denys (l. c).

5) Cornil, Sur un procédé de division indirecte des cellules par trois

6) Siegenbeck van Heukelem, Sarcome und plastische Ent-
zündung. Virchow's Archiv Bd. 107, 1887.

7) Tizzoni e Poggi, sulla histogenesi del cancro dei testicoli; Ri-
vista clinica di Bologna; 1886.

8) Aoyama, Pathologische Mittheilungen. Virchow's Archiv Bd.
106, 1886.

Mayzel (l. c.) gibt gleichfalls an, dass er bei der Bildung der Riesenzellen in dem sich regenerirenden Cornealepithel Mitosen vermisst habe. — Podwysokie meint, dass die mehrfache Mitose mit der Bildung mehrkerniger Zellen abschliesse und eine Theilung des Zellleibes nicht nachfolge. Dass diese Ansicht nicht haltbar ist, ergibt sich schon aus der Thatsache, dass man den achronischen Spindelfiguren entsprechend bald seichte, bald tiefe Einschnürungen des Zellleibes genau wie bei der einfachen Mitose trifft. Man vergleiche in dieser Beziehung die Abbildungen Martin's (l. c. Taf. IV, Fig. 7—10). Es wurde oben angeführt, dass Mayzel die mitotische Theilung einer Bindegewebszelle in vier Abschnitte in vivo beobachtet hat; damit scheint mir ein weiterer sehr wichtiger Beleg dafür beigebracht zu sein, dass eine Zelle nach diesem Typus in mehr als zwei Theile zerlegt werden kann.

Bezüglich des Vorkommens der Mitose an Wanderzellen und verwandten Zellarten, sowie deren Bedeutung für die Entstehung von Riesenzellen ergeben sich folgende Erfahrungen:

Dass die Wanderzellen nach dem Typus der Mitose sich teilen können, ist zwar sehr wahrscheinlich aber nicht sicher erwiesen; dagegen steht fest, dass sie sehr häufig nach dem Typus der Fragmentierung sich vermehren.

Der Befund von Mitosen im Blute, in der Lymphé und in den lymphatischen Organen kann nicht als zwingender Beweis dafür angesehen werden, dass die Lymphocyten gewöhnlich nach diesem Typus sich theilen noch weniger aber dafür, dass sie ausschliesslich nach demselben sich vermehren. Rückschlüsse von diesen Zellen auf Wanderzellen und umgekehrt sind nicht ohne weiteres zulässig, weil diese Zellarten...
nicht gleichwertig sind und möglicherweise unter verschiedenen Verhältnissen ihre auf die Theilung gerichteten Eigenschaften ändern.

Vielkernige Zellen entstehen in den Plättchen gewöhnlich nach dem Typus der Fragmentierung, viel seltener nach demjenigen der Segmentierung (Mitose).

Mitotische und amitotische Theilung, Segmentierung und Fragmentierung.

Die Wahrnehmung, dass an den grossen und kleinen Zellen des Knochenmarkes, der Lymphdrüsen, der Milz, sowie der Geschwülste ausser und neben mitotischen Theilungen Fragmentierungen vorkommen und dass diese bald mit, bald ohne Komplikation in der Architectur und Structur der Kerne sich vollziehen, ist für mich die Veranlassung gewesen, eine der indirecten Segmentierung entsprechende Form der Fragmentierung aufzustellen. Der Unterschied zwischen der indirecten Segmentierung und der indirecten Fragmentierung war aber, wie ich glaubte, dadurch gegeben, dass zwar bei beiden eine Zunahme der chromatischen Substanz, bei der letzteren aber eine einfache Kernzerschneidung erfolge, während bei der ersteren namentlich im Stadium der äquatorialen Umordnung hochst complicirte und charakteristische Vorgänge sich abspielen.

Nachdem schon von Eberth 1) und Mayzel 2) auf das Vor-

1) Eberth, L. c. 1876.

2) Mayzel, Ueber eigenthümliche Vorgänge bei der Theilung der
kommen mitotischer Kernteilungen unter pathologischen Bedin-
gungen hingewiesen worden war, machte ich 1) meine Fachgenossen
auf die Häufigkeit solcher Kernteilungsfürmgen in den verschie-
denen Geschwülsten, Sarcomen und Carcinomen insbesondere, auf-
merksam. Diese Arbeit schloss ich mit der Bemerkung: „Dass
bei pathologischen Neubildungen reichliche Gelegenheit zu der-
artigen Stadien geboten ist. Möchte die darin enthaltene Auf-
forderung Beachtung finden, damit in der Geschichte dieser Frage
auch von Seite der pathologischen Anatomien Bestrebungen und
Erfolge zu verzeichnen sind.“ — Ich wies auf die Uebereinstim-
mung der Befunde mit denjenigen an anderen Objecten der Haupt-
sache nach und dem damaligen Stand unserer Kenntnisse entspre-
chend hin. Wie bereits erwähnt, habe ich schon damals (1879)
das Vorkommen mehrfacher Theilungen nach dem Typus der Mi-
tose festgestellt. — In den Beiträgen zur Anatomie des miliaren
Tuberkels 2—4) beschrieb ich mitotische Theilungen der Epithelien

Kerne in den Epithelzellen. Centralblatt für die medicinischen Wissen-
schaften 1875. Mayzel, Beiträge zu der Lehre von den Theilungsvorgängen
des Zellkerns. Daselbst Nr. 11 u. 44, 1877.
Virchow's Archiv Bd. 78, 1879.
2) J. Arnold, Beiträge zur Anatomie des miliaren Tuberkels. II.
3) J. Arnold, Beiträge zur Anatomie des miliaren Tuberkels. III.
Ueber Tuberculose der Lymphdrüsen und Milz. Virchow's Archiv Bd. 87,
1882, p. 132. Der betreffende Passus lautet: „Nur auf die Thatsache möchte
ich bei dieser Gelegenheit hinweisen, dass man in Lymphdrüsen, in welchen
insbesondere mehr chronisch-hyperplastische Processe sich vollziehen, nicht
selten, namentlich an etwas grösseren Zellen Kernfiguren zu beobachten Ge-
legenheit hat, welche den verschiedenen Phasen der indirecten Kernteilung
(Sterne, Knäuel, Spindeln) entsprechen etc."
4) J. Arnold, Beiträge zur Anatomie des miliaren Tuberkels; Ueber
die disseminirte Miliartuberculose der Lunge, Virchow's Archiv Bd. 88, 1882
p. 424 heisst es: „Wenn ich trotzdem geneigt bin die beschriebenen grossen
Zellen, welche bei den disseminirten Herden innerhalb der Alveolen sich an-
häufen, als Abkömmlinge der Alveolarepithelien anzuerkennen, so bestimmt
mich dazu nicht nur der Befund von mehrkernigen Zellen, sondern auch der
von indirecten Kernteilungsfürmgen, sowohl an den Zellen, welche frei inner-
halt der Alveolen liegen, als auch an dem wandständigen Epithel. Insbe-
sondere aus dem letzferen Vorkommen darf wohl der Schluss abgeleitet
in den Harrunkälichen, der Alveolarepithelien der Lungen und erwähnte das Vorkommen derselben bei chronischer Hyperplasie der Lymphdrüsen, sowie bei acuter Hyperplasie dieser sowohl als der Milz\(^1\)). Auch auf das Vorkommen einfacher und mehrfacher Mitosen im Knochenmark\(^2\) u. \(^3\) ist an mehrfachen Stellen hingewiesen worden. Endlich habe ich noch des Befundes mitotischer Teilungen in den Epithelien der Lungenalveolen und Trachea bei entzündlichen Zuständen gedacht\(^4\)). Eine ausführliche Beschreibung der unter solchen Verhältnissen vorkommenden Mitosen habe ich allerdings nicht gegeben, weil ich eine solche in Anbetracht ihrer Uebereinstimmung mit den bekannten Formen für überflüssig hielt. Die grosse Mehrzahl der Beobachter, welche neuerdings z. B. über Hyperplasie der Lymphdrüsen und Milz Untersuchungen angestellt haben, thun meiner diesbezüglichen Angaben mit keiner Silbe Erwähnung; neuerdings hat Aoyama (l. c.) meine sämtlichen auf

werden, dass die Alveolarepithelien unter solchen Verhältnissen sich theilen und vermehren können und dass diese Vorgänge bei der Anfüllung der Alveolen mit Zellen eine Rolle spielen.\(^5\)

1) J. Arnold, Ueber Kern- und Zelletteilungen bei acuter Hyperplasie der Lymphdrüsen und Milz. Virchow's Archiv Bd. 95, 1884, p. 61: „Es ist bereits früher erwähnt worden, dass bei der acuten Hyperplasie der Lymphdrüsen und Milz die Vorgänge der indirecten Fragmentierung die vorherrschenden seien. An dieser Stelle will ich hervorheben, dass dicjenigen der indirecten Segmentierung (Mitose) seltener sind als ich nach den Befunden bei chronischer Hyperplasie der Lymphdrüsen und des Knochenmarkes erwartet hatte etc."

Dr. Julius Arnold:

den Nachweis von Mitosen gerichteten Bestrebungen als „Versuch“ stigmatisirt.

Der Vorschlag, die Bezeichnungen — directe und indirekte Kerntheilung — durch Fragmentierung und Segmentierung zu ersetzten, war mir durch die Wahrnehmung aufgedrungen worden, dass bei der vermeintlich einfachen Zerschmärfung gleichfalls Complicationen der Architectur und Structur vorkommen, während diese doch durch die gesetzmässige Anordnung der chromatischen Fäden, insbesondere durch die Eigenartigkeit dieser im Stadium der
Über Theilungsvorgänge an den Wanderzellen etc.

Die Unterscheidung einer divisio per filula und granula, welche Kollmann vorgeschlagen und Loewit (l. c.) acceptirt hat, ist aus denselben Grunde nicht durchführbar; denn in beiden Fällen finden sich Fäden und Körner. Die wesentlichste Differenz zwischen den beiden Vorgängen ist der Mangel der äquatorialen Umordnung der chromatischen Gebilde und der damit wahrscheinlich zusammenhängenden Gesetzmässigkeit in dem Vorgange der Kernersehnurührung. Die Bezeichnung der Segmentierung und Fragmentierung hat meines Erachtens den Vorzug, dass sie mehr auf die Verhältnisse der äusseren Gestalt, als diejenigen der inneren Structur der sich teilenden Kerne Rücksicht nimmt und dadurch selbst dann noch als anwendbar sich erweisen wird, wenn auch für die letztere durch fortgesetzte Untersuchungen noch grössere Complicationen der Structur sich ergeben werden.

Damit ist aber eine andere Seite der Frage, welche noch einer kurzen Erörterung bedarf, berührt, ob zwischen Fragmentierung und Segmentierung überhaupt die principiellen Differenzen bestehen, wie man im Allgemeinen anzunehmen pflegt. Schon in der ersten Arbeit, in welcher ich auf Grund der Beobachtungen an den grossen Zellen des Knochenmarkes zwischen je zwei Arten der Fragmentierung und Segmentierung unterschieden habe, wurde von mir auf die Möglichkeit, dass nur graduelle Abweichungen vorliegen könnten, aufmerksam gemacht 1). "Die eben geschilderten

1) Virchow's Archiv Bd. 93, p. 35.
Arten der Theilung sind in ihren typischen Repräsentanten charakteristisch genug. Auf der anderen Seite darf ich nicht unterlassen zu erwähnen, dass es Formen giebt, deren Einreihung in das obige Schema zweifelhaft erscheinen kann und weiter unten auf derselben Seite: „dass auch zwischen den complicirten Kernfiguren, welche einem dieser beiden Vorgänge ihre Entstehung verdanken, eine Verwechslung möglich ist, habe ich oben bereits angeführt. Mit Rücksicht auf diese Erfahrung liegt der Gedanke nahe, dass die Vorgänge doch nicht so heterogener Art seien, wie man bei der Berücksichtigung nur der typischen Formen anzunehmen geneigt sein dürfte“. Weiter unten: „Dazu kommt, dass diese Vorgänge sich offenbar nicht ausschliessen, vielmehr derselbe Kern erst nach dem Typus der indirekten Fragmentirung sich vermehren und die Abschnürungsproducte durch indirecete Segmentirung (Mitose) sich weiter theilen können“; derselbe Seite letzte Zeile: „Es hat keinen Zweck die verschiedenen Fälle, die in dieser Hinsicht zu berücksichtigen waren, weiter auszuführen, weil sie sich von selbst ergeben. Ich bin in eine Erörterung dieser Verhältnisse nur eingetreten, um anzudeuten, dass möglicher Weise die Unterschiede zwischen den aufgestellten Typen weniger tiefgreifend sind, als man dies bei alleiniger Untersuchung der ausgesprochenen Formen erwarten sollte.“

wie später die Zelle in einer bestimmten Ebene, der Theilungsebene, in zwei meist gleiche Hälften durchgeschnürt wird. Wir haben nur jetzt, Dank den verbesserten technischen Verfahrensweisen, kennen gelernt, dass dabei gewisse Bestandtheile des Kernes, die sogenannten Kerngerüste, besondere Umformungen erleiden, sich besonders gruppieren und auf ihre Art in zwei Hälften zerlegen; alles dies aber stets innerhalb des Rahmens der sich in alter Weise teilenden Gesamtfigur. — Wie aus dem Mitgeteilten hervorgeht, habe ich von jeher mit der Möglichkeit gerechnet, dass Uebergänge zwischen Mitose und Fragmentirung vorkommen und dass die Differenzen zwischen diesen beiden Theilungsvorgängen doch nicht von so principieller Bedeutung sind, wie man auf Grund unserer bisherigen Erfahrungen im Allgemeinen annehmen pflegt; auf der anderen Seite bleiben meines Erachtens einige wichtige Unterschiede vorerst bestehen. Bei der Fragmentirung fehlt die typische Anordnung der chromatischen Fäden im Stadium der äquatorialen Umordnung; auch das Verhalten der (chromatischen) Kernmembran ist bei der Fragmentirung ein anderes; ihre Contourierung bleibt meistens eine scharfe; möglicher Weise steht damit im Zusammenhang, dass die achromatische Figur bei der Fragmentirung gewöhnlich vermisst wird.

Degenerationserscheinungen an den Wanderzellen und grossen vielkernigen Zellen.

Die Zerfallserscheinungen, welche an den Wanderzellen unter solchen Verhältnissen getroffen werden und oben beschrieben wurden, sind, wie ich glaube, nicht gleichwertig. Ich will in dieser Beziehung zunächst hervorheben, dass dieselben zuweilen erst bei der Betrachtung des überlebenden Objectes sich einstellen, während andere bereits vorhanden sind, auch wenn man die Plättchen ohne Versuch einer Prüfung unterzieht. In dem letzteren Falle dart um so mehr angenommen werden, dass sie bereits innerhalb der Lymphsäcke sich eingestellt hatten, als sie unter Verhältnissen getroffen wurden, bei welchen degenerative Vorgänge überhaupt erwartet werden durften.

Was die erst erwähnten Formen anbelangt, welche erst am überlebenden Object auftreten und mit Rücksicht darauf vielleicht zweckmässig als arteficielle bezeichnet werden, so verräth sich

Die Beschreibung dieser "arteficiellen" Veränderungen ist deshalb etwas ausgeführt worden, weil entsprechende Metamorphosen an dem überlebenden Object, sofort nachdem es den Lymphsäcken entnommen wurde, sowie an gut conservirten Präparaten getroffen werden (Fig. 30, Taf. XVI). Bemerken will ich noch, dass man solche Untersuchungen nicht nur an Chromosmitumessigsäure- und Chromameisensäurepräparaten anstelle darf, sondern dass man seine Beobachtungen an Alkoholpräparaten kontrollieren muss. Nach meinen Erfahrungen zeigt das Protoplasma an den ersteren immer stärkere Veränderungen als an den letzteren; nicht selten ist die periphere Schichte des Zellprotoplasmas wie eine Membran von der übrigen Zelle abgehoben; Veränderungen, welche ich am überlebenden Objekte niemals wahrmahm. Ich habe die Wirkung der Chromgemische wiederholt auf diese Eigenschaft in der Weise geprüft, dass ich die Objekte zuerst in überlebendem Zustande durchmusterte und dann in diese einlegte. Bei solchen
Ueber Theilungsvorgänge an den Wanderzellen etc. 279

Versuchen kann man sich leicht davon überzeugen, dass diese Gen-
menge das Protoplasma der Wanderzellen mangelhaft conserviren.

Die innerhalb der Lymphsäcke eingetretene Degeneration des
Zellleibes macht sich am überlebenden und conservirten Objecte
durch eine lockere Fügung des Zellprotoplasmas und eine Unregel-
mässigkeit der Zellcontouren bemerkbar, welche vielfach unter-
brochen erscheinen. An Eosinpräparaten färbt sich der Zellleib zuweilen ziemlich intensiv; die eigenthümliche Granulirung des-
selben, sowie die grösseren und kleineren Vacuolen treten dann
sehr deutlich hervor. Im weiteren Verlauf nimmt der Zellleib immer mehr an Umfang ab, bis schliesslich nur Reste von Proto-
plasma der Oberfläche anhaften (Fig. 30, Taf. XVI).

Sehr wechselnd sind die bei der Degeneration eintretenden
Metamorphosen am Kern. Manchmal wird dieser einfach heller,
die Fäden und Körner in denselben kleiner, die Kernmembran
dünner, bis endlich der Kern ganz verschwindet (Fig. 30, Taf. XVI);
or aber der Kern zeigt an manchen Stellen eine lichte Unter-
brechung seiner Contouren und sieht wie angenagt aus; der Ab-
schluss ist derselbe wie im vorigen Falle. Immer vollziehen sich
diese Umwandlungen unter mehr oder weniger beträchtlicher Vo-
lumenabnahme des Kerns; nur wenn secundäre Imbibition und
Quellung an ihm sich einstellen, erscheint er als eine vergrösserte
helle lichte Blase.

Ausserdem kommen aber unter solchen Verhältnissen eigen-
thümliche Umwandlungen der chromatischen Substanz vor. Die-
selbe zieht sich nach verschiedenen Stellen des Kerngerüstes zurück
und stellt so im Kerninneren gelegene rundliche und eckige, grö-
sere und kleinere stark glänzende und intensiv sich färbbende Ge-
bilde dar, die im weiteren Verlauf der Degeneration kleiner wer-
den und schwinden, während auch an der Kernmembran Auf-
lösungserscheinungen sich bemerkbar machen. Eine solche An-
häufung chromatischer Substanz kann sich auch an der Kernmembran
vollziehen. Es entstehen kuglige dreieckige oder halbmondförmige
symmetrische gelegene Verdickungen, welche dann durch dunkle
Bälkchen verbunden sein können. Auch in diesem Falle wird eine
Volumenabnahme des Kerns niemals vermisst.

Zuweilen trifft man höchst complicirte Kernfiguren, welche
mit den bei Theilungsvorgängen auftretenden eine weit gehende
Uebereinstimmung zeigen, aber zweifellose Degenerationerschei-

Auch einfache und mehrfache Mitosen werden im Zustand der Degeneration getroffen.

Die Kerndegeneration vollzieht sich also unter wesentlich verschiedenen Erscheinungen. Die erst beschriebene Form ist charakterisiert durch eine fortschreitende Aufhellung des Kerns; es entspricht dieselbe derjenigen Erscheinung, welche man als einfache Necrose zu bezeichnen pflegt.

In dem zweiten Fall kommt es zu einer eigentümlichen Umordnung der chromatischen Substanz, wie sie an den Epithelien schon vor längerer Zeit von Pinens, Klein, Unna und neuerdings von Pfitzner\(^1\) u. A. beschrieben worden und an den Drüsenzellen bei Secretionsvorgängen als sehr häufige Vorkommnisse bekannt sind. Bezüglich der lymphoiden Zellen hat Neumann\(^2\) schon auf solche Erscheinungen aufmerksam gemacht; sehr eingehend sind sie von Loewit\(^3\) darauf hin untersucht worden. Neuestens haben Pfitzner, Kraus\(^4\), Cornil\(^5\), Siegenbeck von Heukelem\(^6\) u. v. A. diesen Erscheinungen ihre Aufmerksamkeit zugewendet.

Was endlich die complicirteren Formen anbelangt, so sind sie den soeben erwähnten insofern nicht gleichwerthig, als es sich nicht um Erscheinungen handelt, welche einer Degeneration ihre Entstehung verdanken, sondern um Kerntheilungsfiguren, welche nicht fortschreitend sich entwickelt haben, sondern der Degeneration verfallen sind. Dass solche Vorgänge vorkommen, d. h. Kerne

2) Neumann, Neue Beiträge zur Kenntniss der Blutbildung. Archiv der Heilkunde Bd. LV.
3) Loewit, l. c.
4) Kraus, Ueber die in abgestorbenen Geweben spontan entstehenden Veränderungen. Archiv für experimentelle Pathologie Bd. XLVI, 1886.
5) Cornil, l. c.
6) Siegenbeck von Heukelem, l. c.
zur Theilung angeregt werden und dann vor vollzogener Theilung zu Grunde gehen können, scheint mir zweifellos. Der Befund von einfachen und mehrfachen Mitosen, welche degeneriren, sowie der von Flemming1) geführte Nachweis, dass bei Follikelschwund verzerrte karyokinetische Figuren vorkommen, dürfen in diesem Sinne als beweisend betrachtet werden. Ich habe oben erörtert, warum die nach dem Typus der Fragmentierung sich theilenden Kerne nicht als Degenerationserscheinungen gedeutet werden dürfen und dass das Vorkommen von Degenerationen an ihnen nicht in dem Sinne ausgelegt werden kann, als ob der Vorgang der Theilung nach dem Typus der Fragmentierung ein degenerativer und die dabei entstehenden Formen Degenerationserscheinungen seien. Es dürfte diese Auffassung als irrige schon deshalb zurückgewiesen werden, weil der Beweis zu erbringen war, dass in solchen Fällen auf die Kerntheilung eine Zelltheilung folgen kann. — Berücksichtigt man andererseits, dass in den verschiedenen Stadien der Kerntheilung eine Degeneration einzu treten vermag, so erklärt sich das Vorkommen derartiger complicirter zerfallender Kernfiguren viel einfacher. Die Deutung derselben als degenerirte Kerntheilungsfiguren scheint mir viel sachgemässer als die Vorstellung, dass die Entstehung dieser Gebilde mit ihrer complicirten Architectur auf eine Degeneration bezogen werden müsse.

Vom morphologischen Standpunkte aus dürfte es sich empfehlen verschiedene Arten der Kerndegeneration zu unterscheiden:

1) \textit{Einfacher Kernschwund}, ohne Umordnung der chromatischen Substanz.

2) \textit{Nucleäre Degeneration}, Kernschwund mit Umordnung der chromatischen Substanz.

3) \textit{Degenerirte Kerntheilungsfiguren}, abortive Kerntheilung.

Dass es in manchen Fällen schwierig sein mag, namentlich die beiden letzten Formen zu unterscheiden, ist nicht in Abrede zu stellen. Ob z. B. die Kerne, welche aus symmetrisch aufgestellten und durch Fäden verbundenen kugeligen oder eckigen Gebilden bestehen, der zweiten oder dritten Art beizuzählen sind, mag zweifelhafte erscheinen. Höchst auffallend war es mir, dass bei

1) Flemming, \textit{Ueber die Bildung von Richtungsfiguren in Säuge thiereiern beim Untergang Graaf'scher Follikel}. Archiv für Anatomie 1885.
solchen Kernen ganz feine lichte Streifen wahrzunehmen sind, welche zwischen den an der Kernmembran gelegenen Gebilden verlaufen (Fig. 30 x, l', m', n', Taf. XVI).

Wenn somit die Degenerationsvorgänge insbesondere am Kern in verschiedener Weise ablaufen können, so gibt es andererseits Anzeichen derselben, welche niemals vermisst werden; ich meine die Volumenabnahme von Zelle und Kern und die Zerfallserscheinungen am Protoplasma, welche bisher vielleicht zu wenig berücksichtigt wurden, sowie endlich die fortschreitende Abnahme der chromatischen Substanz des Kerns, sei es mit, sei es ohne Umordnung derselben und das Verschwinden der chromatischen Fäden insbesondere.

Schliesslich muss noch der Degenerationen Erwähnung ge- schehen, welche an Zellen, die andere Zellen einschliessen, vorkommen. Auch bei ihnen werden eigenthümliche Veränderungen des Kerns, beziehungsweise der Kerne, welche gewöhnlich an die Peripherie gedrängt sind, getroffen; ebenso kann das Protoplasma der Mutterzelle Anzeichen eines Zerfalls zeigen. Die eingeschlossenen Zellen sind dabei sehr häufig nicht, zuweilen aber gleichfalls degenerirt.

Progressive Metamorphosen der Wanderzellen.

Geschichtliches.

Die Lösung der Frage, ob und in wie weit die Wanderzellen, beziehungsweise die weissen Blutkörper einer fortschreitenden Umwandlung fähig sind oder degenerativ zu Grunde gehen, ist auf verschiedenen Wegen angestrebt worden.

Eine hervorragende Rolle hat dieselbe bei der Beurtheilung

2) Baumgarten, l. c. 1877.
3) Raab, Entwicklung der Narbe im Blutgefass etc. Archiv für klinische Chirurgie Bd. 23, 1879.
4) Senn, Experiment. reseaches on cicatrication in bloodvessels after ligatur. Centralblatt f. Chirurgie 1885.
7) Mayer, l. c.

3) Burdach, Ueber den Senftleben'schen Versuch etc. Virchow's Archiv Bd. 100, 1885.
Ueber Theilungsvorgänge an den Wanderzellen etc.

garten erkennt deshalb die Versuche Senftleben's nicht als beweisend an und stellt den Satz auf: es liege nicht ein einziger stringenter Beweis dafür vor, dass ein emigrierter Leukocyt sich in eine bleibende Bindegewebszelle umwandeln könne. Durch die Einwände veranlasst, welche Co h n h e i m (allgemeine Pathologie) gegen die Beweiskraft der zuletzt angeführten Versuche Baumga r t e n's geltend gemacht hatte, unternahm Bur d a c h eine Wiederholung derselben und fand, dass es in den ligirten Abschnitten der Gefässe nur dann zu einer Gewebsentwicklung kommen, wenn von den Enden oder durch die Rissstelle herein eine kontinuierliche Gewebsbildung möglich sei. In der neuesten Zeit hat man auch den Befund von Mitosen (P i c k) bei der Endarteriitis obliterans per ligaturam verwertet, um die Betheiligung der Endothelien und fixen Gewebslemente zu illustrieren.

Ganz ähnlich ist der Stand der Frage bezüglich der Heilung der Gefässwunden (S c h u l t z , P f i t z e r) und Z a h n).

Unterwirft man die mitgetheilten Versuchsresultate einer vorurtheilsfreien Prüfung, so gelangt man zunächst zu dem Ergebniss, dass eine Vermehrung der Endothelien, sowie anderer fixer Gewebslemente bei der Organisation des Thrombus stattfindet. Bezüglich der Verwerthung des Befundes von Mitosen in dieser Hinsicht wird man allerdings sehr vorsichtig sein müssen, weil das Vorkommen mitotischer Theilungen an Wanderzellen zwar nicht bewiesen, aber auch nicht widerlegt ist, somit auf eine Theilung fixer Gewebslemente nur dann geschlossen werden darf, wenn die mitotischen Kernfiguren als diesen zugehörig nachgewiesen werden könnten, was unter solchen Verhältnissen meistens seine grosse Schwierigkeit haben wird. — Die Betheiligung der weissen Blutkörper, welche bei der Gerinnung in den Thrombus eingeschlossen wurden, ist zwar nicht sehr wahrscheinlich, viel eher ihre Degenera-

1) Pick, Ueber die Rolle der Endothelien bei der Endarteriitis post ligaturam. Zeitschrift für Heilkunde Bd. 6, 1886.

4) Zahn, Untersuchungen über die Vernarbung von Querrissen der Arterienintima und -media nach Um schnürung. Virchow's Archiv Bd. 96, 1886.
tion zu erwarten; dagegen muss eine Einwanderung (Recklinghausen und Rubnoff) durch die lebende Gefässwand hindurch mindestens als möglich anerkannt werden. Die Befunde Thiersch's weisen zwar auf die Thatsache hin, dass auch ohne Vermittlung von Wanderzellen ein Transport der Zinnoberkörnchen nach dem Innern der Gefässse stattfinden kann; schliessen aber das Vorkommen einer Einwanderung von Zellen dahin nicht aus. Die Versuche an abgetödteten Gefässen beweisen nichts in dieser Hinsicht, weil die Bedingungen für die Einwanderung und Durchwanderung an der lebenden Gefässwand ganz andere sein müssen. Aus der Beobachtung, dass an den gehärteten Arterienstücken eine solche nicht vorkommt und die Gewebsbildung nur auf praexistenten oder künstlich erzeugten Wegen in's Gefässlumen continuirlich sich vorschickt, darf auf das Verhalten der weissen Blutkörper unter anderen Bedingungen nicht geschlossen werden.

Um Beweise für die Möglichkeit der fortschreitenden Metamorphose der Wanderzellen zu finden, hat man noch andere Wege eingeschlagen. Die Erfahrung, dass weisse Blutkörper in die Maschen von Schwümmen und Kork einzudringen und sich dort anzusiedeln vermögen, ist für Ziegler (l. c.) die Veranlassung geworden, Glaskammern zu konstruiren, dieselben in das Unterhautzellgewebe einzuschieben und die unter solchen Verhältnissen sich vollziehenden Umwandlungen der in dieselben eingewanderten Zellen unter Ausschuss der Beetheiligung der fixen Gewebsselemente zu verfolgen.

Diese Mittheilungen haben sehr grossen Beifall gefunden, insbesondere ist Cohnheim der Beweisführung Ziegler's in allen Hinsichten gefolgt; aber auch an Widerspruch hat es nicht gefehlt (Ewetzky, Weiss, Boettcher, Baumgarten,

Die Resultate derjenigen Versuche, bei welchen Hornhautö in Lymphräume verlagert wurden, sind gleichfalls nicht eindeutig. Senftleben schliesst aus dem Befunde von Riesenzellen in denselben auf deren Abkunft aus Wanderzellen, während Marchand nur am Rande, wenn Gefässentwicklung von dieser Seite her sich bemerkbar machte, Riesenzellen finden konnte. Ob dieses Versuchsobjekt, bei welchem nach Verlagerung in die Lymphsäcke eine sehr starke, der Einwanderung von Zellen gewiss nicht förderliche Quellung sich einstellt, als ein gut gewähltes zu betrachten ist, mag allerdings zweifelhaft erscheinen.

Wie die Geschichte dieser Frage lehrt, haben uns die besprochenen Versuche keine entscheidenden Aufschlüsse darüber gebracht, ob die weissen Blutkörper oder richtiger gesagt die Wanderzellen nach ihrer Einwanderung in die Gewebe zerfallen oder erhalten bleiben und einer fortschreitenden Umwandlung fähig sind; noch fraglicher ist es, ob sie eine Rolle bei der Entwicklung des Granulationsgewebes und Bindegewebes, sowie der Gefässe spielen.

Dass eine progressive Metamorphose unmöglich sei, darf andererseits aus diesen Versuchen deshalb nicht gefolgt werden, weil bei vielen derselben für die Einwanderung und Ansiedelung, sowie die Ernährung und damit für die weitere Entwicklung ungünstige Verhältnisse geschaffen waren.

Verwerthung der Befunde in den Plättchen.

Bei der Verwerthung der oben berichteten Versuche für die Entscheidung der Frage, ob die Wanderzellen nach ihrer Auswan-
Dr. Julius Arnold:

Durch die Resultate dieser am Mesenterium angestellten Versuche ist meines Erachtens der Beweis geliefert, dass Wanderzellen unter günstigen Verhältnissen sich ansiedeln und gewisse Umwandlungen bezugs ihrer Form und Structur eingehen können. Einige Bemerkungen über die Abkunft dieser Zellen werden aber um so mehr erforderlich sein, als man vielfach Wanderzellen und

Wie berichtet war es leider nicht möglich die Dauer dieser Versuche länger als über vier Tage auszudehnen, weil zu starke Veränderungen am Mesenterium und Degenerationserscheinungen an den in den Plättchen enthaltenen Zellen sich einstellten. Die Continuität der Beobachtung liess sich aber in der Weise erreichen, dass bei der zweiten Versuchsreihe die Plättchen vom ersten Tage an einer Untersuchung im überlebenden und conservirten Zustande unterzogen wurden. Ich verkenne nicht, dass die Beweiskraft der zweiten Versuchsreihe derjenigen der ersten nicht gleichwertig ist. Man wird, da bei derselben die Einwanderung nicht direct beobachtet ist, einwenden können, dass die Zellen hineingeschwemmt wurden oder hineingewachsen seien. In dieser Hinsicht wird aller-
Dr. Julius Arnold:

dings zu berücksichtigen sein, dass schon nach 24—36 Stunden die Wandungen der Maschen in derselben Weise, ja noch ausgehöher wie bei den Mesenterialversuchen mit angesiedelten Zellen besetzt waren, welche das gleiche Verhalten bezüglich der Form, Ortsveränderung, sowie der Theilung und andererseits dieselbe Anordnung auf den Septen und Wänden der Maschen darboten und nicht den Eindruck machten, als wären sie dahin geschwemmt worden oder hinein gewachsen. Ueberdies ist in Erwägung zu ziehen, dass schon nach 24—36 Stunden bei der Mehrzahl der Versuche durch nach allen Richtungen umhüllende Lymphthromben Grenzsichten sich gebildet hatten, mittelst welcher für längere, durch Untersuchung auf Durchschnitten festzustellende Zeit ein continuirlich von den Wandungen der Lymphsäcke fortgesetztes Wachsthum den Plättchen ferngehalten wurde, deren Maschenräume von den Zellen nur mittelst der Wanderung durch die Thromben zu erreichen waren. Eine besondere Beachtung verdient in dieser Hinsicht das Verhalten der Zellen in den einander zugewandten Maschensystemen geschichteter Plättchen. Es sind dies alles keine zwingenden Beweise; andererseits wären die Einwürfe, dass alle die Zellen oder deren Mehrzahl, welche nach 24—36 Stunden auf den Wänden der Maschen sich angesiedelt haben, hereingeschwemmt oder hereingewachsen seien, als gezwungene zu charakterisiren, der eine mit Rücksicht auf die Zahl der Zellen, der andere in Anbetracht der Zeit, in welcher sich dies vollzogen hat, beide unter Hinweis auf die Lagerung der Zellen, die Umhüllung der Plättchen und die Übereinstimmung der Befunde mit denjenigen bei den Mesenterialversuchen.

Am Ende des zweiten Abschnittes (S. 238) wurde eine Zusammenstellung der je nach der Dauer der Versuche in den Plättchen sich ergebenden Befunde mitgetheilt. Aus dieser Übersicht geht hervor, dass schon nach 24 Stunden die Maschenräume der Plättchen mit Zellen erfüllt sind, welche zum Theil lebhafte Bewegungen ausführen, vielfach Ortsveränderungen und Theilungen eingehen, zum Theil aber auf den Septen und Wänden der Maschenräume sich angesiedelt haben. Während die ersteren gewöhnlich polymorphe Kerne enthalten, sind diejenigen der letzteren mehr blasenförmig; das Protoplasma ist bei jenen mehr glänzend, bei diesen mehr matt. Nach dieser Zeit nimmt die Zahl der Zellen und zwar sowohl der wandständigen, sowie der im Lumen der Maschen-
räume befindlichen zu und es bilden sich auf den Septen und Wänden continuirliche Belage von Zellen, welche in einfacher oder mehrfacher Reihe übereinander gelagert sein können, sich gegenseitig stark abplatten und zuweilen selbst eine mehr längliche Gestalt annehmen, während die im Lumen enthaltenen amöboid bleiben. An den Oberflächen der Plättchen trifft man kugel- und spindelförmige, fadenartig ausgezogene und verästigte Zellen. Ferner kommen schon vereinzelte vielkernige Zellen vor. In den folgenden Tagen werden die abgeplatteten wandständigen Zellen, ebenso die vielkernigen und an der Oberfläche die spindelförmigen und verästigten Zellen noch zahlreicher. Macht man Durchschnitte durch die Plättchen, so findet man sie nach allen Richtungen von hyalinen Lymphthromben eingehüllt, welche von Wanderzellen enthaltenden Lücken und Spalten durchsetzt sind; die äussersten Maschenreihen sind mit grösseren Zellen und Riesenzellen erfüllt (Fig. 31 u 32 Tafel XVI). Dieselben Verhältnisse ergeben sich an Durchschnitten geschichteter Plättchen. Schon am fünften und sechsten Tage enthalten die Maschenräume grosse abgeplattete Zellen mit hellen Kernen und vielkernige Zellen, während die die Plättchen umhüllenden Thromben in ihren Lücken ausschliesslich Wanderzellen führen und eine von den Lymphsäcken continuirlich fortgesetzte Gewebsentwicklung nicht nachzuweisen ist.

Die Bedeutung dieser Befunde darf meines Erachtens darin erkannt werden, dass zu einer Zeit, in welcher und unter Verhältnissen, bei welchen ein continuirlich fortgesetztes Wachsthum ausgeschlossen werden kann, epithelioide Zellen und Riesenzellen in
Dr. Julius Arnold:

Vom siebenten bis vierzehnten Tage vollzieht sich an den in den Maschenräumen gelegenen Zellen die Umwandlung zu einem epithelähnlichen Belag (Figur 26 u. 27, Tafel XV), während die im Lumen enthaltenen Zellen schon in dieser Zeit häufig Degenerationserscheinungen darbieten; bei kleineren Maschenräumen kommt es allerdings zuweilen vor, dass sie nicht nur wandständig mit Zellen besetzt, sondern vollständig mit Zellen erfüllt sind, welche sich gegenseitig abplatten und eine eigentümliche spindelförmige Gestalt dabei annehmen. Auch Riesenzellen werden in den Maschen, sowie an der Oberfläche der Plättchen in dieser Zeit zahlreich angetroffen, ebenso spindelförmige und vielfach verästelte Zellen. (Figur 28 u. 29 Tafel XV). Dass man auch in dieser Periode noch amöboide Bewegungen und Theilungsvorgänge an den Zellen wahrnehmen kann, geht aus den in dem zweiten und dritten Abschnitt mitgetheilten Beobachtungen hervor. Sehr wesentliche Veränderungen vollziehen sich an den Lymphthromben, weniger an den Blutgerinnseln. Die Strassen und Kanäle in denselben sind viel zahlreicher, die zwischen ihnen gelegenen Massen hyaliner Substanz spärlicher geworden (Figur 32 Tafel XVI). Namentlich aussen und innen erscheint der Thrombus schon etwas zerklüftet, während die mittleren Abschnitte noch geringe Veränderungen zeigen. In der ersten Zeit enthalten die Spalten und Lücken fast nur Zellen mit polymorphen Kernen, später finden sich grösse Zellen mit hellen Kernen, welche zum Theil mehr wandständig gelegen sind. Die Zahl dieser Zellen ist in den inneren, an die Plätt-
Ueber Theilungsvorgänge an den Wanderzellen etc. 293

Im Wesentlichen dieselben Befunde ergeben sich in der dritten Woche; nur sind die Degenerationserscheinungen namentlich an den im Lumen befindlichen Zellen ausgebreiteter; diese sowie die Zellen mit polymorphen Kernen überhaupt werden immer seltener; auch an den Riesenzenellen trifft man da und dort Anzeichen einer Degeneration.

Ziegler beobachtete an den in die Glaskammern eingewanderten Zellen ausgedehnte Degeneration schon vom zwanzigsten Tag an; in späterer Zeit nahm er nur dann, wenn gleichzeitig eine Gefäßsentwicklung vom Rande her sich vorschob, eine Gewebsbildung wahr.

Von den auf die Möglichkeit einer progressiven Umwandlung der Wanderzellen sich beziehenden Befunden sind folgende wohl die bedeutungsvollsten:

Wie die Versuche am Mesenterium lehren, können Zellen, welche nur mittelst Wanderung in die Maschen der Hollunderplättchen gelangt sind, zu einem kontinuierlichen Zellbelag der Septen und Wände dieser sich gestalten, indem die eingewanderten Zellen sich ansiedeln, eine mehr platte Form annehmen, ihr Protoplasma matt und ihr Kern blasenförmig wird.

Dasselbe Verhalten zeigen die Zellen in den Maschenräumen der Plättchen, welche 24—36 Stunden in den Lymphsäcken gelegen hatten; mit Rücksicht darauf, so wie ihre grosse Zahl und die frühe Zeit, in der sie die Maschenräume erfüllen, ist es unwahrscheinlich, dass diese Zellen eingeschwemmt oder herein gewachsen sind; überdies wird schon sehr frühzeitig durch geronnene Lymphe eine Grenzschichte gebildet, durch welche die Zellen innerhalb der 2 ersten Wochen die Plättchen nur mittelst Wanderung erreichen können.

Die in den Maschen enthaltenen Zellen gestalten sich zu epithelioiden Zellen und Riesenzellen um, ehe die von den Wandungen der Lymphsäcke ausgehende Gewebs- und Gefäßsentwicklung die äusserste Lage des Lymphthrombus durchsetzt hat. Die epithelioiden Zellen und die Riesenzellen vermögen sehr lange als solche sich zu erhalten, ohne dass die oben erwähnte
Ueber Theilungsvorgänge an den Wanderzellen etc.

Gefäss- und Gewebsentwicklung die Oberfläche der Plättchen erreicht.

Ueber die Betheiligung der epithelioiden Zellen und Riesenzellen an der Bindegewebsbildung hat sich ein Aufschluss deshalb nicht ergeben, weil im Thrombus später die an Ort und Stelle entstandenen epithelioiden Zellen von den hereingewachsenen Gewebszellen nicht mehr zu unterscheiden waren und andererseits an den in den Maschenräumen enthaltenen Zellen eine Anbildung von Zwischensubstanz selbst nach sehr langer Zeit nicht beobachtet wurde.

Epithelioide Zellen und Riesenzellen.

Dr. Julius Arnold:

thelioiden Zellen aus denjenigen der lymphoiden entstanden sein sollen.

Bei der Erörterung dieser Frage muss zunächst berücksichtigt werden, dass die Vorstellung, als wären alle Wanderzellen ihrer Abkunft nach gleichwerthig und zeigten gleiche Formen und Struktur, irrig ist. Es wurde oben bereits betont, dass keine Berechtigung vorliegt, sie alle als ausgewanderte weisse Blutkörper zu betrachten. Ferner geht aus den in den vorhergehenden Abschnitten berichteten Thatenach zur Genüge hervor, welch grosse Verschiedenheiten die Wanderzellen in Bezug auf Grösse, Form und Struktur des Zellleibes sowie des Kernes darbieten können. Wenn Marchand hervorhebt, dass die Kerne der Wanderzellen klein und solid seien, sowie der eigentlichen Kernkörperchen entbehren, so trifft das nur für einen Theil der Wanderzellen und selbst für diese nicht vollständig zu. Vermuthlich meint Marchand die Wanderzellen mit den polymorphen glänzenden und intensiv sich färbenden Kernen. Es wurde oben nachgewiesen, dass sie der Kernkörperchen niemals entbehren, dagegen mehr oder weniger chromatische Fäden enthalten. Was aber die vermeintliche Solidität (!) des Kernes und dessen Glanz anbelangt, so hat sich herausgestellt, dass diese Erscheinungen mit den am Kern sich abspielenden und auf dessen Aktivität zu beziehenden Vorgängen im Zusammenhang stehen. Es konnte am lebenden Object nachgewiesen werden, wie Zellen mit bläschenförmigen Kernen, wenn sie in amöboiden Zustand übergehen, nicht nur die Form und Lichtbrechung ihres Zellleibes ändern, sondern dass auch die Kerne kleiner, glänzender und compacter erscheinen und die in ihnen gelegenen Körnchen und Fäden undeutlicher werden. Andererseits wurde sehr häufig beobachtet, dass, wenn Wanderzellen mit polymorphen Kernen sich ansiedeln, diese eine mehr bläschenförmige Beschaffenheit annehmen und Körnchen und Fäden in ihnen zum Vorschein kommen. Die polymorphe Form der Kerne und deren Glanz ist der Ausdruck der auf Form-, Ortsveränderung und Theilung gerichteten Aktivität, die bläschenförmige Beschaffenheit derjenige der Ruhe. Siedeln sich die Zellen dauernd oder für längere Zeit an, so mögen sich allerdings noch weitere Umwandlungen in ihnen vollziehen derart, dass die Kerne grösser und lichter werden, das Protoplasma noch matter und feiner granulirt erscheint; aber die prinzipiellen morphologischen Differenzen zwi-
sehen Wanderzellen und epithelioiden Zellen, wie man dies jetzt im Allgemeinen anzunehmen geneigt ist, bestehen nicht: das scheint mir das bedeutungsvolle Ergebniss, der bei der Beobachtung am lebenden und überlebenden Object festgestellten Thatsachen.

Einen nicht zu unterschätzenden Einfluss auf die Umwandlung der Wanderzellen in epithelioiden Zellen mögen allerdings äussere Verhältnisse ausüben. Wenn man wahrnimmt, wie die Zellen bei ihrer Ansiedelung auf den Wänden ihre Form verändern, sowie mehr platt und durchscheinend werden, so kann man sich dem Eindruck nicht entziehen, dass der gegebene Stützpunkt und die Möglichkeit an einer Fläche sich nicht nur festzusetzen, sondern auch auszubreiten bei der Umwandlung, welche die Zellen eingehen, eine Rolle spielen. Andererseits wird durch die fortgesetzte Zuwanderung der Zellen und deren Ansiedelung eine Abplattung nach den Seiten bedingt. Bezüglich des Einflusses der Oberflächenbeschaffenheit der Räume, in welche die Zellen einwandern, scheint mir auch der Befund sehr bemerkenswerth, dass die an der Oberfläche der Plättchen namentlich auf den Scheidewänden sich festsetzenden Zellen eine mehr ländliche, fadenförmige und verästigte Gestalt darboten und schliesslich wie ein Netz die Eingänge zu den Räumen überspannten, so wie dass die in den Lumina der Alveolarräume enthaltenen Zellen besonders häufig und früh degenerirten.

Dass vielkernige Zellen auch nach dem Typus der mehrfachen Segmentierung (Mitose) sich bilden können, darauf wurde oben bereits aufmerksam gemacht und auf derartige Beobachtungen in Geschwülsten, im Knochenmark und an einfach hyperplastischen Lymphdrüsen hingewiesen. Auch in den Plättchen wurden mehrfache Mitosen gefunden: ihre Bedeutung für das Zustandekommen viel-
kerniger Zellen musste aber schon mit Rücksicht auf ihre Seltenheit im Vergleich zu der grossen Zahl der Riesenzellen fraglich gelassen werden.

Ziegler (l. c.) hat sich nach seinen Befunden die Vorstellung gemacht, dass zunächst der Kern einer Zelle sich vergrössere, später aber eine Protoplasanzunahme in der Art erfolge, dass die wachsende Zelle die Nachbarzellen oder Theile derselben in sich aufnehme. Der Kern der aufgenommenen Zelle soll dabei zu Grunde gehen, während das Protoplasma dem der grösseren Zelle einverleibt werde und dessen körnige Beschaffenheit annehme; später solle dann eine wiederholte Theilung des Kernes erfolgen. Ich glaubte dieser unter ähnlichen Verhältnissen angestellten Beobachtungen Erwähnung thun zu sollen, und will gleich hinzufügen, dass es mir nicht gelungen ist, derartige Vorgänge der Assimilation wahrzunehmen.

1) Bezüglich der Literaturnachweise vergleiche man Marchand (l. c.) und Arnold (Virchow's Archiv Bd. 93).
und Drüsenkanäle — durch Proliferation von Endothelien und Epithelien und sekundäre Veränderung dieser sich vollziehen kann, kommt für unser Versuchsobjekt nicht in Betracht.

In einer Mittheilung über Kernheilung und vielkernige Zellen hat die Möglichkeit in Erwägung gezogen, dass der Typus der Segmentierung (Mitose) der fortschreitenden Entwicklung, derjenige der Fragmentierung der regressiven Metamorphose diene. Es wurde schon damals eine solche Annahme zurückgewiesen, weil, wie die Erfahrungen an den ein- und vielkernigen Zellen der Geschwülste, der Lymphdrüsen und des Knochenmarkes lehrten, einerseits die nach dem Typus der Fragmentierung entstandenen Formen einer progressiven Entwicklung fähig sind, andererseits die mitotischen Figuren degenerieren können. Die bei den oben geschilderten Versuchen angestellten Wahrnehmungen sind geeignet, uns in der Auffassung, dass beide Typen der progressiven Metamorphose dienen und die Theilungsprodukte beider Formen degenerieren können, zu bestärken.

Histogenetische Fragen.

Granulationsgewebe. Während die Abstammung der Zellen des Granulationsgewebes früher, den damaligen Anschauungen

1) J. Arnold, Virchow's Archiv Bd. 98, 1881.
fixen Gewebselemente an der Zusammensetzung des Granulationsgewebes nicht ausgeschlossen werde.

Darüber dass in den Tuberkelknötchen mitotische Kerntheilungen in bald grösserer bald kleinerer Zahl vorkommen, kann ein Zweifel nicht bestehen; ich selbst habe schon vor Baumgarten auf das Vorkommen mitotischer Kerntheilungsfiguren in serophulösen Lymphdrüsen aufmerksam gemacht und will an dieser Stelle hinzufügen, dass sie im Granulationsgewebe überhaupt keine seltenen Befunde sind. Ob aber aus diesem auf die vorwiegende oder ausschliessliche Beteiligung der fixen Gewebszemente bei der Entstehung des Granulationsgewebes gefolgert werden darf, das ist mir immer fraglich erschienen.

Meines Erachtens würde das nur zulässig sein, wenn der Nachweis zu führen wäre, dass die mitotischen Kernfiguren nur den fixen Gewebszellen angehören oder aber dass nur diese nach dem karyokinnetischen Typus sich theilen können. Für beide Vor-

lieber Theilungsvorgänge an den Wanderzellen etc. 303

und den sie umhüllenden Lymphthromben war für uns die Veranlassung auch diese Frage zu erörtern. Das Resultat unserer Betrachtungen war, dass eine mitotische Theilung der Wanderzellen und verwandten Zellarten zwar nicht erwiesen, aber auch nicht widerlegt ist.

Um Missverständnissen vorzubeugen, muss ich hervorheben, dass ich weit davon entfernt bin, die Betheiligung der fixen Gewebelemente bei der entzündlichen Proliferation und pathologischen Neubildung überhaupt, bei der Entstehung des Granulationsgewebes insbesondere zu unterschätzen oder gar zu leugnen. Im Gegenteil, ich bin überzeugt, dass die Theilungsvorgänge derselben eine sehr grosse Rolle spielen, ja es ist mir sehr wahrscheinlich, dass diese eine bedeutungsvollere sein kann, als man bei ausschliesslicher Berücksichtigung des Vorkommens von Mitosen erwartet sollte, weil möglicher Weise der Vorgang der Fragmentierung, welcher bei den neueren Untersuchungen einer Beachtung gewöhnlich sich nicht zu erfreuen hat, auch noch in Rechnung zu bringen ist. — Auf der andern Seite muss aber in
Dr. Julius Arnold:

1) J. Arnold, experimentelle Untersuchungen über die Entwicklung der Blutkapillaren; drei Mittheilungen, Virchow's Archiv Bd. 53 u. 54.
Ueber Theilungsvorgänge an den Wanderzellen etc. 305

Erklärung der Abbildungen.

Sämtliche Figuren sind, wenn keine anderen Angaben gemacht werden, bei Zeiss 1/12 h. 1. Oc. 3 gezeichnet; Fig. 1—10 nach Beobachtungen am lebenden, beziehungsweise überlebenden Objekte, die anderen Figuren nach conservirten Präparaten.

Tafel XII.

Fig. 1. Wanderzelle aus einem Hollunderplättchen, welches 10 Tage im Lymphsack eines Frosches gelegen hatte. Zu Anfang der Beobachtung war der Kern in seiner Mitte etwas eingeschnürt, an den Enden eingefurcht; schon nach 5 Minuten hatte sich die Theilung des Kerns vollzogen; nach weiteren 10 Minuten fanden sich zwei getrennte eigenthümlich gestaltete Kerne. Die folgenden Abbildungen veranschaulichen die fortschreitende Theilung des Zelleibes.

Fig. 2. Die Wanderzelle (Hollunderplättchen aus dem Lymphsack nach 7 Tagen entfernt) ist sehr in die Länge gezogen, desgleichen der Kern; nach 5 Minuten hat sich dessen Theilung, nach 10 Minuten diejenige des Zelleibes vollzogen.

Fig. 3. Wanderzelle (10. Versuchstag). Die Vorgänge der Theilung sind ähnliche wie bei Fig. 2. Der Verbindungsfaden zeigt bei der einen Abbildung eine eigenthümliche spirale Drehung; gleichzeitig erfolgte eine Annäherung der Theilungshälften, deren Abstand früher ein grüsserer gewesen war; im weiteren Verlauf der Theilung wird dieser kürzer und dicker; 50 Minuten nach Beginn der Beobachtung ist die Trennung vollzogen.

Fig. 4. Wanderzelle (8. Versuchstag). Dieselbe enthält zwei deutliche an den Enden gelegene Kerne, in denen Fäden kenntlich sind. Ehe es zur Trennung des Zelleibes kommt, erfolgt noch einmal eine Kern-
Theilung. Die Theilungsstücke zeigen eine eigenthümliche Lagerung zu einander.

Fig. 5. Wanderzelle (6. Versuchstag). Im oberen Theil der Zelle ein vielfach gewundener Kern, welcher vor erfolgender Theilung der Zelle abgespalten wird. Dadurch entstehen 3 durch Fäden zusammenhängende und Kerne einschliessende Gebilde; zwischen den beiden nach unten gelegenen erfolgt später eine Theilung.

Tafel XIII.

Fig. 6. Wanderzelle (6. Versuchstag). Drei durch feine Ausläufer zusammenhängende Zellabschnitte (a, b u. c), von welchen jeder einen hellen, mehr bläschenförmigen und Fäden enthaltenden Kern einschliesst. Nachdem zuerst c abgeschütt ist, erscheinen a und b durch einen Faden verbunden, welcher später wieder breiter und kürzer wird.

Fig. 7. Wanderzelle (10. Versuchstag). In der grobgranulirten und stark in die Länge gezogenen Zelle finden sich zwei helle bläschenförmige und fadenführende Kerne. Der zuerst stark verdünnte Verbindungsfinder erscheint später spiralig gewunden, wird dann wieder dicker und kürzer; eine Stunde nach Beginn der Beobachtung ist die Theilung vollendet.

Fig. 8. Wanderzelle (7. Versuchstag). In derselben sind keine Kerne nachweisbar. Die Theilung vollzieht sich unter sehr trägen Bewegungen innerhalb 1 Stunde und 25 Minuten.

Fig. 9. Wanderzelle. Dieselbe hat mehr dicke kolbige Ausläufer und theilt sich gleichfalls unter Ausführung mehr träger Bewegungen nach 10 Minuten.

Fig. 10. Zelle (7. Versuchstag). Dieselbe ist in der Mitte eingeschnürt und enthält in jeder Hälfte einen runden bläschenförmigen Kern, in welchem Fäden kenntlich sind; die Verbindung zwischen den beiden Hälften wird immer schmäler. Nach einer Stunde kommt es zur vollständigen Theilung, ohne dass bemerkenswerte Formveränderungen am Zelleib nachweisbar geworden wären.

Fig. 11 zeigt verschiedene Zellformen nach der Beobachtung am überlebenden Objecte, von I. (a, b, c, d u. e), 6. (f, g, h, i, k u. l) und 8. (m, n, o, p u. q) Versuchstage.

Fig. 12. Theilung einer vielseitigen Zelle. Dieselbe enthält in den Fortsätzen und in dem Zelleib Kerne. Die Theilung erfolgt unter Ausführung mässig lebhafter Bewegungen und entsprechender Volumensverkleinerung des Gebildes.

Fig. 13. Eine grosse vielseitige Zelle zeigt randständige Abschnürung kernhaltiger Zellen; auch in diesem Falle erfolgte den Abschnürungen entsprechende Volumensverkleinerung.
Tafel XIV.

Fig. 14. Eine grosse Zelle enthält ausser mehreren Kernen einen enorm in die Länge gezogenen rothen Blutkörper. Von der Zelle schnüren sich Zellen ab, welche lebhafe Bewegungen ausführen; ausserdem kommt es zu einer Zerkleinerung des rothen Blutkörpers.

Fig. 15. Großgranulierte Wanderzellen mit theils helleren, theils dunkleren Kernen (2. Versuchstag. Spirituspräparat).

Fig. 16. Verschiedene Formen kleinerer Wanderzellen (6. Versuchstag. Chromosmiumessigsäure). Die Kerne einfach oder mehrfach, verästigt oder kettenförmig aneinandergereiht, hell oder dunkel gefärbt.

Fig. 17. Etwas grössere Zellen mit complicirteren theils helleren (a, d u. f), theils dunkleren (b, c u. e) Kernfiguren (2. Versuchstag. Chromosmiumessigsäure).

Fig. 18. Grössere Wanderzellen mit complicirteren Kernfiguren (2. Versuchstag. Conservierung in Spiritus von steigender Concentration). Viele Kerne (e, d, e u. i) sind in der Mitte zu dünnen, oft kaum noch nachweisbaren Fäden ausgezogen. Die einen Kerne erscheinen heller, die anderen dunkler; in den meisten erkennt man Fäden und Körner.

Fig. 19. Verschiedene Wanderzellen (7. Versuchstag. Sublimatlösung). Die meisten Kerne erscheinen dunkel; die Kernabschnitte (b, e u. c) sind zuweilen nur noch durch feine Fäden verbunden. Der Zellleib ist meistens mit zahlreichen Ausläufern besetzt.

Fig. 20. Grössere Zellen (9. Versuchstag. Chromosmiumessigsäure). Die zum Theil hellen bläschenförmigen (b, e u. d), zum Theil dunklen (a u. c) Kerne sind kettenförmig aneinander gereiht oder erscheinen als sehr stark geschlängelte (e) Kernbänder.

Tafel XV.

Fig. 21. Grosse Zellen (6. Versuchstag. Chromosmiumessigsäure). (Vergr. Zeiss 1/12 h. I. Ocul. 4.) Dieselben enthalten grosse runde, ellipsoide und geschlängelte (d) Kerne, welche theils schwach, theils stärker (c) diffus gefärbt sind und alle deutliche Fäden enthalten.

Fig. 22. Vielkernige Zellen (7. Versuchstag. Chromosmiumessigsäure). Die Zelle a enthält kettenförmige dunkle, die Zelle b ebensoehe helle Kerne, die Zelle c getrennte Kerne mit Fäden.

Fig. 23. Grosse Zellen (3. Versuchstag. Chromosmiumessigsäure). Die Kerne der meisten Zellen sind intensiv gefärbt, entweder vielfach geschlängelt (a u. b) oder geknüelt (e u. f) oder verästigt (e u. d), vielleicht netzformig (g). Der Zellleib ist bei allen gut erhalten, bei manchen verästigt (c, d, e u. f). Die beiden Riesenzellen (h u. i) enthalten einfache Kernfiguren; die Abschnitte derselben sind theils heller, theils dunkler; in derselben Zelle finden sich in dieser Him-
sicht Verschiedenheiten. In den meisten Kernen ist Fadenstruktur nachzuweisen.

Fig. 24. Zellen mit complicirten Kernfiguren (3. Versuchstag. Chromosmiumessigsäure); die eine Kernfigur (e) zeigt deutlich eine Einschnürung, ebenso der Zelleib.

Fig. 25. Zellen (8. Versuchstag. Chromosmiumessigsäure) mit verzweigten (a, b u. c) und netzförmigen (d) Kernen; in der einen Zelle (e) sind die Kerne getrennt und enthalten Fäden.

Fig. 26. Maschen und Septen (a u. b) von Hollunderplättchen gefüllt und grossen viilkernigen epithelioiden Zellen (7. Versuchstag. Chromosmiumessigsäure).

Fig. 27. Eine Masche mit epithelioiden Zellen besetzt (9. Versuchstag. Chromosmiumessigsäure).

Fig. 28. Fadenförmige, spindelförmige und verästelte Zellen; die Kerne theils hell, theils dunkel, in den einen Fäden kenntlich, in den anderen nicht (2. Versuchstag. Chromosmiumessigsäure).

Fig. 29. Maschen eines Hollundermarkplättchens von länglichen Zellen überspannt und mit vielkernigen Zellen besetzt (3. Versuchstag. Chromosmiumessigsäure).

Fig. 30. Verschiedene Degenerationsformen am conservirten Präparate (9. Versuchstag. Härtung in Spiritus; steigende Concentration).

Fig. 31. Hollunderplättchen nebst umhüllendem Lymphthrombus. Durchschnitt (3. Versuchstag. Spiritushärtung; steigende Concentration; Vergr. Zeiss DD Oc. 3). Im Lymphthrombus sieht man zahlreiche helle rundliche Lücken und längliche, sowie verzweigte Strassen. Dieselben enthalten stellenweise Wanderzellen. Die angrenzenden Maschen des Plättchens sind mit grösseren und kleineren, ein- und mehrkernigen Zellen gefüllt.

Fig. 32. Geschichtete Hollundermarkplättchen nebst intermediärem Thrombus auf dem Durchschnitt (5. Versuchstag. Chromsäurehärtung. Vergr. wie bei 31). Der zwischen zwei Plättchen gelegene Lymphthrombus ist vielfach zerklüftet und enthält in seinen Spalten grössere und kleine Zellen; auch die Maschen sind zum Theil mit grösseren Zellen gefüllt.

Fig. 33. Durchschnitt durch ein geschichtetes Plättchen, welches 58 Tage im Lymphsack gelegen und vollständig angeheilt war (Conservierung in Alkohol; Vergrösserung wie bei Fig. 31). Die Maschen sind mit grossen länglichen und eckigen Zellen gefüllt; in den mittleren Maschen Degenerationsverscheinungen. Die nach oben gelegenen Maschenreihen grenzten an ein benachbartes Plättchen, welches dieselben Verhältnisse darbot.
K. Zaluskowski: Bemerkungen über den Bau der Bindehaut. 311

(Aus dem anatomischen Institut zu Berlin.)

Bemerkungen über den Bau der Bindehaut.

Von

K. Zaluskowski.

Wenn man also nur die Form der fraglichen Bildungen betrachtet, so stimmen beinahe alle Autoren darin überein, dass der-
gleichen Bildungen existiren — die Form einer grübchenartigen Vertiefung, einer kolbenartigen Einsenkung, einer blinddarmförmigen Einstülpung oder sackförmiger Ausbuchtung entspricht der Form einer tubulösen Drüse, oder einer Tasse. Als wichtigere Frage erscheint, ob diese Gebilde als Drüsen zu bezeichnen sind, d. h. ob ihnen alle Eigenschaften einer Drüse zuzuschreiben seien. So gibt Mandelstamm ihre Existenz zu, spricht ihnen aber den Drüsencaracter ab, weil sie keine besondere Umhüllungsmembran und keinen gut ausgebildeten Ausführungsgang hätten.

Bei meinen Untersuchungen habe ich mich nicht der Methode der Flächenschnitte bedient — die Zeichnungen, welche Baumgartner von Flächenschnitten gegeben hat, konnten mich dazwischen ermutigen. Ich habe die Schnitte senkrecht zur Fläche der Conjunctiva geführt und, um die Lageverhältnisse nicht zu ändern, habe ich die Schnitte durch das ganze Auge gelegt. Es gelang mir eine grosse Menge von Schnitten auf diese Weise zu erhalten, die nun in der entsprechenden Reihenfolge untersucht wurden. Dadurch war es möglich gemacht, eine und dieselbe Einstülpung durch mehrere Schnitte hindurch zu verfolgen und sowohl ihre Form, als auch Ausdehnung und Verlaufrichtung zu beobachten. Was die letztere anbelangt, so habe ich gefunden, dass nur eine geringe Zahl von diesen Schläuchen senkrecht in die Tiefe verläuft; die meisten sind umgebogen, manche gleich unter dem Epithel scharf unge-
Bemerkungen über den Bau der Bindegaut.

und zwar zahlreicher in der Conjunctiva des oberen Lides, als in der des unteren. Am dichtesten beisammen fand ich sie im Orbi-
taltheile und in der Fornixgegend — jedoch fanden sich mehrere
auch im Tarsaltheile und eine fand ich sogar in der Conjunctiva
bulbi ziemlich weit vom Fornix. Ich halte jedoch das letztere für
eine Ausnahme, obgleich Purtscher derartige Gebilde in der Con-
junctiva bulbi beschreibt und sie mit den von Berlin, Iwanow
u. A. erwähnten identifiziert.

Wenn ich auch nicht zugeben kann, dass diese Aussackungen
vollkommen gleichwertig mit den Rinnen und Furchen sind und
dass Übergänge von der einen Form zu der anderen existieren,
so muss ich doch Baumgarten darin zustimmen, dass dieselben
in einem gewissen Verhältnisse zu den Furchen stehen. Bei den-
jenigen Individuen nämlich, bei welchen ich zahlreiche und tiefe
Furchen gefunden habe, fand ich keine, oder nur sehr spärliche
Tubuli, während bei einem Individuum, bei welchem ich zahlrei-
che und gut ausgebildete Tubuli gefunden habe, die Oberfläche der
Conjunctiva verhältnismässig glatt und eben war. Ich kann also
die Ansicht Baumgartens bestätigen, dass beiderlei Bildungen
einander substituiren können. Nach diesen Befunden kann ich
nicht zustimmen, wenn Schwalbe die schlauchförmigen Einstül-
pungen in ein ganz anderes Verhältniss zu den Furchen bringt;
er behauptet nämlich, dass dieselben hauptsächlich nur da zu fin-
den wären, wo das Rinensystem gut ausgebildet sei. Auch bringt
sie Schwalbe in Zusammenhang mit der lymphatischen Infiltra-
tion und den sg. Lymphfollikeln, indem er meint, dass nur in Ge-
genwart der letzteren die Schläuche zahlreich und von grösseren
Dimensionen seien. Fehlen dagegen die Haufen von Lymphzellen,
so seien auch die Schläuche spärlich und klein, so dass sie gar
nicht den Namen „Drüsen“ verdienten. Ich wüsste nicht, warum
man eine kleine tubulöse Einsenkung, nicht ebensogut „Drüse“
nennen sollte, wie eine grosse, wenn man die letzteren
überhaupt als Drüsen anerkennt, woran doch kaum gezweifelt
werden kann — und was den Zusammenhang mit den
sogenannten Lymphfollikeln anbelangt, so habe ich bei zwei
Individuen eine starke lymphatische Infiltration, zahlreiche
und dichte Haufen von Lymphzellen und gut entwickeltes
Furchensystem gefunden, aber durchaus keine Tubuli. Auch
bei einem Kaninchenauge fand ich zahlreiche sogenannte Lymph-

Das Epithel der Conjunctiva des Menschen

Viel heftiger, als um die tabulösen Drüsen, manchmal sogar leidenschaftlich, wurde der Streit geführt um die Lymphfollikel der Conjunctiva, oder die Henle'schen Trachomdrüsen.

Was ihre Existenz in der Bindehaut eines ausgewachsenen Menschen anbelangt, so wurde auch hier wohl mehr um den Namen, als um den Gegenstand selbst gestritten.

Wenn man die von v. Recklinghausen beschriebenen Follikel als Typus nimmt und den Namen „Lymphfollikel“ nur gebraucht, wenn dieser Typus in allen Einzelheiten wiedergefunden wird, so passt der Name nicht auf die fraglichen Gebilde der Conjunctiva.

Und diesen Grundsatz haben offenbar die Autoren befolgt, welche keine Lymphfollikel gefunden haben. So sieht Walter keine „gut ausgebildeten Lymphfollikel“: Jacobson will den beim Trachom vorkommenden Gebilden den Namen „Lymphfollikel“ nicht einräumen, Baumgarten findet nicht scharf umschriebene Herde lymphadenoider Substanz, ebenso wenig Schwalbe, Alt findet keine ausgesprochenen Lymphfollikel. Auch die au-
deren Autoren, welche die Existenz der Lymphfollikel langten, wie Sattler, Reich, Morano, suchten wohl vergeblich nach dem Typus v. Recklinghausen's. Mir scheint wenigstens die Annahme Stöhr's und Pröbsting's, dass die Follikel wegen ihrer geringen Grösse und Zahl sich so oft der Beobachtung entzogen haben, unwahrscheinlich. Andererseits kann ich nicht Raehlmann zustimmen, der bei Baumgarten eine Täuschung voraussetzt der Art, dass durch den Flächenschnitt nur die Wellenberge der gewellten infiltrirten Zone getroffen wurden, die dann den Eindruck mehr oder minder scharf umschriebener Heerde machten. Baumgarten sagt ja ausdrücklich, dass die Nachbarschaft der Heerde ebenfalls lymphatisch infiltrirt sei.

In den Bindehauten von sechs Individuen, welche ich untersucht habe, habe ich ohne Ausnahme eine mehr oder minder starke lymphatische Infiltration gefunden, die an manchen Stellen zu dichten Anhäufungen von Lymphzellen sich steigerte, ohne jedoch diesen Anhäufungen eine irgend wie regelmässige Form zu geben, oder scharf von der Umgebung abzugrenzen oder sie mit einer besonderen Umhüllungsmembran zu versehen.

Bei neugeborenen Kindern habe ich, übereinstimmend mit allen bisherigen Angaben, keine lymphatische Infiltration und demnach auch keine Anhäufungen von Lymphzellen gefunden.

Wenn ich nun diese Haufen von Lymphzellen in der menschlichen Conjunctiva nicht Lymphfollikel nennen kann, so muss ich doch den Gebilden, welche ich in der Conjunctiva der Thiere gefunden habe, diesen Namen beilegen. Beim Kaninchen und beim Schwein (beide Thiere waren ausgewachsen), namentlich aber beim

Schwierig ist die Frage zu beantworten, ob die beschriebenen Haufen von Lymphzellen, eventuell die Lymphfollikel den physiologischen oder den pathologischen Bildungen zuzuzählen sind. Die neueren Autoren neigen im Allgemeinen zu der Ansicht, dass dieselben, wenn auch nur in gewisser Anzahl und Grösse, als physiologische Gebilde zu betrachten seien, während von den älteren sich namentlich Wolfring, Blumberg, Jacobson für den pathologischen Charakter derselben aussprechen. Für den Charakter als physiologische Gebilde spricht der Umstand, dass sie beim Menschen häufig, bei Thieren constant gefunden wurden in einer anscheinend ganz gesunden Conjunctiva. Sie wurden aber constant nicht gefunden bei Kindern und jungen Thieren, auch kann es nicht nachgewiesen werden, dass an der Conjunctiva, in welcher Anhäufungen von Lymphzellen gefunden wurden, nicht während des Lebens ein Leiden bestanden hat, das vielleicht nicht einmal von dem Individuum selbst bemerkt wurde. Und die Individuen, deren Bindehäute meistens, oder fast ausschliesslich zur mikroskopisch-anatomischen Untersuchung kommen, waren gewöhn-
lich während des Lebens viel dem Staube und Winde ausgesetzt, oder es waren in Zuchthäusern internierte Verbrecher, wo Conjunctivalleiden ungewöhnlich häufig sind. Bei Thieren wirken alle die schädlichen Einflüsse auf die Conjunctiva noch viel mehr ein, wie bei den Menschen; und eben das Schwein, in dessen Bindehaut so gut ausgebildete Follikel sich finden, ist diesen schädlichen Einflüssen in hohem Maasse ausgesetzt.

Schmid wollte zwar durch ein Experiment zeigen, dass äussere Schädlichkeiten keinen Einfluss üben auf die Bildung der Follikel; er trieb aber den Versuch so weit, dass die ganze Entwicklung des Thieres dadurch gehemmt wurde und das Thier an dem Versuche starb. Unter diesen Umständen kann man die Resultate des Versuchs nicht als beweiskräftig anerkennen.

Aber schon der Umstand, dass bei jungen Individuen die Conjunctiva von Lymphfollikeln und lymphatischer Infiltration frei ist, spricht genug gegen die Auffassung der Lymphzellenhaufen als physiologischer Gebilde.

Raehlmann genügt dieser Umstand, um die Lymphfollikel der Thiere als pathologische Bildungen zu bezeichnen.

Pröbsting erklärt die Becherzellen für physiologisch, weil er sie „bei Fetten und neugeborenen Kindern“ gefunden — und trotzdem diese Begründung auf die Lymphfollikel nicht passt, bezeichnet er sie doch als physiologische Gebilde.

Ich bin zu der Ansicht gelangt, dass die lymphatische Infiltration und die stellenweise stärkere Anhäufung von Lymphzellen wohl sehr verbreitet ist, dass der Antrieb zu ihrer Entstehung jedoch nicht vom Organismus selbst ausgeht, sondern von äusseren Einflüssen, dass sie nicht etwas Normales, zum Wesen der Conjunctiva nothwendig Gehöriges, sondern etwas immerhin zufällig Erworbenes darstellen, dass sie also nicht physiologische, sondern pathologische Gebilde sind. Ich halte es für wahrscheinlich, dass diese Anhäufungen von Lymphzellen Prädilectionssstellen sind für weitere Erkrankungen, dass eine mit ihnen behaftete Conjunctiva günstigeren Boden abgibt für die trachomatöse Entzündung. Und wenn auch unter dem Einflusse der Erkrankung die unregelmässigen Haufen von Lymphzellen sich zu Follikeln oder follikelartigen Gebilden abschliessen können, so halte ich es für verfehlt, daraus auf die normalen Zustände schliessen zu wollen, und mit Notwendigkeit die Lymphfollikel als normale Gebilde in der gesunden
Conjunctiva vorauszusetzen, wie es Goldzieher gethan hat. Ich muss gestehen, dass eine solche durch Rückschlüsse von pathologischen auf physiologische Zustände gewonnene Gewissheit für mich weniger Werth hat, als ein negativer Befund bei einer Untersuchung, welcher für Goldzieher kein Beweis ist.

Stöhr erwähnt derselben Zellen bei Beschreibung der Gegend des Papillarkörpers und behauptet, dass dieselben sich zahlreich im Gewebe der tunica propria dieser Gegend finden, weiss jedoch über ihre Eigenschaften nichts weiter anzugeben, als dass sie keine Leucocytens sind.

Augenlider waren sie etwas weniger zahlreich, als in der Gegend des Müller'schen Muskels.

Bei einem anderen Kinde fand ich sie im Allgemeinen weniger zahlreich, dafür jedoch grösser; sonst waren die Verhältnisse ebenso wie beim ersten.

Beim Erwachsenen fand ich sie im Gewebe des Fornix vereinzelt und ebenso spärlich in den hinteren Partien.

Dieselben Verhältnisse fand ich beim noch zwei anderen Individuen — die Zellen gross und gut entwickelt, jedoch in geringer Anzahl; bei einem derselben waren sie sogar recht spärlich. Dagegen waren die Protoplasmazellen recht zahlreich bei zwei Individuen, bei denen ich sie auch in ziemlich grosser Anzahl im Conjunctival-Gewebe gesehen habe, gemischt mit Lymphzellen; sie waren aber bedeutend kleiner wie die zuerst erwähnten, und die Mehrzahl derselben besass Fortsätze.

Beim Schwein waren sie im Allgemeinen spärlicher wie beim Kaninchen. Diejenigen, welche ich in den hinteren Fornixpartien traf, waren mit langen Fortsätzen versehen, und manche von ihnen
K. Zalusowsky:

sehr lang ausgezogen. Im subcutanen Gewebe habe ich sie nur vereinzelt gefunden.

Ich beschränke mich darauf, die Resultate meiner mikroskopischen Untersuchung anzugeben. Was die Natur und Bestimmung dieser Zellen anbelangt, so kann ich nur die Worte Stöhr's wiederholen, dass ich darüber keine näheren Aufschlüsse zu geben im Stande bin. Vielleicht stehen sie in irgend einem Verhältnisse zu den glatten Muskelfasern, da sie sich am zahlreichsten zwischen diesen und in deren Umgebung finden.

Litteratur.

Die grüne Drüse des Flusskrebses.

Von

Professor Dr. Carl Grobben in Wien.

Meinen Angaben gegenüber wird von B. Rawitz

1) behauptet: „Die grüne Drüse vom Flusskrebs besteht nicht aus einem vielfach gewundenen Schlauche, sondern aus zwei Schläuchen, die erst kurz vor ihrer Einmündung in die Blase sich
Dr. Carl Grobben:

mit einander verbinden. Und zwar bilden die grüne und die weisse Substanz den einen — langen, die gelbbraune und ein kleiner Theil der weissen den zweiten — kurzen Schlauch; niemals aber hat — eine unmittelbare Communication zwischen der grünen und gelbbrauen Substanz statt.

2) die Berechtigung, den gelbbrauen Endtheil der grünen Drüse als „Endsäckchen“ zu bezeichnen, bestritten, und wiederholt hervorgehoben, dass diese Bezeichnung meinerseits „der Phylogenie zu Liebe“ gewählt wurde;

3) angegeben, dass die Färbung des gelbbrauen Theiles nicht durch Einlagerung gelbbraun gefärbter Körper im Zellleibe, sondern „durch die Anwesenheit strohgelb gefärbter Kerne“ bedingt sei;

4) hervorgehoben, „dass eine Cuticula an den Zellen in der grünen Substanz nicht einmal nur angedeutet vorhanden ist;

5) die Angabe gemacht, dass ein strangförmiger Zerfall des Protoplasmas der Epithelzellen in der weisslichen Abtheilung des Kanals nicht vorkommt;

6) eine reichliche Vascularisation des Endsäckchens bestritten.

Diesen vorstehenden Resultaten gegenüber muss ich auf Grund neuer Controluntersuchungen alle meine früher gemacht Angaben als vollkommen richtig aufrecht erhalten; und zwar:

4) Die Zellen der grünen Drüsenabtheilung besitzen gegen das Lumen des Drüsenrohres hin eine dicke sog. Säbcheneunticula.

5) Die strangförmige Anordnung des Protoplasmas ist auch in den Zellen der weissen Kanalabtheilung und sogar sehr deutlich ausgebildet.

6) Das Endsäckchen ist reichlich mit Blutkanälen versorgt.

Hat es sich somit herausgestellt, dass die von meinen Angaben differirenden Ergebnisse, zu denen B. R a w i t z gelangte, sämtlich unrichtig sind, so muss ich weiter auch Verwahrung dagegen einlegen, dass B. R a w i t z meinen Angaben Deutungen unterschiebt, welche nicht darin zu finden sind. So schreibt R a w i t z: „Als besonders beweisend gilt der strangförmige Zerfall oder die strangartige Anordnung der „Protoplasmakörnchen“, die nach G r o b b e n’s Meinung eine Folge des lebhaften Stromes ist, also auf rein mechanischen Ursachen beruhen soll. Auf diesen letzteren Punkt will ich überhaupt nicht eingehen, da er sich selber widerlegt. Der strangartige Zerfall der Epithelien der grünen Substanz — ist meiner Ansicht nach zwar bewirkt durch die angewandten Reagentien, aber doch begründet in einer inneren Structur des Protoplasmas. Würde ich denselben an den Epithelien aller drei Substanzen gefunden haben, so würde ich nicht einen Moment zögern, ihn als Artefact zu betrachten“ u. s. f.

Abgesehen davon, dass sich der von R a w i t z unter Anführungszeichen citirte Ausdruck „Protoplasmakörnchen“ in meiner Arbeit nicht findet, sondern der Terminus „Protoplasmakörnchen“, so ist mir vollkommen unergründlich, wie R a w i t z aus meiner Stelle heranslesen kann, dass ich die strangförmige Anordnung des Protoplasmas als Artefact betrachte. Ganz unverständlich jedoch bleibt die Bemerkung, dass meine Ansicht, die erwähnte strangförmige Anordnung beruhe auf rein mechanischen Ursachen, sich selber widerlege.

B. R a w i t z citirt ferner eine Stelle meiner Abhandlung, welche sich auf die Quellungsfähigkeit der Zellen und das Herausrücken der Kerne bezieht, als Angabe betreffend die Zellen der grünen Substanz, wogegen ich dieselbe von den Zellen der weissen Kanalabtheilung mache, da ich die angeführte Erscheinung auch nur an den letzteren beobachtet habe. Ich muss hier ein Ueberschauen von Seiten R a w i t z“ annehmen, da gleich auf der folgenden Seite sich die Angabe findet, dass dieses Hervorquellen des Kernes
Dr. Carl Grobben: Die grüne Drüse des Flusskrebses.

Ich beschränke mich, auf diese Punkte der Rawitz'schen Publication hingewiesen zu haben, und sehe hier vollkommen von verschiedenen kritischen Bemerkungen, welche Rawitz bezüglich einiger Punkte meiner Arbeit macht, ab, über deren Berechtigung eine Einsicht in meine Arbeit urtheilen möge.
Ueber die Beziehungen der quergestreiften Muskeln zum Papillärkörper der Lippenhaut.

Von

Dr. med. W. Podwyssozki (jun.),

Hierzu Tafel XVII.

Vorliegende Mittheilung hat den Zweck, einige Lücken in unseren Kenntnissen über die histologischen Verhältnisse der quergestreiften Muskeln der Haut im Allgemeinen und speziell der Lippenhaut auszufüllen. Gleichzeitig dürften die mitzutheilenden Thatsachen von Interesse und nicht unwichtig für die noch immer streitige Frage über das Verhalten der Muskelfasern zu den Sehnenfasern sein.

Alles, was gegenwärtig über die Hautmuskeln in der histologischen Literatur vorliegt, bezieht sich eigentlich auf die glatte Muskulatur; die quergestreiften bleiben, meines Wissens, soviel wie gar nicht berücksichtigt. „Willkürliche quergestreifte Muskelfasern gelangen nur im Gesicht, am Bart und an der Nase von der Tiefe in die Haut hinein und endigen in der Lederhaut bald unter schiefem Winkel, bald senkrecht zwischen den Haaren und Talgdrüsen gelegen.“ Diese von Biesiadecki1) noch im Jahre 1871 gemachte Beschreibung entspricht auch heutzutage, wenn wir von Aeby's mehr topographischen Angaben absehen, unseren Kenntnissen über die Verhältnisse der quergestreiften Muskeln zu der Haut. Die feineren histologischen Beziehungen sowie die Art der Befestigung der Muskeln bleiben unbekannt.

In den entsprechenden Capiteln der gegenwärtig ziemlich umfangreichen Literatur über die Anatomie und Histologie der Haut wird auch heute noch einfach erwähnt, dass an man-

echen Stellen der Haut des Gesichts sich quergestreifte Muskelfasern aus der Tiefe bis zum Corium erstrecken, an welchem sie sich durch Bindegewebe inserieren. Was die Mundmuskulatur speziell betrifft, so drücken sich einzelne Autoren, auf Grund ihrer mikroskopischen Untersuchung in der Weise aus, das einige Muskeln wie zygomaticus, risorius, rectus labii sup. et inf. (Aeby) und quadratus sup. et inferior theils in der Haut, theils in der Schleimhaut an verschiedenen Stellen der Lippe endigen (Aeby, W. Krause). Allein die Art und Weise dieser Endigung, sowie das Verhalten einzelner Muskelfasern im Papillarkörper ist zur Zeit nicht näher bekannt.

An einer Reihe von in concentrirter wässriger Safranin-Lösung und nachfolgend in schwacher alcoholischer Pierinsäure-Lösung gefärbten und nach dem bekannten Hermann-Flemming'schen Verfahren behandelten sagittalen Schnitten kleiner Stückchen des Lippenrandes, welche vorher gut in starker Chromosmiumessig-

1) Oder musc. labii proprius nach W. Krause, oder compressor labii nach Klein.

Über die Beziehungen der quergestreiften Muskeln etc.

säure-Gemische fixiert, ausgewaschen und in Alcohol gehärtet worden waren, fällt bei mikroskopischer Untersuchung folgendes, deutlich ausgeprägtes Bild in die Augen:

Von der Tiefe des Unterhautgewebes erheben sich zur Schleimhaut-Oberfläche mehr oder minder parallel mit einander verlaufende einzelne Bündel quergestreifter Muskelfasern. Entweder nahe an der Grenze der epithelialen Schleimhaut-Schicht, oder etwas von derselben entfernt, beginnt ein Zerfall der Bündel in feinere bis zu einzelnen Muskelfasern, welche sich entweder in Bündelchen von mehreren primitiven Muskel-Fibrillen oder aber in einzelne primitive Fibrillen zerlegen. Infolge eines solchen allmählich fortschreitenden Zerfalls bildet sich aus jedem ursprünglichen dickeren Muskel-Bündel ein mehr oder minder breit ausgedehntes pinselartiges Gebilde; die Elemente dieses Pinsels bestehen aus einzelnen Muskelfibrillen (vergl. Fig. 1 und Fig. 5). Die Querstreifung der letzteren ist vollkommen deutlich schon mit einer Vergrößerung von $\times 1250$ zu unterscheiden.

Die in der beschriebenen Weise entstandenen feineren Fibrillenbündelchen und einzelnen Muskelfibrillen nehmen, an der Grenze der epithelialen Schleimschicht angelangt, verschiedene Richtungen ein, aber immer richten sie sich zu ihrem Endziel, zum Epithel. Durch Kreuzung der durch die erwähnte Zerspaltung entstandenen zahlreichen Glieder eines jeden dickeren Muskelfasern-Bündels mit ähnlichen Gliedern aus den benachbarten Muskel-Bündeln, entsteht an der Grenze des Papillarkörpers ein ganzes System von zahlreichen Muskelfibrillen-Bündelchen und von einzelnen Muskel-Fibrillen (Fig. 1). Während einzelne dieser Fibrillen mehr in senkrechter Richtung direct zum Epithel verlaufen, nehmen andere eine grössere Ablenkung von der ursprünglichen Richtung des Stammübündels, um erst nach einem mehr schrägen Verlauf durch die Grenztheile des Unterzelliggewebes zum Epithel zu gelangen. Hier gehen die Fibrillen-Bündel sowie die einzelnen Fibrillen in homogene, glänzende, feine sehnenartige Fasern über, vermittelt welcher sie sich im Stratum mucosum befestigen. Die erwähnten Netze verdanken ihre Entstehung mehr der Durchkreuzung der ebenerwähnten sehnenartigen Fortsätze, als der Kreuzung der Muskelfibrillen selbst.

An manchen Stellen findet man eine sehr eigenthümliche Beziehung der Muskelfibrillen-Bündelchen und der pri-
mitiven Muskelfibrilen zu den in’s Unterzellhautgewebe hineinragenden epithelialen interpapillären Wülsten (Fig. 1, 2, 5, 6). Fast jeder dieser Wülste besitzt ein ihm entsprechendes Muskel-Bündel, dessen aus dem Zerfall gebildete Glieder vorzugsweise ihm angehören resp. den Wulst umfassen und in dessen Substanz endigen (vergl. Fig. 2, 5, 6). Ich sage vorzugsweise, da einzelne Fibrillen auch zu den nachbarlichen Wülsten gelangen, was die Ursache der schon geschilderten Netzbildung unter dem Stratum mucosum ist.

Wenn man ferner das Verhalten der Muskelfasern und Muskelfibrillen zu dem Epithel untersucht, so findet man einen noch engeren Zusammenhang des Muskelsystems mit dem epithelialen. An manchen Stellen nämlich unterscheidet man sehr klar ein Eindringen von einzelnen Muskelfibrill-Bündelchen, mit deutlicher Querstreifung, in die Papillen hinein und sogar in die entfernteste Spitze derselben. Dieses Verhalten ist schon ganz deutlich mit einer schwachen Vergrösserung (60—80) wahrzunehmen (vgl. Fig. 1). Mit starken Systemen verfolgt man natürlich deutlichere Bilder (vergl. Fig. 3, 4, 6).

Die Anordnung der Muskelfibrillen-Bündel und deren weiterer Zerfall im Bereiche der Papille bleibt überall dieselbe: sie halten sich immer an der Oberfläche der Papillen resp. haften an den Grenzflächen der interpapillären epithelialen Wülste.

Sehr schöne und belehrende Bilder des Verhaltens der Muskeln in den Papillen bekommt man an denjenigen Papillen, welche in ihrem grösseren Durchmesser durchgeschnitten sind und eine Capillarschlinge enthalten (Fig. 6). Am nächsten kommt das Muskelgewebe der Gefässschlinge an der Basis der Papille, wo die beiden (auf dem Schnitte) gegenüberliegenden interpapillären Wülste sich einander nähern und den engeren Theil oder den Hals der Papille bilden. An einigen Papillen ist der Hals so schmal, dass die emporsteigenden Muskelfibrillen der Gefässschlinge (Cappillare) eng anliegen und sie umringen. Es ist kein seltener Befund, dass am Papillenhalse die Muskelbündelchen einander überkreuzen (vgl. Fig. 3 und 4).

Wie endigen nun die Muskeln am Epithel? Diese Frage kann nur zum Theil und zwar durch die Untersuchung der entsprechenden Stellen mit den stärksten Linsen beantwortet werden. Wenn man mit einem $1/18 - 1/20$ Oelimmersions-Systeme von
Zeiss verschiedene Stellen der Präparate durchmustert, so unterscheidet man Folgendes: Die feinsten sehnenartigen Fibrillen, welche Fortsätze der primitiven Muskelfibrillen sind, kommen in innigste Verbindung mit dem Epithel des Stratum mucosum. — Das ist sicher! — Es handelt sich nicht bloss um eine Berührung einzelner Fibrillen mit dem epithelialen Gewebe, sondern vielleicht um ein Eindringen derselben in dessen Substanz, nämlich in die intercellulären Spalten. Was dies Verhalten zu den intercellulären Spalten anlangt, so kann ich mich leider nicht bestimmter darüber äussern, da hier selbst die stärksten Vergrösserungen im Stich liessen. Es ist aber sicher, dass wir es hier nicht mit einer einfachen Berührung, einem einfachen Nebeneinanderliegen zu thun haben, sondern mit einer viel complicirteren Verbindung. An manchen Stellen macht es den Eindruck, als ob die Sehnensäseren mit der Basilar-Membran des Stratum mucosum zusammenflös sen (vergleiche Fig. 2—6). Diese letztere scheint keine structurlose Membran zu sein, sondern stellt vielleicht ein engmaschiges fibrilläres Netz dar ¹). Die sehnenartigen Faserchen der Muskelfibrillen dürften mit den Fibrillen dieses netzartigen Saumes sich vereinigen.

Die Präparate, nach welchen die oben stehende Beschreibung gemacht ist, geben gute Gelegenheit, eine wichtige und noch immer offene Frage aus der Histologie des Muskelsystems zu beantworten; ich meine den Übergang der Muskelsubstanz in die Sehnensubstanz.

Die Anschauungen der Autoren spalten sich betreffs dieses Gegenstandes, wie bekannt, in zwei Hauptsichtungen. Nach

W. Podwyssozki:
der einen, welche hauptsächlich durch Fick 1), Wagen er 2), Golgi 3), theilweise auch durch Kölliker 4) vertreten ist, besteht zwischen Muskeln und Schennfibrillen eine Continuität, ein unmittelbarer Übergang. Nach Wagen er und besonders nach Golgi bilden nicht bloß die dickeren Schennfasern eine direkte Fortsetzung der Muskelfasern, sondern es gilt dies auch für die primitiven Schenkn- und Muskelfibrillen „una non interrotta continuazione delle fibrille di cui appare constituìta la-fibra muscolare primitiva nelle fibrille della cui unione sono constituiti i dendinetti primitivi“ (Golgi pag. 9). Golgi führt, mit vollem Rechte, seinen Befund des unmittelbaren anatomischen Überganges (per continuitatem) der Muskelfasern in die Schennfasern als neuen Beweis der engen embryonalen Verwandtschaft zwischen den Muskeln und dem Bindegewebe an.

Nach der zweiten Richtung, an welche die Mehrzahl der Autoren sich hält (Häckel 5), Herzig 6), Biesiadecki 7), Weismann 8), Rollet 9), Ranvier 10), W. Krause 11), H. Frey 12), Toldt 13) und andere) besteht zwischen den Muskeln und Schennfasern nur eine Contiguität, aber kein unmittelbarer Zusammenhang, und ob-

5) Häckel, Canstatt's Jahresbericht 1857.
6) Her zige, Wiener Sitzungsberichte Bd. XXX, 1858, p. 73.
7) A. Biesiadecki und Her zig, Ibidem Bd. XXXIII, 1858, p. 148.
11) W. Krause, Allgem. und mikroskop. Anatomic 1876, p. 82.
13) C. Toldt, Gewebelehre 1877, p. 183.
wohl die eine an der anderen fest angeheftet ist, so sind beide
nur durch eine Kittsubstanz, welche man lösen kann, verlötet.

Meine Präparate sprechen ganz entschieden für die erste Mei-
nung; sie bieten einen evidenten Beweis des unmittelbaren Ueber-
ganges der Muskelfasern in die Sehnenfasern und, was noch wich-
tiger ist, der direkten Continuität zwischen den primiti-
en Muskel- und Sehnenfibrillen. Die früher beschriebene
pinselartige Zerspaltung eines Muskelfasers in Muskelfibrillen-Bün-
delchen und ferner in einzelne Muskelfibrillen, welche in Sehnen-
fibrillen unmittelbar übergehen, gibt die beste Gelegenheit in situ
to sehen, ohne Anwendung irgend welcher dissociirenden Mittel,
dass wirklich die Sehnenfasern in ihren feinsten Gliedern resp.
Fibrillen eine direkte Fortsetzung der Muskelfasern und Muskel-
fibrillen darstellen (vergleiche Fig. 2—6).

An manchen primitiven Muskelfibrillen unterscheidet man das
allmähliche Verschwinden der Querstreifung und den Uebergang
der quergestreiften Fibrille in ein homogenes, glänzendes, nicht
gestreiftes Sehnen-Fäserchen. Dieser Uebergang erinnert sehr an
die von Wagener\(^1\) beschriebenen und gezeichneten Verhältnisse.
Mit den stärksten Linsen ist es unmöglich irgend welche Vereini-
gungslinie hier zu finden, die auf eine Kittsubstanz zu beziehen
wäre.

Eins möchte ich Betreffs dieser Frage noch bemerken. Das
gekennzeichnete Volumen nämlich der aus einer Muskelfaser stammenden
Sehnenfäserchen ist immer kleiner als das Volumen der Muskel-
fibrillen der entsprechenden Muskelfaser. Dieser Umstand, welcher
schon aus dem einfachen Vergleich der gesammten Sehnenfäserchen
einer Muskelfaser mit der Muskelfaser selbst evident ist, bekommt
eine vollkommene Bestätigung bei der genau Betrachtung der
Uebergangsstelle eines Muskelfibrillen-Bündelchens in die entspre-
chenden Sehnenfibrillen (verg. Fig. 5). Sehr oft sieht man eine
einzelne Muskelfibrille in eine einzige Sehnenfibrille übergehen; es
ist aber nicht selten, dass ein ganzes Muskelfibrillen-Bündelchen,
aus 4—5 primitiven Fibrillen bestehend, nur in 2—3 Sehnenfibrillen
übergeht. In den Muskelfibrillen-Bündelchen sind es die peripheren
Schichten desselben, welche, wie es scheint, in die Sehnenfasern

\(^1\) G. R. Wagener, Archiv f. mikroskop. Anatomic Bd. X, 1874,
p. 297.
übergehen. Das Verhalten des Sarcolemmas lässt sich nicht deutlich erkennen.

An der Stelle des pinselartigen Zerfalls einer Muskelfaser in Muskelfibrillen-Bündelchen, sowie in einzelne primitive Fibrillen findet immer eine mehr oder minder grosse Anhäufung von Muskelkernen Statt, ein Befund, welcher, nach den ähnlichen Ermittlungen von Froriep ¹) bei den Muskeln der Amphibien und Säugethiere, als allgemeine Erscheinung an der Uebergangsstelle der Muskelfasern in die Sehnenfasern angenommen werden kann. An vielen Stellen findet man bisweilen Muskelkerne an dem Uebergange feiner Muskelfibrillen-Bündelchen in Sehnenfasern und zwar auch im Bereiche der Papillen, wenn dort Muskel-Bündelchen hineindringen (vergl. Fig. 3—4).

Wenn wir jetzt nach der physiologischen Bedeutung der beschriebenen Beziehungen der quergestreiften, willkürlichen Muskeln zum Papillenkörper fragen wollten, so ist sie zuerst wahr- scheinlich mit der Mimik der Lippen verbunden, welche bekanntlich beim Kaninchen so stark ausgebildet und so vollkommen ist. Ganz so wie mit Zügen kann das Thier mit der beschriebenen Muskeln den epithelialen Belag der Lippen und zwar die kleinsten Bezirke derselben beherrschen, ein Umstand welcher für die mimischen Funktionen augenscheinlich von der grössten Wichtigkeit ist. Ausser einer solchen psycho-physiologischen Rolle der erwähnten Muskelbefestigung dürfen wir noch eine andere, rein physiologische annehmen. Durch die Befestigung einzelner Muskelfasern an den interpapillären epithelialen Wülsten, sowie durch das Eindringen der einzelnen Muskelfibrillen-Bündelchen in die Papillen hinein kann während der Thätigkeit der Muskeln eine indirecte vasomotorische Wirkung auf die Capillaren der Papillen aus- geübt werden, indem durch die relative Verschiebung der interpapillären epithelialen Wülste eine kleinere oder grössere Blutfüllung der in den Papill verlaufenden Capillaren hervorgerufen wird. Was für einen Zweck eine solche indirecte vasomotorische Wirkung der querge- streiften Muskeln haben könnte, bleibt freilich zur Zeit unbekannt.

Erklärung der Abbildungen auf Tafel XVII.

Alle Figuren sind nach Präparaten gezeichnet, welche aus den erwähnten polsterartigen Erhabenheiten der Schleimhaut beim Kaninchen genommen sind. Färbung bei Fig. 1 und Fig. 5 mit Safranin; bei Fig. 2, 3, 4, 6 mit Safranin und nachfolgend mit schwacher alkoholischer Pikrinsäurelösung.

Fig. 1. Beziehungen der quergestreiften Muskelfasern, Muskelfibrillenbündelchen und Muskelfibrillen zum Papillarkörper. Netzartige Kreuzung der Glieder der nachbarlichen Muskelfasern an der Grenze des Stratum mucosum und des Bindegewebes. Eindringen einzelner Muskelfibrillenbündelchen in die Papillen. (Hartnack Obj. 5, Ocul. 2.)

Fig. 2. Umfassung eines interpapillären epithelialen Wulstes mit Muskelfibrillenbündelchen; Uebergang einzelner Muskelfibrillen in die Membrana basilaris des Epithels. (Zeiss Oel-Imm. System 1/18, Ocul. 2.)

Fig. 3 und 4. Eindringen vieler Muskelfibrillenbündelchen in eine Papille. Absonderung einzelner Muskelfibrillen von dem Bündelchen im Bereich der Papillen und Uebergang dieser Fibrillen zum Epithel. Scheinbares Zusammenfließen einzelner Schenfibrillen mit der Membrana basilaris des Stratum mucosum. (Fig. 3 gezeichnet mit Zeiss Oel-Imm. System 1/18, Ocul. 2; Fig. 4 mit Oel-Imm. System Zeiss 1/18, Ocul. 3.)

Fig. 5. Pinselartiger Zerfall einer Muskelfaser in einzelne Muskelfibrillenbündelchen und fernerer Zerfall dieser letzteren in einzelne Muskelfibrillen. Unmittelbarer Uebergang der Muskelfibrillen in Schenfibrillen. (Zeiss Oel-Imm. System 1/18, Ocul. 2.)

Fig. 6. Umfassung eines interpapillären Wulstes mit den Zerfallsgliedern einer Muskelfaser. Eindringen eines Muskelfibrillenbündelchens in eine Papille unmittelbar neben einem Capillargefäß. (Zeiss Oel-Imm. System 1/18, Ocul. 2.)
Ueber die Entwicklung der Samenkörperchen bei den Beutelthieren.

Von

Dr. Carl M. Fürst in Lund.

Hierzu Tafel XVIII—XX

Vor allem ist es mein Streben gewesen, möglichst vollständige Entwicklungsreihen zu erhalten. Die Lage der Zellen zu einander von der Peripherie zum Centrum hat natürlich eine grosse Bedeutung zur Bestimmung, welche Zellen älter oder jünger seien. Um aber die Herleitung sicher zu bestimmen, musste man eine Entwicklungsreihe haben und musste Theilungsfiguren und Uebergangsformen vorlegen können. — Wie vortheilhaft mein Material für diesen Zweck war, wird das Folgende zeigen.

Die Hoden, die mir zur Verfügung standen, entnahm ich den in toto in Alkohol conservirten Thieren.

Bei beiden Thieren liegen die Samenkanälchen fast frei, mit sehr wenig interstitiellem Bindegewebe. Sie bilden grosse, beinahe eckig gebogene Schleifen. Ich nahm so grosse Stücke wie möglich und färbte dieselben in sogenanntem Grenache'rschen Hämatoxylin. Das Präparat wurde dann entweder nach Paraffin-

Metachirus quica.

Beim Beobachtung der Querschnitte fällt es sogleich in's Auge wie verschieden dieselben sind, je nachdem sie aus verschiedenen Samenkanälchen oder in bestimmten Abständen aus demselben Samenkanälchen genommen wurden. Die vier Querschnitte, welche ich abgebildet habe, sind vier ganz verschiedene Typen. In Serien sieht man aber allmähliche Übergänge zwischen diesen Bildern. Trotz der Verschiedenheiten kann man an jedem Querschnitte, woher er auch sei, drei Zonen unterscheiden; die entsprechenden Zonen selbst aber sind an den verschiedenen Querschnitten wieder deutlich verschieden. Es ist indessen nicht so schwer, wenn man etwas orientirt ist, zu erkennen, in welcher Entwicklungsreihe sie auf einander folgen. Wenn grosse Stückchen des Samenkanälchens zwischen den Querschnitten, von welchen meine Figuren genommen sind, gelegen haben, so ist es natürlich, dass der Zusammenhang noch besser und deutlicher auf den Schnittserien selbst hervortritt.

Zellbildungen mit Fortsätzen gegen das Centrum
Dr. Carl M. Fürst:

des (Samenkanälchen, die v. Ebner'schen\(^1\)) Spermatoblasten oder Merkel'schen\(^2\) Stützzellen entsprechen, kommen hier nicht vor, sondern die Zellen liegen in konzentrischen Ringen oder Zonen.

Von den mannigfachen, verschiedenen Zellformen und Zellbildungen, die sich an den vier Querschnitten befinden, ist nur eine Art von Zellen gemeinsam und das sind die Zellen mit den grossen Kernen und den grossen Kernkörperchen, welche in der peripherischen Zone liegen. Sie sind an ihren Kernen leicht erkennbar und diese Kerne zeigen sich identisch mit den Kernen der v. Ebner'schen\(^3\) Spermatoblasten, Merkel's\(^4\) Stützzellen, v. la Valette St. George'schen\(^5\) Spermatogonien, Swäen et Masquelin's\(^6\) cellules folliculaires, Biondi's\(^7\) Stammzellen etc.

Hier, sowie bei Phaseogale sieht man sogleich viel deutlicher als bei anderen Thieren, wie constan, (ich schliesse natürlich die oben genannten grossen Zellen aus und will von ihnen weiter unten sprechen) immer in derselben Zone eine bestimmte Entwicklungsform vorkommt und wie Zonen mit bestimmten Entwicklungsformen sich immer zusammen befinden. Niemals trifft man z. B. eine Samenmutterzelle (MZ), wie man sie in Fig. 1 sieht, zusammen mit einem Samenkörperchen aus Fig. 4; keine Samenstammzelle (StZ\(_{11}\)) aus Fig. 1 mit einer Samentochterzelle (TZ) oder einem Samenkörperchen im Stadium aus Fig. 3 u. s. w.

Die Entwicklung geht von der Peripherie aus gegen das Centrum zu, von der Wand des Samenkanälchens zu seinem Lumen.

3) l. c.
4) l. c.
5) v. La Valette St. George, Die Spermatogenese bei den Säugethieren und dem Menschen. Arch. f. mikr. Anatomie 1878 u. a. A.
In den hier abgebildeten Querschnitten sind auch die Zellen in der centralen Zone weiter vorgeschritten als die, welche peripher liegen. Die nächsten Entwicklungsformen aber liegen nicht in demselben Querschnitte.

Wenn man die Entwicklungsformen auf meinen Abbildungen verfolgen will, muss man mit Fig. 2 St Z. in dem äussersten Theile der peripheren Zone, dann zu demselben Theile der peripheren Zone in Fig. 3 St Z., vorschreiten. Hierauf würde dieselbe Zone in Fig. 4 St Z., folgen und dann derselbe Theil in Fig. 1 M Z.; nun käme man zur peripheren Zone in Fig. 2 M Z., dann zum centralen Theile der peripheren Zone in Fig. 3 M Z., davon zu der mittleren Zone in Fig. 4 M Z., und dann zu der scharf begrenzten mittleren Zone in Fig. 1 M Z.; hierauf zu der mittleren Zone in Fig. 2 T Z., die hier mehr peripher liegt, dann zu der mehr centralen mittleren Zone in Fig. 3 T Z., von ihr zu derselben in Fig. 4 T Z. und endlich finden wir in Fig. 4 SK die Samenkörperehen auf dem Wege den Kanal zu verlassen.

Wenn das Samenkanälchen cylindrisch ist, liegen also die Entwicklungsformen in einem Kegel, dessen Höhe der Längsrichtung des Kanälchens gleich gerichtet ist, kann sie von der Basis zur Spitze verfolgen. Die Entwicklung selbst aber erfolgt natürlicherweise nur in einer Ebene. In einem Querschnitt von der Peripherie dieses Querschnittes aus gegen das Centrum.

Die Membrana propria sieht man in den Figuren nur wie eine dunklere Linie.

In Fig. 3 treten die Grenzen zwischen den drei Zonen sehr scharf hervor. In den peripheren Zonen sieht man zweierlei verschiedene Zellen. Eine bestimmte Ordnung aber unter diesen kann man hier nicht bemerken. In Fig. 6 ist diese periphere Zone der Fläche nach ausgespreizt und man sieht hier die vorerwähnten Zellen, die ich Randzellen nenne, mit ihren grossen Kernen. Die Kerne haben öfters ein grosses Kernkörperchen und mitunter mehrere kleinere Kernkörperchen und ein nicht selten sehr deutliches und schönes Kerngerüst. Die Zellen sind von der Fläche aus gesehen im Allgemeinen sechseckig mit gewöhnlich scharf markierten Zellgrenzen. In Querschnitten dagegen ist eine solche Grenzung unmöglich wahrzunehmen. In der peripheren Zone sind,
wie schon gesagt, noch einige andere Zellformen und auf dem Flächenpräparate in Fig. 6 haben diese äusserst zahlreichen kleineren Zellen ihren Platz in den Zellgrenzen der Randzellen. Auf den Stellen, wo diese kleineren Zellen liegen, sind die scharfen Grenzen zwischen den Randzellen verwischt oder verschoben. Diese kleineren Zellen, Fig. 8, bestehen aus einer körnigen Zellsustanz und einem runden Kerne mit einer eigenthümlichen Kernfigur. Ich werde später etwas ausführlicher diese Zellen bei Phascogale besprechen.

In Fig. 2 ist auch die periphere Zone wohl begrenzt. Die Randzellen, RZ, sind ganz ähnlich wie in Fig. 1. Die meisten übrigen Zellen haben ihre Kerne in Knäuelform (M Z). Ausserdem finden sich Zellkerne, ST Z, die dicht an der Peripherie liegen und dich ein grösseres und oft mehrere kleine Kernkörperchen und ein schwaches Kerngerüst haben. (Siehe ST Z in Fig. 41 Phaseogale). Sie sind also im Rhonestadium. Diese Zellen nenne ich die Samenstammzellen. Was diese Zellen sowohl, als ihre Zellteilung und Entwicklung in der peripheren Zone betrifft, so übergehe ich dieselben vorläufig und werde eine Beschreibung bei Phascogale liefern, wo ich die Formen besser verfolgen konnte.

In Fig. 3 gehören zur peripheren Zone eigentlich die grossen Randzellen, RZ, und die kleineren Zellen, ST Z, von welchen ich eine isolirt in Fig. 7 abgebildet habe. Diese Zellen liegen dicht an der Membrana propria und sind peripher ausgebreitet. Der Kern ist klein und zeigt einen dichten Knäuel, während bei anderen Kernen das Kerngerüst zu sehen ist. Diese Zellen sind Tochterzellen der oben erwähnten Samenstammzellen. Dicht an der peripheren Zone und theils zu dieser gehörend, liegt eine Anzahl von ein wenig grösseren Zellen, M Z, die ich Samenmutterzellen nenne, von welchen einige etwas mehr central als die übrigen sich zeigen. Diese Zellen, Fig. 9, besitzen wenig Zellsustanz und führen einen grossen Kern, der ein schönes Gittergerüst, ähnlich, wie es Flemming 1) von Salamandra abgebildet hat, zeigt.

In Fig. 4 ist die periphere Zone beinahe unverändert. Die kleinen Zellen sind hier etwas grösser und die Kerne tragen ein Gittergerüst. Die Samenmutterzellen, M Z, sind hier weiter nach

Über die Entwicklung der Samenkörperchen bei den Beuteltieren.

...dem Centrum gedrängt und sind im Begriffe eine neue Zone zu bilden. Ihre Zellsubstanz ist vermehrt und sie sind von den Seiten etwas zusammengedrückt worden. Eine gut begrenzte mittlere Zone bilden sie doch zuerst in Fig. 1. Der dichte Kranz, den diese grossen stark gefärbten Zellen hier bilden, fällt auf den ersten Blick in's Auge. Die Zellen sind radiär oval; ihre Formen im übrigen wechselnd. Die reichliche Zellsubstanz, die vieles Hämatoxylin aufnimmt und schwer entfärbt wird, ist für diese Zellen sehr bezeichnend. Man findet hier Kerne mit Knäuelform, deren Chromatinfäden ziemlich dick sind (Fig. 10).

Bei Metachirus habe ich vor der Theilung der Samenstammzellen in ihre Tochterzellen keine karyokinetischen Kernfiguren gesehen, wie bei Phascogale, und will ich, wie gesagt, dort über diese sprechen.

Bei den kleinen Zellen trifft man, wie in Fig. 3 oder Fig. 7, Kerne in Knäuelform, die indessen schnell in ein Gittergerüst übergehen. Dieses Gittergerüst haben die Kerne eine Zeit lang (siehe Fig. 4 und 5), aber nun vergrössern sie sich. Einige bleiben als Samenstammzellen in der Zone zurück, die übrigen aber zeigen diese eigenthümlichen Kernformen von Fig. 1 und 6 auf (eine Form von diesen Zellen ist in Fig. 8 abgebildet) und wahrscheinlich nach vollzogener Theilung werden sie Samenmutterzellen. Bei diesen Zellen zeigen die Kerne eine Knäuelform und darauf das Gittergerüst. Während sich nun die Zellsubstanz beständig vermehrt, verlassen die Samenmutterzellen die periphere Zone, um schliesslich (Fig. 1) eine mittlere neue Zone zu bilden. Bald theilen sich die Samenmutterzellen. Die Theilungsfiguren sind aber sehr sparsam zu finden; ich war so glücklich an einigen Querschnitten einige wenige karyokinetische Figuren zu Gesicht zu
bekommen. Trotz der wenigen Figuren, die ich sah, konnte ich dennoch eine Entwicklungsreihe zwischen den grossen Samenmutterzellen in Fig. 1 und den kleineren Samentochterzellen in Fig. 2 zusammenstellen. In den Samenmutterzellen tritt zuerst die oben genannte Knäuelform (Fig. 10) auf. In Fig. 11 wird eine Sternform abgebildet die Schleifen sind, wie Flemming sagt, bezüglich Salamandra schwer zu zählen. In Fig. 12, die ich als eine weiter vorgeschrittene Sternform auffasse, glaubte ich, wie auch bei Fig. 11, vier, höchstens fünf Paare von Schleifen zählen zu können. Es ist mir nicht gelungen reine metakinetische Figuren zu sehen, wohl aber die nächsten Übergangsstadien zur Tochtersternform. Fig. 13 und Fig. 14 zeigt eine spätere Tochtersternform, in der die Schleifen mehr radiär stehen. Die Zellsubstanz ist hier im Be- griffe sich abzuschnüren. In Fig. 15 ist schon die Knäuelform passirt und das Gittergerüst aufgetreten. Die Samentochterzellen in Fig. 2 sind weiter vorgeschritten und zeigen keine Kernfiguren.

In der zweiten oder mittleren Zone der Fig. 2 ist eine grosse Anzahl von kleinen Samentochterzellen FZ vorhanden. Sie halten sich wie gebunden an die periphere Zone. In Fig. 2 speciell scheinen sie etwas zu reichlich vorhanden zu sein, welches Verhältniss seinen Grund darin hat, dass der Schnitt schief durch den Kanal geht. Trotzdem sieht man sie im Allgemeinen häufig in doppelten Reihen liegen.

Die Samentochterzellen sind wohl begrenzt; ihre Kerne jedoch schwer zu analysiren. Ein centrales Kernkörperchen tritt durch seine stärkere Farbe hervor. Es ist aber nicht scharf begrenzt. Der ganze Kern ist diffus gefärbt und Chromatinkörperchen, Körner oder ein Kerngerüst sind jetzt nicht zu beobachten.

Der Kern beginnt indessen seine runden Formen zu verlassen und oval zu werden. An dem einen Pole entwickelt sich die klardurchsichtige Kappe und an dem anderen, entgegengesetzten Pole entsteht eine sackförmige Bildung (Fig. 16 und 17), deren Inhalt dem übrigen Kerne vollständig ähnlich ist. Die Kappe liegt wie gewöhnlich dicht am Kerne und ist im Anfang mehr ausgebreitet. Gleichzeitig aber mit der Verlängerung des Kernes wird die Kappe zusammengezogen und erhöht und sie gehört dann dem einen Pole an. Der Kern schiebt einen Theil seines gefärbten Inhaltes in die Mitte der Kappe herein. Die Chromatinaufläufung, die in der Mitte des Kernes lag, verlängert sich in den in der Kappe ein-
Ueber die Entwicklung der Samenkörperehen bei den Beutelthieren. 343
geschobenen Theil (Fig. 16). Diese Chromatinanhäufung hat eine
diffuse Färbung; dennoch tritt ihre stärkere Farbe gegen die Um-
gebung hervor. Dieser Theil schiebt sich immer mehr und mehr
in die Kappe hinein und werden zuletzt die gefärbten Bestandtheile
von der Spitze der Einschiebung zurückgezogen (Fig. 17).

Auch die sackförmige Bildung an dem entgegengesetzten
Pole ist zusammen mit den angrenzenden Theilen des Kernes stärker
gefärbt.

Die diffuse Farbe im Ganzen hört bald auf. Der Kern ver-
längert sich bedeutend und vergrößert sich in allen Dimensionen.
Das Chromatin sammelt sich in kleinen begrenzten Körnchen, die
in dem ganzen Kerne zerstreut sind. Schon früh zeigen die Chro-
matin-Körnchen ein Streben, sich gegen die beiden Pole hin anzu-
häufen. Die sackförmige Bildung an dem der Kappe entgegenge-
setzten Pole wird, nachdem sich von ihrem Ende Stückehen gelöst
und in die Zells substanz hinausgegeben haben (siehe näheres bei Phas-
ecogale) bedeutend zusammengezogen und nur eine kleine trichter-
förmige Bildung bleibt zuletzt zurück.

Wenn nun diese chromatinhaltigen Stückehen oder die Pol-
körperchen abgestossen sind, so nenne ich den zurückgeblie-
benen Kerntheil der Samentochterzelle das Samenkörperehen.

Der engere Theil des Trichters sitzt am Kerne, der breitere
nach aussen und ist ganz plan. Der ganze Anhang wird im An-
fang stärker, später schwächer und schwächer von Hämatoxylin
gefärbt.

Diese Zellform trifft man in Samenkänälen zwischen
Fig. 3 und 4. Während der Entwicklung von Fig. 2 zu Fig. 3
haben die Samentochterzellen ihre nahe Verbindung mit der peri-
pheren Zone verloren und hängen jetzt inniger mit der centralen
Zone zusammen. Dass dieses Verhältniss keine Zufälligkeit und
nicht abhängig von der Schnittlegung sei, davon kann man sich
leicht überzeugen, indem man immer dieselben Verhältnisse antrifft:
nämlich dass die Samentochterzellen in Querschnitten des Stadiums
Fig. 3 central geordnet sind.

In Fig. 4 sind sie in der Entwicklung weiter gekommen
und liegen jetzt in der centralen Zone, welche Lage sie behalten,
bis sie fertiggebildet sind. Die Samenkörperehen gehen indessen
noch viele Veränderungen ein; vgl. Fig 18.

Nachdem der in die Kappe eingezogene Kerntheil sein Maxi-
mum in Fig. 18 erreicht hat, wird er wieder kleiner und die Kappe beginnt allmählich sich zu verkleinern und später platt zu werden.

Der grosse ovale Kern verändert sich ebenfalls. Die Chromatinkörnchen beginnen sich an beiden Polen zu sammeln und gleichzeitig werden die Schwanzpole mit ihrem kleinen Anhange gegen die Kappe zu gezogen. Es scheint, dass die Chromatinkörnchen und das diesen zunächst liegende Chromatin sich zusammenzieht. (Fig. 19 und 20). Indessen ist, bevor diese Differenzierung und Zusammenziehung eintritt, wenn der Kern am grössten war, eine Kernmembran gebildet worden und wenn nun die Einziehung stattfindet steht diese festere Parachromatinhülle (Pfitzner)1) deutlich in ihrem oberen Theile da, trotzdem der übrige Kerninhalt die Kernmembran auszuspannen bestrebt sein muss.

Am Schwanzpole wird die Kernmembran eingestülpt dadurch, dass sie zusammen mit ihrem Anhang in die Richtung gegen die Kappe gezogen wird. Während gleichzeitig die Chromatinkörnchen sich sammeln, nimmt die übrige unfärbbare Kernsubstanz den Raum zwischen dem zusammengezogenen Theile und der Kernmembran ein.

Ich will hier nicht unterlassen darauf aufmerksam zu machen, wie ein Theil der Kernsubstanz mehr als der übrige sich chromatinhaltig zeigt, und während das Chromatin sich zusammenzieht, begrenzt sich nach aussen das nächstliegende Chromatin gegen die übrige Kernsubstanz Fig. 21, 22, und 23, um zuletzt sich an die untere Fläche des Kopfes zu legen.

Beim Hunde, Stiere, Schafbock, Meerschweinchen, Igel etc. glaube ich 2) eine besondere Modification des Achromatin gefunden zu haben, die sich auch näher an das Chromatin anschliesst und die sich unter gewissen Verhältnissen bei nicht vollständig fertig gebildeten Samenkörperchen im Hoden oder Nebenhoden, etwas verschieden bei verschiedenen Thieren, mit Baeke'schem Carmin färbt. An den Samenkörperchen dieser Thiere bildet das modifierte Achromatin einen Ring oder einen Becher um den Kopf. Wenn der Schwanz bei Metachirus und Phaseogale von der unteren Fläche des Kopfes ausgeht und der Kopf von unten und oben abgeplattet ist, so entspricht das Achromatin, das sich hier an die untere

2) l. e.
Fläche legt, demjenigen, welches den unteren Theil des Kopfes beim Stier, Schafbock etc. umfasst. Die Grenze nach oben für beide Thiergruppen ist die untere Grenze der gebliebenen oder abgefallenen Kappe.

Indessen schliessen sich die Chromatinkörnchen zusammen, ja sie schmelzen geradezu zusammen und legen sich nicht nur nahe aneinander. Man erhält zuerst Bilder, wie in Fig. 21, wo das Chromatin stundenglasförmig ist; bald aber wird das ganze Chromatin gegen die Kappe hingezogen. Die Kernspitze, die in die Kappe eingeschoben war, wird dünner und mehr und mehr heruntergezogen, wie man in Fig. 22 und 23 sieht. Das Chromatin ist am Schwanzpole zugeschmolzen. Der hintere Anhang kann nicht länger beobachtet werden, wohl aber unter glücklichen Verhältnissen ein äusserst feiner Faden, der jetzt immerhin mit dem Chromatin an diesem Pole zusammengesetzt ist.

Ich habe jetzt den Übergang von den Samentochterzellen T Z₁ in der mittleren Zone der Fig. 3 zu den Samenkörperchen S K₁ in der centralen Zone Fig. 4 beschrieben und will nunmehr mit der Entwicklung des Samenkörperchens in den centralen Zonen der Fig. 1, 2 und 3 fortfahren.

In Fig. 24 hat sich das Chromatin zu einer Platte unter der Kappe zusammengezogen. Die Kappe selbst wird ganz platt. In Fig. 25 sieht man den Kopf von oben und zeigt dieser die Form der Chromatinplatte. Diese wird jetzt eingezogen, wie Fig. 28 zeigt, und so entstehen die ersten Andeutungen der späteren Schenkel in dem Kopfe des fertigen Samenkörperchens. Der eine Schenkel wird zuerst, wie es scheint, durch eine Zusammenziehung gebildet, der andere wächst allmählich heran. In Fig. 27 sieht man den erstgenannten Schenkel, der andere, der durch seine stärkere Farbe kenntlich ist, steht im Begriffe gebildet zu werden. Die stärkere Farbe rührt von der Verkürzung her, in welcher man ihn sieht. In Fig. 27 ist dasselbe Stadium von der Seite zu sehen. Fig. 30 zeigt ein neues Entwicklungsstadium. Hier ist die Chromatinansammlung concav geworden und die Schenkel drehen sich medianwärts gegen einander. In Fig. 27 und 31 sieht man, wie der eine Schenkel zuerst heruntergezogen ist, indess der andere höher steht.

Die Mittelpartie des Kopfes ist anfangs zugeschmolzen, wie in Fig. 31 und 32, wird aber, wenn die Form des Kopfes fertig ge-
bildet ist, abgerundet (Fig. 33 und 34) und die Drehung der Sehnenkel wird hier auch ganz vollständig.

Der Kopf steht jetzt senkrecht gegen den Schwanz. Wenn aber das Samenkörperchen aus dem Hoden ausgetreten ist, dann bildet der Kopf mit dem Schwanz einen sehr spitzen Winkel, so dass beide Theile nahezu in einer geraden Linie mit den Sehnenkeln nach unten zu liegen. Fig. 35.

Zuerst ist der grösste Theil dieser umschliessenden Substanz schwach diffus gefärbt, später aber wird er wieder eine klare ungefärbte Masse mit einigen gefärbten Körnern.

An dem oberen abgegrenzten Schwanztheile oder dem künftigen Verbindungsstücke schliesst sich Achromatin näher und näher um den Chromatinfaden. Wie gewöhnlich geht die Achromatinhülle von aussen in die Parachromatin- oder Kernmembransubstanz über. Das Achromatin wird also von aussen nach innen hin verdichtet; das festere Parachromatin umschliesst zu Anfang wenigstens Achromatin oder mit anderen Worten eine weichere Substanz.

Zu den Bildern 33 und 34 ist das Verbindungsstück noch nicht fertig. In dem Entwicklungsstadium der Fig. 33 habe ich dunklere Querlinien, Falten oder Brüche, die keine bestimmten Richtungen, weder quer noch in einer Spirale zeigen und auch nicht quer über den ganzen Cylinder gehen, beobachtet. In Fig. 34 sieht man eine deutliche spiralförmige Anordnung. Das erste Bild Fig. 33 ist aus einem Präparate in einem früheren Stadium als
Ueber die Entwicklung der Samenkörnchen bei den Beutelthieren. 347

der Querschnitte von Fig. 3 und das zweite Bild, Fig. 34, stammt von dem Stadium der Fig. 3.

Ich bin der Ansicht, dass die verschiedene Consistenz der äusseren Hülle und des Inhaltes des Verbindungsstückes ihren Entstehungsgrund gerade hierin haben. Ich will auch sogleich hier darstellen, wie ich denke, dass diese so viel beschriebene Spirale entsteht.

In Fig. 3 sieht man, wie die Samenkörnerchen alle nach derselben Richtung gedreht sind. Wenn nun die Schwänze in das Centrum hineingelangen sind und eine festere Consistenz angenommen haben, dann legen sie sich in die Längsachse des Samenkanälchens; weil sie zu lang sind um radiär liegen zu können; so wie sie heraus stehen, drehen sie sich in Spiralen. Dabei hängen die Köpfe noch fest und werden nicht mitgedreht. Dadurch wird der Schwanz um seine eigene Achse gedreht. Da nun an dem Kopfe eine festere Substanz haftet und diese festere Substanz wie eine Hülle sich um die weicheren Theile des Verbindungsstückes fortsetzt, so mussten die Drehungen an dieser Hülle sichtbar bleiben und treten auch an der Parachromatinhülle oder dem Rohre wie eine Spiralfalte hervor, die bei allen Samenkörnerchen in derselben Richtung geht. Das Achromatin geht indessen fortwährend, so wie das Innere des Verbindungsstückes in ein festeres Parachromatin über und es scheint nun natürlich zu sein, dass die Verdichtung gerade in den Spiralfalten zuerst stärker sichtbar wird. Wenn die zwischen den Falten liegenden Hüllestückchen nicht so früh gleich stark verdichtet werden, so ist schon eine spiralförmige Verdichtung, das ist ein Spiralfaden, in der Hülle gebildet. Wird aber der Übergang zum Parachromatin fortgesetzt, bis das Samenkörnerchen fertig ist, dann geht auch der Theil des Achromatin, der zwischen der Spiralverdichtung liegt, in dieselbe Consistenz über. Aus dieser Ursache trifft man keine Spiralfäden bei vollständig fertiggebildeten Samenkörnerchen und der Spiralfaden ist also, meiner Auffassung zufolge, nur eine vorübergehende Entwicklungsform, die darin begründet ist, dass die Achromatinumgebung des Schwanzes und besonders des Verbindungsstückes von aussen her allmählich sich zu Parachromatin verdichtet, während gleichzeitig die Samenkörnerchen in dem Samenkanälchen sich drehen.

Alles was den Kopf und das Verbindungsstück umschliesst,
Dr. Carl M. Fürst:

(in Fig. 31 oder 33) geht nicht in die Bildung des Samenkörperchens ein. Die Reste der Kernsubstanz werden abgestossen und enthalten die früher von dem Schwanzpole abgestossene Kernsubstanz und auch die unfarbaren Kernreste, die für die Schwanzhülle nicht verwendet worden sind. Diese Reste enthalten sowohl Achromatin wie Chromatin und sie häufen sich in Klumpen an, wie man es in Fig. 3 (K B) sieht. Das Chromatin differenziert sich auch in den Restklumpen und bildet sehr verschiedene bizarre Formen, von welchen man in Fig. 36 a, b, c einige Beispiele sehen kann. Über das Entstehen dieser Bildungen will ich bei Phaseogale genauer berichten. Dort sind diese Verhältnisse leichter zu verfolgen.

Phaseogale albipes.

Eine Verschiedenheit, die ich später näher beschreiben will, zwischen Phaseogale und Metachirus tritt sogleich in's Auge. Man vermisst nämlich bei Phaseogale die Uebergangszenlen (Samenmutterzellen) zwischen der peripheren und mittleren Zone, wie sie
Ueber die Entwicklung der Samenkörperchen bei den Beuteltieren.

in Fig. 2, 3 und 4 von Metachirus zu sehen waren. Bei Phascogale wird die in Fig. 1 von Metachirus zusammengeschlossene mittlere Zone nur von einigen Samenmutterzellen repräsentiert, Fig. 37 MZ. Die während der Entwicklung der Samenkörperchen aus den Samentochterzellen abgestossenen Kernsubstanzztheile und Zellsustanzen sind hier sehr deutlich und leichter zu verfolgen.

Auch bei Phascogale muss man, wenn man die verschiedenen Formen der Entwicklungsreihe verfolgen will, von der Peripherie nach dem Centrum gehen und so wie bei Metachirus in conischer Form, also auf Querschnitten von einem zum anderen, bis dass man zum Centrum gelangt. Die Entwicklung in den Samenkälen geht in einem fortlaufenden Rhythmus oder in einer Welle. Sie fängt nämlich nicht auf einmal in dem ganzen Samenkanälichen, in der ganzen Peripherie an; denn dann würden alle Querschnitte dieselbe Form wenigstens in der Peripherie zeigen. Es ist gerade so, als ob in dem einen Ende des Samenkanälichen ein Impuls zur Entwicklung gegeben würde, der sich auf den nächstliegenden Querschnitt und von da immer weiter fortsetzt, um später noch einmal an der Ausgangsstelle zur Geltung zu kommen.

Hier wie bei Metachirus kommen längs der Peripherie die grossen Randzellen mit ihren bekannten grossen Kernen vor, die keine Spur einer Theilung zeigen. Hier kann ich mit noch grösserer Gewissheit sagen, dass sie an der fortlaufenden Entwicklung der Samenkörperchen nicht teilnehmen.

In Fig. 38 und 39 sieht man einige kleinere Zellkerne, StZ, im Ruhestadium mit stark gefärbtem Kernkörperchen und gefärbten Körnern. Von der Aussenfläche gesehen liegen sie an den Grenzen der Randzellen und sind nach unten zwischen dieselben geschoben, ohne dass aber die Grenzen der Randzellen verwischt worden wären. Fig. 42 gibt ein Bild einer solchen isolirten Zelle bei starker Vergrösserung. Der Ruhezustand der Zelle ist nur vorübergehend und im Stadium der Querschnitte Fig. 39 ist der Kern in die Knäuelform mit dünnen Schleifen getreten, wie Fig. 43 zeigt. Ich gebe hier einige Abbildungen von den wenigen karyokineticschen Figuren die ich gefunden habe. Fig. 44 ist eine Sternform und Fig. 45 eine metakinetische Form. Vollständige Serien von Theilungsfiguren habe ich bei diesen Zellen ebenso wenig wie bei den Samenmutterzellen gefunden. Eine Bestimmung über die
Dauer der verschiedenen Formen kann hier nicht gegeben werden. Dass auch die Form der Kernfiguren, von welchen ich viele Abbildungen geliefert habe, etwas von der Präparationsflüssigkeit abhängig ist, das ist ganz natürlich. Die Hauptsache für mich war aber in diesem Fall Theilungsfiguren überhaupt zu finden, um dadurch den Ursprung verschiedener Zellen und ihre Entwicklungsreihen nachweisen zu können. In Fig. 46 liegt eine Zwischenform zwischen Sternform und Knäuelform vor. Sowohl in Fig. 45 wie in den beiden Tochterzellen Fig. 46 habe ich in der Zellsubstanz mit Hämatoxylin sehr schwach gefärbte Körperchen gesehen.

Wenn der karyokinetische Vorgang abgeschlossen ist, trennen sich die beiden Tochterzellen von einander. Es scheint, dass sie nicht Raum auf demselben Platz zwischen denselben Randzellen finden können, sondern es kommen die eine oder beide in einen anderen Zwischenraum, wie Fig. 5 von Metachirus zeigt, zu liegen.

Diese Zellen vergrössern sich immer mehr und mehr, sowohl der Kern wie die Zellsubstanz und drücken auf die Randzellen und können diese sogar zur Seite schieben, sodass ihre scharfen Grenzen verwischt werden. Wenn diese Zellen zu einer bestimmten Grösse gelangt sind, tritt eine Veränderung in dem Kerne ein. Einige Zellen treten aus dem Centrum in die mittlere Zone, andere bleiben zurück.

Ohne mich darüber zu äussern, ob die Samenkörperchen dadurch, dass sie den Kanal verlassen, Raum schaffen und nur die Zellen der peripheren Zone gegen das Centrum rücken, um den Platz auszufüllen, oder ob das Kanälechen, wenn die Samenkörperchen reif geworden sind, sich contrahirrt und so mechanisch die Zellen der peripheren Zone verschiebt, lasse ich unentschieden und will ich nur auf die Gleichzeitigigkeit der diesem Phänomen zu Grunde liegenden Bilder aufmerksam machen.

Die Kerne der Zellen der peripheren Zone zeigen ganz eigenthümliche Bilder (siehe Fig. 37 und Fig. 6 von Metachirus). Die Chromatinfädlen sind im Allgemeinen dünn und sind bald in einer halbmondförmigen, bald halbsphärischen, bald stundenglasförmigen Anordnung. Der übrige Theil des Kerns ist klar und chromatinfrei. Das Bild Fig. 6 von Metachirus gleicht der eigenthümlichen Sternform Flemming's) im Salamandrahoden. Im Allgemeinen

1) l. c.
Ueber die Entwicklung der Samenkörperehen bei den Beutelthieren.

sind sie sehr schwer zu deuten; viele scheinen mir ähnlich den Kernformen der Bilder 15—20 in der letzten Arbeit von Flemming 1). Sie sind auch aus dem Salamanderhoden und sind im Anfang der Metakinese und zeigen „Auftreten der Kernspindel und sehr verwinkelte dichte Fädenlagen“. — Wahrscheinlich sind also hier Theilungsfiguren.

Die Samenstammzellen haben sich also in je zwei Tochterzellen getheilt, welche ich auch Samenstammzellen nenne. Die eine Zelle von diesen Tochterzellen ist bei dieser Theilung in die mittlere Zone gerückt, die andere bleibt in der peripheren Zone zurück. Ihr Kern geht nach und nach in den Ruhezustand und wird eine neue Samenstammzelle, Fig. 38 StZ und 41 StZ. Bei den in die mittlere Zone eingetretenen Zellen, das sind die Samenmutterzellen, fängt die Kerntheilung sogleich an. Die Zellen vergrössern sich und färben sich im Ganzen stark, sodass die Knäuelform und auch die übrigen karyokinetischen Formen nicht so gut und genau zu analysiren sind. Ich habe dieselben Formen hier wie bei Metachirus gefunden.

Die grossen Samenmutterzellen treten bei Phaseogale plötzlich auf und nicht allmählich wie bei Metachirus. Es gibt nämlich hier keinen oder nur einen sehr kurzen Ruhezustand der Samenmutterzellen. Der mittlere Kranz der Samenmutterzellen bei Metachirus wird dagegen erst fertig in demselben Querschnitte, wo neue Samenmutterzellen gebildet sind (Fig. 1) und man könnte also dieselben Formen in einem ganzen Rundgange auf meinen Querschnittsbildern verfolgen und dadurch tritt die Bildung der Samentochterzellen bei beiden Thieren gleichzeitig mit dem Auftreten bestimmter Entwicklungssstadien anderer Zellen auf, welche Zellformen nicht nur bei demselben Thiere, sondern auch bei beiden Thieren immer dieselben sind. Die Zeit der Dauer für die Entwicklungsorten zeigt sich also bei diesen Thieren genau abgegrenzt.

Eine Zusammenziehung der Samenkanälichen, eine Verkleinerung des Durchmessers, tritt, wie gesagt, gleichzeitig mit dem Auftreten der fertigen Samenkörperehen und dem Eintreten der Samenmutterzellen in die mittlere Zone auf und wenn die Ent-

1) Walther Flemming, Neue Beiträge zur Kenntniss der Zelle. Arch. f. mikr. Anatomie Bd. XXIX.
wicklung im Ganzen in einem fortlaufenden Rhythmus geht, dann muss auch die Zusammenziehung in einem fortlaufenden Rhythmus erfolgen. Ich kann auch bei Phasecogale an den dicken Samen-kanälchen mit blossem Auge dünnere und dickere Abteilungen sehen und dadurch im Voraus ganz gut bestimmen, welches Entwicklungsstadium ich mit meinen Schnitten treffen werde.

So wie bei Metachirus theilen sich die Samenmutterzellen in Samentochterzellen oder in Zellen, die sich zu den Samenkörperchen umbilden. Diese Umbildung findet ungefähr wie bei Metachirus statt. Die Kerne zeigen zuerst ein diffus gefärbtes Innere. Es entwickelt sich eine Kappe und am entgegengesetzten Pole tritt die sackförmige Knopfbildung von der Kernsubstanz auf. Hier konnte ich sehr schön beobachten, wie von dem Pole chromatinhaltige Kernsubstanzstücke frei in der Zellsubstanz abgeschnürt waren. Fig. 47 illustriert dieses Verhältniss ganz gut.

Wenn auch gleichzeitig stark gefärbte chromatinhaltige Substanz sich in die Kappe begibt, so muss hier eine polare Differenzierung stattfinden.

Der Kern wird hier nicht so sehr in die Länge ausgezogen, wie bei Metachirus. Indessen tritt auch hier eine Einziehung der Kernmembran nach der Kappe zu ein (Fig. 48), während die Chromatinkörnchen mit dem benachbarten Achromatin sich zusammenziehen. Das Chromatin sammelt sich zuerst an den beiden Polen und durch den Schwanzpol tritt ein feiner Faden aus, der auch hier durch die Zellsubstanz schwer zu sehen ist. Wie bei Metachirus dringt die Kernsubstanz in die Kappe ein (Figg. 47—51). Hat sich aber das Chromatin differenziert und ist es platt geworden, dann wird auch der Zapfen in der Kappe dünner und die Kernsubstanz zieht sich zuletzt ganz nach unten (Figg. 51 und 52). Mit der Abplattung des Chromatins' wird auch die Kappe platt und liegt dem Kopfe an (Fig. 52).

In den Figg. 49—52 sieht man jetzt drei verschiedene Contouren: nämlich den der Kappe, den der alten Kernmembran und den einer inneren Membran, die das Achromatin, das bei der Zusammenziehung des Chromatins sich differenziert hat, begrenzt. Das Chromatin des Kopfes wird dünner, zieht sich in die Länge und biegt sich nach der Medianlinie des Kopfes ein (Figg. 53 und 56). Auch die Kappe zieht sich zusammen und wird bald abgestossen (Fig. 55). Sie hat dann ungefähr dieselbe Form (Fig. 54), wie
Ueber die Entwicklung der Samenkörperchen bei den Beuteltieren.

das Chromatin, doch ist sie etwas grösser. In ihrer Mitte ist eine Linie oder eine Einziehung, entsprechend der tieferen Mitte des Kopfes.

Das letztendifferenzierte Achromatin legt sich an die untere Fläche des Kopfes und entspricht so der erwähnten becherförmigen Achromatinhülle beim Stier etc. wie oben gesagt.

Während der Entwicklung von den Stadien in Fig. 40 (S K 1), bis zum Stadium der Fig. 37 (S K) wird die Zellsubstanz in grossen Klumpen gegen das Centrum des Samenkanälchens zu abgestossen und wird, wie Fig. 37 (Z S K) sehr schön zeigt, im Lumen des Samenkanälchens weiterbefördert. Nach diesem Ereignisse zeigt sich das Samenkörperchen ganz anders als früher (Fig. 55).

Aus dem langgestreckten Kopfe geht nach unten ein deutlich hervorstehender feiner Chromatinfaden aus. An der unteren Fläche des Kopfes liegt der gefärbte Faden weit umschlossen von einer Masse, die nicht einer Zellsubstanz gleicht, sondern klarer ist und grössere und kleinere gefärbte Körner enthält. Die Zellsubstanz ist abgestossen worden und Kernsubstanz ist es, welche noch immer in Verbindung mit dem nicht fertiggebildeten Samenkörperchen bleibt. Die Länge dieser umgebenden Kernsubstanz entspricht dem künftigen Verbindungsstück und an ihrem unteren Ende tritt der dichtere Schwanz, der mit dem dünneren Chromatinfaden zusammenhängt, heraus. Das Achromatin schliessst sich indessen um den Chromatinfaden, wie Fig. 57 zeigt. Damit um den Schwanz und das Verbindungsstück eine Hülle gebildet werde, wird nicht die ganze Kernsubstanz (Fig. 56) verbraucht, sondern die hierbei überflüssige auch Chromatin enthaltende Masse wird abgestossen und abgelöst, Fig. 38. Wenn aber die Samenkörperchen sich herausdrehen, bleiben diese Reste zurück und liegen dann peripher um das Samenkörperchen, wie in Fig. 39. Hier haben sich die Reste mehr und mehr zu kleinen klaren Kügelchen (Fig. 39 K R), die einen oder mehrere gefärbte Körperchen enthalten, gesammelt. Nach und nach häufen sich die Kügelchen an und der gefärbte Inhalt, das Chromatin, sammelt sich in grossen Klumpen von verschieden eigenthümlichen Formen. Siehe Fig. 36 von Metachirus.

Während dieses Vorganges werden sie immer mehr und mehr zusammengepresst (Fig. 40 K R. Die Chromatinmassen vertheilen sich zuletzt und vermischen sich mit den ungefärbten Partien noch
einmal und es drängen sich die Kernsubstanzreste als granulirte, diffus gefärbte Klumpen zwischen die Samenkörperchen. Auf dem Querschnitte in Fig. 40 (KR), sieht man diese Verhältnisse sehr gut.

Es fragt sich nun, woher diese Kernreste, dieses Chromatin, gekommen ist? Während der Entwicklung des Kopfes kann wohl Achromatin, aber kein Chromatin abgegeben werden und ich glaube, dass diese Kernreste nichts anderes als die zurückgebliebenen Polkörperchen von Fig. 47 sind. Diese Polkörperchen werden in die Zells substanz abgestossen und wenn das Hauptstück des Schwanzes gebildet und frei geworden ist, dann ist die Zells substanz abgelöst und weggeführt. Die zurückgebliebene Substanz, die das Verbindungsstück umschliesst, sieht ganz anders aus und gleicht vollständig einer Kern substanz mit ihrer klaren ungefärbten Hauptmasse und den gefärbten Körnern. Die Kern substanz scheint fester an die Samenkör perchen gebunden zu sein als die Zells substanz. Wahrscheinlich ist doch das Achromatin, das zum Samenkör perchen schon von früher her gehört, nur oberflächlich mit der Kern substanz der Polkör perchen verbunden; denn die Bildung der Parachromatinhülle erfolgt in der Mitte dieser Kernsubstanzmasse und ist das Signal zum Abstossen der übrigen Kernsubstanz.

Der Kopf (Fig. 58) ist länglich an einem Ende zugeschärft und am anderen Ende verbreitet. Die äusserste Spitze ist etwas schwächer gefärbt als ihr übriger Theil und die Seitentheile. Die Seitentheile sind, wie früher gesagt, eingebogen. Das Medianstück des Kopfes ist dünn und schwach gefärbt. Der Schwanz geht ungefähr vom Mittelpunkte der unteren Fläche aus. Das Medianstück des Kopfes von der Anhebung des Schwanzes bis zur Spitze ist durch seine stärkere Färbung nach unten begrenzt gegen das Stück von der Anheftungsstelle bis zur Basis, das sich nicht oder sehr wenig färbt. Am Basaltheile sieht man ein Querband, das sich etwas stärker färbt.

Der Schwanz ist platt; in der Mitte, wo der Achsenfaden liegt, dick, seharfründig an den beiden Seiten. Der Theil end-
Über die Entwicklung der Samenkörperchen bei den Beutelthieren. 355

lieh, womit das Verbindungsstück am Kopfe anhängt, ist zuge-spitzt.

Was nun die verschiedenen Arbeiten und Auffassungen an-langt, die sich mit der Frage über die Entwicklung der Samenkörperchen befassen, so will ich nur auf Waldeyer's Referat in den Verhandlungen der ersten Versammlung der Anatomischen Gesellschaft verweisen. Ich will indessen versuchen meine Stel-lung zu den verschiedenen von Waldeyer aufgestellten Gruppen zu zeigen.

In Bezug auf die Abstammung der Samenkörperchen gehören ich, wie ich oben gezeigt habe, zu denjenigen Untersuchern, die zweierlei Zellenarten annehmen, von welchen die eine einen directen Antheil an der Entwicklung der Samenkörperchen nimmt, während die andere eine ernährende Bedeutung hat. Ich stütze meine Auffassung hauptsächlich auf eine Zusammenstellung aller meiner Querschnitte und auf die Flächenpräparate. In allen kommen die Randzellen mit ihren grossen, ständig ruhenden Kernen vor. Alle übrigen Zellformen habe ich als Glieder einer zusammenhän-genden Entwicklungskette gefunden.

Wenn man bei Phascogale die grossen Samenkörperchen und die entsprechend kleinen Samenzellen sieht, muss man unwillkürlich daran denken, dass während der Entwicklung des Samen-körperchens denselben reichliche Nahrung zugeführt worden sein muss und bei dem Umstande, dass die Randzellen die ganze Fläche der membrana propria einnehmen, liegt es nahe anzunehmen, dass sie es sind, die den Stoffwechsel vermitteln.

Die Samenkanäle der in Rede stehenden beiden Beutel-thiere (besonders Phascogale) sind ungewöhnlich weit; sie haben grosse Zellen und grosse Samenkörperchen und die Samenkör-perchen liegen nicht in Gruppen, sondern in einem geschlossenen Ringe. Während ihrer Theilung und Entwicklung liegen auch die Samen-zellen in concentrischen Ringen dicht aneinander und zwischen-geschobene Zellsubstanzfortsätze von den Randzellen kommen hier nicht vor.

Die in der äusseren Zone zwischen den Randzellen liegenden

kleineren Zellen, die ich Samenstammenzellen genannt habe, entsprechen durch ihre Lage und durch ihr Aussehen den v. la Valette St. George'schen Follikelzellen und scheinen mir auch identisch mit Sertoli's 1) "cellule germinative", Brown's 2) "sporecells" etc., und sind auch nach Krause 3), Renson 4) u. A. wirkliche Samenzellen. In ihrem Ruhezustande, Fig. 42, gleichen die Kerne denen der Randzellen; sie sind aber viel kleiner und ihre markante Größe und Länge machen wenigstens auf einem Flächenpräparate ein Verkennen undenkbar. Über die Bedeutung dieser Zellen als Samenzellen hatte ich bislang noch nicht mit der Bestimmtheit wie jetzt mich auszusprechen gewagt, seit ich bei Fascogale karyokinetische Figuren, mithin einen sicheren Uebergang von diesen Zellen zu anderen ganz verschiedenen gefunden hatte. Bei Metachirus habe ich wohl entsprechende Zellformen, aber keine Zelltheilungsfiguren gesehen.

Brown 1) sagt, dass "the parent cells" (die Tochterzelle der kurz vorher erwähnten Zellen, z. B. Fig. 5 St Z oder Fig. 46) aus "the spore cells" (siehe oben) durch einen Knospungsprocess, nicht durch Mitose entstehen. Zufolge Brown wachsen die "spore cells" und theilen sich durch Knospung; nun bleibt eine Zelle als junge Sporenzelle zurück, die andere (the parent cell) dagegen theilt sich auf karyokinetic schem Wege in wachsende Zellen (growing cells). Ich habe, wie ich oben beschrieben habe, hier keine Knospung gefunden. Die Tochterzellen Fig. 5 St Z oder Fig. 46 sind beide gleich. Was die Umwandlung der Samentochterzellen in die vollständig fertig gebildeten Samenkörperehen anlangt, so habe ich mich auf Seite Köllik er's 6) gestellt.

Ich habe in meiner erwähnten früheren Arbeit zu zeigen ge-

2) H. Brown, On Spermatogenesis in the rat Quaterly Journal of microscopical science h. S. Nr. XCVIII, 1885.
3) W. Krause, Nachträge zur allgemeinen und mikroskopischen Anatomie. Hannover 1881.
4) Renson, De la spermatogénèse chez les mammifères. Arch. de Biologie 1882.
5) l. c.
sucht, dass bei Säugethieren die Entwicklung des Kopfes aus dem Chromatin, wie Flemming\(^1\) bei Salamandra zuerst gezeigt hat, geschieht, dass aber der Kopf doch nicht lediglich aus Chromatin besteht. Die Kette von Entwicklungsformen, die ich hier vorgelegt habe, zeigen deutlich wie die Entwicklung des Samenkörperchens aus der Samentochterzelle vor sich geht.

In der vorigen Arbeit habe ich klar zu legen versucht, wie das Samenkörperchen aus einem Chromatingerüst (der eigentliche Kopf und der Axenfaden) besteht, das von einer Achromatinhülle umschlossen wird. Der Kopf trägt manchmal eine Kappe, ist aber diese nicht vorhanden, dann bleibt der obere Theil des Chromatins des Kopfes unbedeckt, der untere dagegen wird von einem (modifizierten s. o.) achronomatischen Becher umschlossen. Das Samenkörperchen wird also meiner Ansicht nach nur aus dem Kerne gebildet, wie Kölliker\(^2\) zuerst gesagt hat.

Biondi\(^3\) meint, dass das Samenkörperchen nur aus dem Chromatin gebildet wird; er gibt aber keine Abbildungen über die Entwicklung. Klein\(^4\) ist derselben Ansicht wie Flemming\(^5\), nämlich dass der Kopf aus Chromatin besteht. Es ist im Allgemeinen äusserst schwierig einen gefärbten Axenfaden in dem Hauptstück des Schwanzes zu sehen, viel leichter jedoch kann man ihn in dem Verbindungsstücke erkennen und dabei wahrnehmen, dass dieser gefärbte Axenfaden in den Axenfaden des Hauptstückes des Schwanzes sich fortsetzt.

2) l. c.
3) l. c.
4) E. Klein, Beiträge zur Kenntniss der Samenzellen und der Bildung der Samenfäden bei den Säugethieren. Centralblatt f. d. med. Wiss. 1880.
5) l. c.
Carl M. Fürst:

Jensen mir eine Stütze durch seine letzte Arbeit, in der er sagt, dass der Spiralfaden von einer anderen chemischen Beschaffenheit sei als der Axenfaden.

Auch in Anbetracht der verschiedenen Ansichten über die Nebenkerne, oder wie man diese Körper nennen will, verweise ich auf Waldeyer's Referat.

v. la Valette St. George's²) und Platner's³) Nebenkerne, die aus den Spindelfäden während des karyokinetischen Vorganges gebildet werden, sind sicherlich dasselbe, was Flemming in seiner letzten Arbeit in den Abbildungen (Fig. 29—32) zeigt und welche, wie er sagt, „einzelne gröbere mattglänzende Körner von verschiedener Größe theils zwischen den Fasern der Spindel, theils ausserhalb im Zellkörper“ liegend sind. Auch Andere, wie Renson⁵) und Brown⁶), haben accessorische Körper bei den Entwicklungsstadien der Samenzellen gesehen. Meine Bilder von der Mitose der Samenstammzellen zeigen eben solche Körper wie sie Flemming beschreibt. Ihr weiteres Schicksal habe ich nicht verfolgen können.

4) l. c.
5) l. c.
6) l. c.
Mit dem Abstossen der Polkörperchen fängt die eigentliche Bildung des Samenkörperchens aus dem Kerne, „die Reifung“ an. Man sieht also hier eine Übereinstimmung zwischen dem Reifen des Eies und des Samenkörperchens. Das Abstossen der Polkörperchen (in Fig. 47) entspricht dem Knospungsprocesse des Eikerns und gleich wie nach Abgabe der Polzellen die zurückgebliebene Hälfte sich zum Eikerne umwandelt und das Ei dadurch reif wird, so sieht man auch hier nach Abgabe der Polkörperchen, also auch nach einem Knospungsprocesse, dass das Samenkörperchen aus dem zurückgebliebenen Kern sich zu bilden anfängt: es reift. Herwig vergleicht den Entwicklungszustand des Eies in der Bildung der Polzellen mit der Samenmutterzelle, die vielen Samenkörperchen den Ursprung giebt. Meiner Beobachtung gemäss erscheint es mir als gewiss, dass man in der Samentochterzelle, nämlich der Zelle, die den Ursprung für nur ein Samenkörperchen giebt, das Analogon suchen muss.

Mit dem Knospungsprocesse scheint mir die Entwicklung des Schwanzes im Zusammenhange zu stehen. Der Axenfaden wenigstens tritt durch denselben Pol aus, von dem die Polkörperchen ausgestossen wurden. Die Schwanzbildung wäre also gleichsam als eine Fortsetzung der polaren Differenzirung der Kernsubstanz aufzufassen.

Schliesslich will ich eine kurze Zusammenfassung meiner mitgetheilten Untersuchungen geben und zeigen, wie ich auf ihnen basirend glaube, dass die Entwicklung der Samenkörperchen bei den Beutelthieren geschieht.

Die Samenkanälichen enthalten zweierlei Hauptformen von Zellen: die Samenzellen und die Randzellen.

Die Randzellen haben für die Entwicklung der Samenkörperchen keine direkte Bedeutung.

Die Samenzellen sind von drei verschiedenen Arten:

Die Samenstammzellen, die durch Mitose den Ursprung für neue Samenstammzellen und für die Samenmutterzellen geben. Diese grosse Zellen theilen sich weiterhin auf karyokinetischem Wege und werden dadurch zu den Samentochterzellen; dies sind kleinere Zellen, die, nachdem sie durch einen Knospungsprocess einige Polkörperchen abgegeben haben, sich in Samenkörperchen umbilden.

Die Samenstammzellen gehören immer, so wie die Randzellen, zu der peripheren Zone des Samenkanälchens.

Die Samenmutterzellen liegen anfangs in der peripheren Zone, treten aber später in die mittlere Zone hinein.

Die Samentochterzellen liegen in der mittleren Zone; während der Umbildung zu Samenkörperchen aber treten sie in die centrale Zone ein.

In den Samenkanälchen liegen die Samenzellen und Samenkörperchen kranzförmig angeordnet, so dass jede Zone oder jeder Kranz nur Zellen desselben Entwicklungsstadiums enthält.

Die Entwicklung geht von der Peripherie nach dem Centrum; doch sind die Serien in keinem Querschnitte vollständig zu treffen, sondern die Entwicklung geht in einer fortlaufenden Welle vor sich. In hinreichend langen Stücken von Samenkanälchen kann man also von der Peripherie des einen Endes bis zum Centrum des anderen Endes die Serie der Entwicklungsformen verfolgen. Sie liegen also in einer konischen Anordnung.

Nachdem die Chromatinkörper zusammengeflossen sind, ent-
Ueber die Entwicklung der Samenkörperehen bei den Beutelthieren. 361

wickelt sich das Chromatin zu der für die specielle Art eigen-
thümlichen Form. Die Kappe wird platt und schliesslich abge-
stossen. Aus dem Schwanzpole heraus tritt indessen fortwährend
Kernsubstanz in Form eines feinen Fadens, bestehend aus Chro-
matin, welches direct mit dem Chromatin des Kopfes zusammen-
hängt.

Die Zellsubstanz wird abgestossen und aus dem Samenkanäl-
ch en weggeführt. Das Abstossen der Zellsubstanz steht im Zusam-
menhange mit dem Hervortreten des Schwanzes.

Wenn die ganze Zellssubstanz abgestossen ist, dann bleibt
nur Kernsubstanz zurück, hängend an dem Verbindungsstücke. Das
Achromatin schliesst sich nach und nach enger an den Axenfaden
und die überflüssige und übrige Kernsubstanz wird frei.

Die Samenkörperehen, die aus dem Samenkanälchen auszu-
treten anfangen, lassen diese Reste zurück, so dass sie peripher
um die Samenkörperehen zu liegen kommen. Die Kernreste bauen
sich in grössere Häuf en zusammen, und die Chromatinkanälchen
sammeln sich zu grossen unregelmässigen Klumpen. Sind sie aus
dem Samenkanälchen ausgetreten, dann vertheilt sich wieder das
Chromatin und das Ganze ist diffus gefärbt.

Der Spiral faden ist nur eine vorübergehende Entwicklungs-
form, welche auf Drehung der Schwänze in dem Lumen des Sa-
menkanälchens und auf einer dadurch entstehenden Spiralfalte mit
nachfolgender Spiralverdichtung in der das weitere Achromatin
umgebenden Parachromatinhülle beruht.

Das Samenkörperehen wird also von einem Theile des Kerns
der Samentochterzelle nach einer polaren Differenzierung gebildet,
wobei Polkörperchen abgestossen werden.

Das Samenkörperehen besteht aus einem Chromatingerüst —
i. e. dem eigentlichen Kopf und dem Axenfaden — das auf der
oberen Fläche des Kopfes unbedeckt ist, auf der unteren jedoch
und in dem Schwänze ist es von einer Achromatin- oder Parachro-
matinhülle umgeben.

Ich habe die Terminologie von v. la Valette St. George, so
wie sie Wald c y e r in der Leipziger Versammlung vorge-
schlagen hat, hier nicht aufgenommen, weil ich glaube, dass da-
durch viele Missverständnisse entstehen können. So z. B. ist der
bekannte physiologische Name „Spermatogonie“ so fest mit dem
anatomischen Bilde der Zelle, die v. la Valette St. George so
genannt hat und die meiner und anderer Meinung nach gar keine Spermatogonie ist, vereint, dass hier das Wort eine Macht über den Gedanken erlangt hat, von der wir uns nicht gut befreien können und dass der Name „Spermatogonie“ nicht ohne grosse Schwierigkeit auf ein ganz anderes anatomisches Bild überführt und dort festbehalten werden kann.

Erklärung der Abbildungen auf Tafel XVIII—XX.

Die Zeichnungen sind nach den Präparaten mit Abbé's Zeichnungsapparat dem Contour nach entworfen.

Ich brauchte bei allen Querschnitten Obj. 6, Oc. I des Leitz'schen Mikroskops bei eingezogenem Tubus; für die Flächenpräparate Obj. 8, Oc. I. Die übrigen Bilder wurden bei einer ausgezeichneten Leitz'schen homog. Immersion 1/16 gewöhnlich in Verbindung mit Oc. II, bei Fig. 58 jedoch mit Oc. III entworfen.

Die Bezeichnungen bedeuten:
- **StZ** = Samenstammzelle im Ruhezustand.
- **StZ₁** = Samenstammzelle zweiter Generation (Tochterzellen der StZ).
- **MZ** = Samenmutterzelle.
- **MZ₁** = Theilungsformen von StZ₁ zu Samenmutterzellen.
- **TZ** = Samentochterzellen.
- **TZ₁** = Samentochterzelle, an der sich die Kappe entwickelt hat und an der die polare Differenzierung angefangen hat.
- **SK** = Samenkörperchen unentwickelt.
- **SK₁** = Samenkörperchen entwickelt.
- **ZSR** = Zellsubstanzreste, abgestossen und im Begriffe aus den Samenkanälchen auszutreten.
- **KR** = Abgestossene und zurückgebliebene Kernsubstanz.
- **KR₁** = Kernsubstanzreste, die sich aus den Samenkanälchen zwischen die Samenkörperchen hinaus drängen.

Figg. 1—36. Metachirus quica.

Tafel XVIII.

Fig. 1—4. Querschnitte der Samenkanälchen, die in der Entwicklung von Fig. 1 bis Fig. 4 einander folgen.

Fig. 5. Die periphere Zone des Samenkanälchens vom Entwicklungsstadium der Fig. 4 der Fläche nach.

Fig. 6. Die periphere Zone des Samenkanälchens vom Entwicklungsstadium der Fig. 1 der Fläche nach.
Ueber die Entwicklung der Samenkörperchen bei den Beutelthieren. 363

Fig. 7. Isolirte Samenstammzelle StZ vom Stadium der Fig. 3.
Fig. 8. Zelle MZ vom Stadium der Fig. 1.
Fig. 9. Samenmutterzelle, MZ im Ruhezustand aus dem Entwicklungsstadium der Fig. 3.
Fig. 10. Samenmutterzelle in Knäuelform aus einem Entwicklungsstadium zwischen den Figg. 1 und 2.
Fig. 15. Samenmutterzellen mit Kerngerüst.

Tafel XIX.

Fig. 16. Samenmutterzelle aus der mittleren Zone der Querschnitte wie Fig. 3. Diffus gefärbter Kern mit Kappe und in sie eingeschobenen gefärbten Kernsubstanz. In dem anderen Ende ausgestossene Kernsubstanz-Polkörperchen.
Fig. 17. Wie Fig. 16. Der in die Kappe eingetretene Theil ist nicht mehr gefärbt.
Fig. 18. Samenkörperchen, bei dem die Polkörperchen mit Ausnahme eines trichterförmigen Restes am Schwanzpole abgestossen und frei sind. Der Kern ist vergrössert und das Chromatin hat sich in Körner zerteilt. Der Kern ist stark in die Kappe eingezogen.
Fig. 19. Samenkörperchen, bei dem die Chromatinkörnchen sich mit der nächstliegenden Kernsubstanz zusammenziehen. Die Kernmembran ist am Schwanzpole eingestülpt. Der in die Kappe eingezogene Theil hat sich mehr zurückgezogen.
Fig. 20. Samenkörperchen bei dem die Zusammenbackung der Chromatinkörner weiter vorgeschritten ist und bei dem die Differenzierung gegen die Pole zu besser hervortritt.
Fig. 21. Samenkörperchen, bei dem das Chromatin stundenglasförmig zusammengezogen ist.
Fig. 22 und 23. Samenkörperchen, bei dem das Chromatin sich mehr nach dem Kappenpole begeben hat.
Fig. 24. Samenkörperchen, bei welchem die Kappe ganz abgeplattet und das Chromatin noch mehr zusammengezogen ist. Der Schwanz ist aus der Zellsubstanzt hervorgetreten und die Zellsubstanzt ist abgestossen.
Fig. 25. Isolirter Kopf vom Samenkörperchen der Fig. 24 von oben gesehen.
Fig. 26. Isolirte Kappe eines Samenkörpers vom Stadium der Fig. 24 a von der Seite b von oben gesehen.
Fig. 27. Samenkörperchen, bei welchem das Chromatin zusammengezogen ist und bei dem sich die Schenkel zu bilden anfangen. Der Chromatinfaden ist jetzt sehr deutlich, sowie alle Zellonsubstanzt abgestossen ist.
Fig. 28. Isolirter Kopf vom Samenkörperchen der Fig. 27 von oben gesehen.
Fig. 29—32. Samenkörperehen, welche sich noch weiter entwickelt haben. In Fig. 30 und 32 sind die Köpfe von oben gesehen.

Fig. 33. Samenkörperehen, bei welchem der Kopf seine Form erhalten hat. Das Hauptstück des Schwanzes ist fertig gebildet. Um das Verbindungsstück ist Kernsubstanz und dicht an dem Axenfaden ist eine Achromatinhülle mit unregelmässigen Falten oder Brücken.

Fig. 34. Samenkörperehen, bei dem man unter dem Chromatintheile des Kopfes eine Achromatinhülle sieht, die mit der Achromatinhülle des Verbindungsstückes zusammenhängt. In dieser Hülle sieht man eine Spiralfalte oder Spiralverdichtung.

Fig. 35. Fertig gebildetes Samenkörperehen aus dem Nebenhoden, mit begrenztem, nach oben zugeschobenem Verbindungsstück. Der Kopf steht in der Ebene des Schwanzes. a Stärker gefärbte Seitentheile des Kopfes, b die umgedrehten Schenkel, c schwächer gefärbte Medianpartie des Kopfes, e Anheftungspunkt des Verbindungsstückes, d das Verbindungsstück des Schwanzes, e der Axenfaden des Verbindungsstückes, f das Hauptstück des Schwanzes.

Fig. 36. Abgestossene Kernsubstanzreste vom Querschnittsstadium der Fig. 3 (KR). Das Chromatin hat verschiedene bizarre Formen gebildet.

Figg. 37—58. Phascogale albipes.

Figg. 37—40. Halbe Querschnitte der Samenkanälchen, die in der Entwicklung von Fig. 37 bis Fig. 40einander folgen.

Tafel XX.

Fig. 40. Halber Querschnitt eines Samenkanälchens.

Fig. 41. Die periphere Zone des Samenkanälchens im Entwicklungssstadium der Fig. 38 der Fläche nach.

Fig. 42. Eine isolirte Samenstammzelle im Ruhezustand vom Stadium der Fig. 38.

Fig. 47. Samentochterzelle mit diffus gefärbtem Kerne mit einer Kappe und der in dieselbe eingeschobenen Kernsubstanz. Es existiren hier bereits Polkörperchen und sie werden von dem Schwanzpole aus in die Zellsubstanz abgestossen. In der Mitte des Kerns ist eine chromatinreichere Partie.

Fig. 48. Samenkörperehen, bei der die Chromatinkörner sich mit dem anliegenden Achromatin zusammengezogen und sich an den beiden Polen gesammelt haben. Die Kernmembran ist eingestülpt.

Figg. 49—52. Samenkörperehen, bei denen das Chromatin zusammengesessen ist, sich mehr und mehr zu einer Stundenglasform zusammengezogen hat, und samt der Kappe abgeplattet worden ist.
Fig. 53. Kopf des Samenkörperchens des Stadiums der Fig. 52 von oben gesehen.

Fig. 54. Abgestossene Kappe von oben gesehen.

Fig. 55. Samenkörperchen, das die Zellsubstanz verloren hat und bei welchem man sehr gut von dem Chromatintheile des Kopfes einen chromatischen Axenfaden ausgehen sieht. Das Verbindungsstück des Schwanzes und der unterte Theil des Kopfes ist von Kernsubstanz umschlossen, in welcher man einige chromatinhaltige Körperchen sieht. Die Kappe wird eben abgestossen.

Fig. 56. Kopf des Samenkörperchens des Stadiums der Fig. 55 von oben gesehen.

Fig. 57. Samenkörperchen, bei welchem das Achromatin sich näher an den Axenfaden und den Kopf gezogen hat. Ein festerer oberer Theil der Achromatinhülle ist abgelöst. Das Verbindungsstück ist scharf begrenzt.

Fig. 58. Fertig gebildetes Samenkörperchen aus dem Nebenhoden. Der Kopf steht in der Ebene des Schwanzes. e Lichter gefärbter Theil der Spitze des Kopfes. b Dunkler gefärbter Theil der Spitze und Seitentheile des Kopfes. c Schwächer gefärbte Medianpartie des oberen Theiles des Kopfes. c, Anheftungspunkt der Spitze des Verbindungsstücks. d Schwächer gefärbte untere querbandähnliche Medianpartie des Kopfes. e Die ungefärbte oder äusserst schwach gefärbte Medianpartie des Kopfes. f Das Verbindungsstück des Schwanzes. g Der Axenfaden des Verbindungsstücks.
Enchytraeiden-Studien.

Von

Dr. W. Michaelsen in Hamburg.

Hierzu Tafel XXI.

In Betreff der systematischen Gliederung der Enchytraeiden-Familie liegen uns zwei verschiedene Ausarbeitungen vor; erstens die ältere, Claparède'sche Eintheilung in die Gattungen Enchytraeus Henle und Pachydrilus Clap. 1), denen später noch die Gattungen Anaeheta Vejdovský, Distichopus Leidy und Buchholzia aut. angefügt wurden, zweitens die jüngere, Eisen'sche Eintheilung in die drei Gattungen Mesenchytraeus, Archienchytraeus und Neoenchytraeus 2).

Eisen gründet seine Eintheilung in erster Linie auf die Form des Gehirns, nachdem er vorher die Gattungen Enchytraeus und Pachydrilus wieder zusammengeschmolzen hat. Zur Begründung dieser Verschmelzung sagt er: „It is evendent, as Ratzel and others have shown, that the colour of the blood is hardly a character of sufficient value to permit us to found on it the distinction of genera“, und fügt hinzu: „It may also be remembered that one of Claperèdes species, Pachydrilus lacteus has white blood, and that not all redblooded live in water“. Der aus dieser Ueberlegung hergeleitete Schluss wäre berechtigt, wenn die Farbe des Bluts und der Aufenthalt im Wasser wirklich die einzigen Punkte wären, in denen sich die Pachydrilen von den übrigen Enchytraeiden unterscheiden. Das ist aber nicht der Fall. Durch noch andere, wesentliche Merkmale charakterisiren sich die rothblütigen Enchy-

Enchytraeiden-Studien.

367

Um nicht ungerecht gegen Eisen zu sein, muss ich erwähnen, dass die Unvollständigkeit der Gattungsdiagnosen Claparède's sowie die Inconsequenz, die sich dieser Autor bei der Einordnung seiner Arten in die betreffenden Gattungen zu Schulden kommen liess, die Berechtigung der letzteren zweifelhaft erscheinen lassen musste, zumal einem Forscher, der nur conservirtes Material zu bearbeiten hatte und nicht durch eigene Untersuchungen das Zusammenreffen des von Claparède angegebenen Hauptcharakters, der Blutfarbe, mit noch anderen wesentlichen Eigenthümlichkeiten erfahren konnte. Der Vorwurf der Inconsequenz bezieht sich auf die Stellung von Claparède's Pachydrilus lacteus, der ja in der Ueberlegung Eisen's eine wesentliche Rolle spielt. Dieser Enchytraeide gehört gar nicht in die Gattung Pachydrilus hinein, wie aus Claparède's eigenen Angaben hervorgeht. Er besitzt farblooses Blut und „Les aiguilles sont parfaitement rectilignes, à l'exception de l'extrémité interne, qui est recourbée de manière à former un petit crochet (1), p. 17). Mit Pachydrilus proximus Czerniavsky (3), Enchytraeus Möbii aut. (4) und E. spiculus Leuckart (5) zusammen bildet er eine Gruppe von Enchytraeiden, die

Dr. W. Michaelsen:

Hauptteil und einem ziemlich kurzen, grade gestreckten, einfachen Ausführungsabgang. Die Würmer wurden unterhalb Cuxhavens, außerhalb des Deiches auf dem bei Fluthzeit von der See überschwemmten Vorlande gefunden.)
E. hegemon Vejd. gruppiren

ausgezeichnet durch das constante Vorkommen von Rückenporen, durch die ungleiche Lange der Borsten eines Bündels und durch das Vorkommen von Seiten- taschen am Receptaculum seminis, herrscht das Neenchytraeus- Gehirn vor. (Nur E. lobifer Vejd. besitzt nach diesem Autor ein hinten ausgeschnittenes Gehirn; vgl. 7), Taf. IX, Fig. 3.) Ferner besitzen diejenigen Pachydrilen, deren Gehirnform wir kennen, mit Ausnahme des P. fossor Vejd. 7, Taf. XIII, Fig. 9) ein am Hinterrande tief ausgeschnittenes Gehirn. Ich könnte an dieser Stelle schliesslich noch eine vierte natürliche Enchytraeiden-Gruppe anführen, für die eine bestimmte Gehirnform charakteristisch ist; doch bedarf es vorher des Nachweises, dass dieselbe eben eine natürliche ist. Ich denke hierbei an die Gattung Mesenchytraeus Eisen, die insofern eine Sonderstellung in dem Eisen'schen System einnimmt, als sie nicht, wie die beiden andern, einzig auf die Gehirnform gegründet ist. Ich lege in Folgendem die Ergebnisse meiner vergleichenden Untersuchungen an den Eisen'schen und an den deutschen Mesenchytraeen nieder. Ich werde daran eine Beschreibung der Gattung Buchholzia schliessen, um dann zur Auf- stellung eines Enchytraeiden-Systems gehen zu können, wie es meiner Ansicht nach die Verwandtschaftsverhältnisse in dieser Familie am besten zum Ausdruck bringt.

Gattung Mesenchytraeus Eisen (2).

Enchytraeus (Mesenchytraeus) Vejd. 8.

Pachydrilus (Mesenchytraeus) aut. (4).

Die Mesenchytraeen sind Enchytraeiden mit stark S-förmig gebogenen Borsten (Fig. 1 a), ohne Rückenporen und Speicheldrüsen. Sie besitzen einen grossen, deutlich erkennbaren Kopfpornus, und zwar liegt derselbe an der Spitze des Kopflappens oder nahe derselben, wie ich es von M. Benneri beschrieben habe (4), p. 19 u.

370

Dr. W. Michaelsen:

9), Fig. 14). Hierdurch unterscheiden sie sich wesentlich von den Pachydrilen, bei denen der Kopfforus klein ist, und in der dorsalen Medianlinie zwischen Kopflappen und Kopfring liegt. Eisen hat leider keine Angaben über Kopfforen gemacht; doch habe ich durch Schnittserien sicher ausmachen können, dass M. primaevus und M. falciformis in dieser Beziehung genan mit M. Beumeri übereinstimmen. Von drei Exemplaren des M. mirabilis, die mir zur Verfügung standen, waren leider zwei von die Kopfenden hinter dem Gürtel abgeschnitten, während das dritte eine leichte Lederung am Kopflappen zeigte. Ich glaube allerdings bei diesem letzteren einen Kopfforus nahe dem Vorderrande des Kopflappens erkannt zu haben, kann aber nicht dafür einstehen, dass mich nicht ein Kunstprodukt getäuscht hat. Die Mesenchytraeen besitzen (nach den hiesigen Arten zu schliessen) farbloses Blut und einen Herzkörper, ähnlich demjenigen mancher Polychaeten, wie Terebellides Strömi und Pectinaria belgica (vergl. 9), p. 301 u. Fig. 10 u. 11). In der ventralen Medianlinie fest an die Innenseite der Gefässwand angelegt, zieht sich derselbe durch das ganze Rückengefass hin. Er besteht aus verschieden grossen Zellen mit deutlichen Zellwänden und Zellkernen, und feiner Protoplasma-Granulation. Bei M. mirabilis (Fig. 3 b) und M. primaevus ist er dick, mit unregelmässigen, oft starken Anschwellungen, im Querschnitt vielzellig. Bei M. falciformis, M. Beumeri (Fig. 1 e) und M. flavidus ist er dünner, fast glatt, mit nur schwachen Anschwellungen und zeigt im Querschnitt nur wenige Zellen. Einen derartigen Herzkörper habe ich bei keinem andern Enchytraeiden gefunden. Derselbe muss wohl als Einwucherung des Darmepithels in das Rückengefass, und deshalb als homolog gewissen Organen bei anderen Enchytraeiden, z. B. dem Darmdivertikel der Buchholzie, angesehen werden. Das Gehirn der Mesenchytraeen (vergl. Fig. 1 c u. 2 b) ist hinten grade abgestutzt oder doch nur schwach concav. Vorne ist es mehr oder weniger tief ausgeschnitten, und der Ganglienzellenbelag zieht sich auf den vorderen, in die Commisuren übergreifenden Aesten weiter nach vorne, bis zu der Stelle, wo sich die Kopfnerven abzweigen. Zwei Muskelpaare sind am Gehirn befestigt, das eine an der Oberseite (Fig. 1 c u. 2 b; von),

das andre an der Unterseite (Fig. 1 c u. 2 b; um). An den Hinter- ecken, dieselben zwischen sich lassend, gehen sie vom Gehirn ab, schräg nach hinten, fast parallel mit einander. Eine höchst cha- rakteristische Ausbildung zeigen auch die Segmentalorgane (vergl. Fig. 1 d, 2 c u. 3 a). Sie bestehen aus einem winzigen, trichter- förmigen Anteseptale und einem mächtigen, auffallend unregel- mässigen, meist mit lappen- oder kopfförmigen Auswucherungen versehenen Postseptale. Ein verhältnismässig weiter Flimmer- kanal durchzieht das Anteseptale in grader Linie; im Postseptale aber verläuft er so vielfach gewunden und eng verschlungen, dass hier die umhüllende Zellsubstanz fast auf das Minimum reduciert ist. Die unregelmässigen Auswucherungen der Segmentalorgane haben fast das Aussehen bruchsackartiger Austreibungen des Flim- merkanals. An den Abbildungen Eisen's lässt sich dieser cha- rakteristische Verlauf des Flimmerkanals nicht erkennen; doch weichen seine Arten auch hierin nicht von den deutschen ab. Aus Fig. 3 a, der genauen Wiedergabe eines Flächenschnitts durch einen Segmentalorganlappen von M. mirabilis, kann man ersehen, dass Eisen (2), Fig. 25) den Flimmerkanal viel zu weitläufig ge- zeichnet hat, so dass jene eigenthümlichen Strukturverhältnisse nicht zum Ausdruck gekommen sind. Dasselbe gilt von den Ab- bildungen der Segmentalorgane von M. primaevus und M. falci- formis (2), Fig. 24 u. 26). Eigentümlichkeiten zeigen schliesslich auch die Geschlechtsorgane der Mesenchytraeiden. Die Samenkanäle sind kurz, höchstens acht Mal so lang wie die Samentrichter. Die Spermatozoen und Eier fallen vor erlangter Reife in die Leibeshöhle. Sie flottiren dann aber nicht frei in derselben umher. Zu ihrer Aufnahme bilden die Dissepimente XI/XII (für die Sperma- tozoen) und XII/XIII (für die Eier) mehr oder weniger tiefe, schlauch- oder sackförmige Einstülpungen nach hinten, Spermato- zoen- resp. Eiersäcke. M. Benmeri besitzt zwei Spermatozoen- säcke, die sich rechts und links vom Darm bis an die Hinterwand des XII. Segments erstrecken. Bei M. mirabilis fand ich nur einen, der sich aber, die nachfolgenden Dissepimente durchbrechend, bis in das XXVI. Segment erstreckt. Innerhalb der Segmente ist er aufgeschwollen; die Dissepimente verursachen enge Zusam- menschnürungen an denselben. Ein medianer Eiersack erstreckt sich unterhalb des Darmes bei M. flavidus bis in das XVII., bei M. Benmeri und M. falciformis bis in das XIX., bei M. mirabilis gar
Dr. W. Michaelsen:

Aus diesem allen erheilt wohl zur Genüge, dass die Gattung Mesenchytraeus Eisen eine natürliche ist. Ich constatire daher als zweites, dass auch sie in das System aufgenommen werden muss. Wenngleich der Name Mesenchytraeus nur im Gegensatz zu den Namen Archienchytraeus und Neoenchytraeus gewählt worden ist, so werde ich ihn doch beibehalten ohne ihm die letzteren gegenüberzustellen, da sich die Gattung Mesenchytraeus des Eise- schen Systems genau mit dieser Gattung meiner Definition deckt.

Ich habe im deutschen Gebiete zwei Arten gefunden, M. Beumeri und M. flavidus.

Mesenchytraeus Beumeri ant. (4).

Pachydrilus (Mesenchytraeus) Beumeri ant. (4).

Eine genaue Beschreibung dieses Wurmes gab ich andrenorts (4), p. 44—46). Ich beschränke mich deshalb darauf, das dort angegebene durch Abbildungen (Fig. 1) zu erläutern.

Als Fundorte kann ich angeben die Elbstrandsäume unterhalb Flottbecks bei Hamburg, die Borstler Beck an der Buxtehuder Chaussee hinter Harburg und das Eppendorfer Moor bei Hamburg. Er lebt vorzugsweise unter Moos und Rinde schwarz-modriger Baumstämme.

Mesenchytraeus flavidus nov. spec.

ist ein ungefähr 12 mm langer, ziemlich trockenhäutiger Wurm von gelblicher Färbung. Seine Borsten sind wie die von M. Beu- meri (Fig. 1 a) und stehen bis zu 5 in einem Bündel. Die Lymph-
körper habe ich nur an conservirten Exemplaren beobachten können. Sie sind klein und scheinen unregelmässig, länglich oval zu sein. Der Kopfsinus liegt an der Spitze des Kopflappens. Das Gehirn (Fig. 2 b) ist hinten schwach concav, vorne tief ausgeschnitten, mit parallelen Seitenrändern, etwas länger als breit. Die Segmentalorgane (Fig. 2 c) sind unregelmässig geformt, mit den oben angeführten, für die Mesenchytraeiden charakteristischen Eigenschaften. Das Blut ist farblos; das Rückengefäss entspringt im XIII. Segment. Die Samenleiter (Fig. 2 d) bestehen aus einem tonnenförmigen Samentrichter mit umgeschlagenem Rande, und einem kurzen Samentrichter, der höchstens 5 mal so lang ist wie der Samentrichter. Der Samentrichter führt in den breiten Pol eines birnförmigen Penis ein und mündet durch dessen spitzen Pol nach aussen aus. Die Mündung ist mit kleinen, lappenförmigen Prostata-Drüsen besetzt. Die Eileiter sind eng, ziemlich kurz. Die Samentaschen (Fig. 2 a) besitzen einen einfachen, an der Mündung mit schwach zwiebel- oder pilzförmiger Anschnitt versehenen Ausführungsgang und einen einfachen, birnförmigen Haupttheil, der an der Spitze mit dem Darm communizirt. Der Gürtel nimmt wie bei M. Beumeri die letzte Hälfte des XI. und das ganze XII. und XIII. Segment in Anspruch.

Gattung Buchholzia aut. (9).

Die eigenthümliche Erscheinung, dass bei der altbekannten, zuerst von B u c h h o l z 10 als Enchytraeus appendiculatus beschriebenen Art eine Verschiebung der Geschlechtsheile stattgefunden hat, veranlasste mich durch ihr Zusammentreffen mit anderen wesentlichen Eigenthümlichkeiten, diesen Enchytraeiden aus der Gattung Enchytraeus auszuscheiden und eine eigene Gattung, der ich den Namen Buchholzia gab, für ihn aufzustellen. Die Untersuchungen an einer neuerdings von mir aufgefundenen Art, die der B. appendiculata so nahe steht, dass sie nicht durch Gattungsgrenzen von ihr geschieden werden darf, zwingen mich jedoch, die auf diese Eigenthümlichkeit der Geschlechtsorgane bezüglichen Bestimmungen wie

Dr. W. Michaelsen:

der aus der Gattungsdiagnose zu entfernen. Die neue Art (ich nenne sie B. fallax) zeigt nämlich die für die Enchytraeiden normale Vertheilung der Geschlechtsorgane. Auch abgesehen von den in Rede stehenden Bestimmungen der früher gegebenen Diagnose muss die Gattung Buchholzia aufrecht erhalten werden.

Buchholzia appendiculata Buchh.
Enchytraeus appendiculatus Buchh. (10).
Enchytraeus (Mesenchytraeus) appendiculatus Vejd. (7) u. 8.
Enchytraeus (Mesenchytraeus?) appendiculatus aut. (4).
Buchholzia appendiculata aut. (9).

Die genaue Beschreibung, die die oben angegebenen Autoren von diesem interessanten Wurm gegeben haben, macht eine Wiederholung derselben an dieser Stelle unnöthig.

Ich fand diese Art in Blumentöpfen und in Gartenerde auf Borgfelde bei Hamburg.

Buchholzia fallax nov. spec.

ist ein schlanker, ungefähr 10 mm langer Wurm von weisser, schwach in's Bräunliche spielender Farbe. Die Borsten (Fig. 4 a) sind stark S-förmig gebogen und stehen zu 4 oder 5, selten zu 6
in einem Bündel. Die Borsten eines Bündels sind verschieden lang und so geordnet, dass sich ein ventrales Bündel und das entsprechende, darüber stehende laterale die längeren Borsten zukehren. Kopflporus wie oben angegeben. Lymphkörper wie in Fig. 4 b gezeichnet. Die Speicheldrüsen sind noch mehr reduziert als die von B. appendiculata, stummelförmig, ungefähr 6mal so lang wie breit. Der Darmdivertikel (Fig. 4 c) unterscheidet sich nur in Unwesentlichkeiten von dem der B. appendiculata (vergl. 3'), p. 299 u. 300 u. Fig. 7, 8 u. 9). Ich lasse eine Beschreibung desselben folgen. Der sehr enge Oesophagus ist bei seinem Übergang in den weiten Magendarm etwas in den letzzten hineingedrückt, so dass an der Dorsalseite eine wenig tiefe, breite Tasche entsteht. Aus dem Grunde dieser Tasche entspringen (wie ich gesehen zu haben glaube mehr als 2) dünne, wenig verzweigte, blindgeschlossene Schläuche, die zu einem abgerundeten Convolut zusammengefasst werden. Die Diče der Schläuche ist nicht so gleichmässig wie bei B. appendiculata, auch liegen sie nicht so fest zusammengepresst wie bei jenem Wurm. Die Membran des Darmblutsinns geht auf den Darmdivertikel über, umfasst ihn und setzt sich nach vorne direct in die Wandung des Rückengefäßes fort. Der Darmdivertikel liegt bei B. fallax dem Oesophagus fest auf und umfasst ihn sogar zur Hälfte. Eine mediane Längseinschnürung wie bei B. appendiculata fehlt vollkommen. Das Gehirn unseres Wurmes ist vorne und hinten ausgeschnitten, mit nach vorne convergirenden Seitenrändern, viel länger als breit (Fig. 4 d). Die Segmentalorgane bestehen aus einem kleinen, stummelförmigen Ante septale und einem platten, unregelmässig ovalen Post septale mit ziemlich kurzem Ausführungs gang. Die Geschlechtsorgane zeigen die für die Euchytraeiden normale Lage. Die Samentrichter sind unregelmässig cylindrisch, excentrisch durchbohrt, ungefähr 3mal so lang wie breit und mit umgeschlagenem Rande. Die Samenkanäle sind lang, regelmässig zusammengelegt, ungefähr so, wie Schiffstäne zusammengelegt werden. Die Eileiter sind wie die der übrigen Euchytraeiden. Die Samentaschen sind höchst zierlich (Fig. 4 e). Der Ausführungs gang ist einfach, ziemlich lang mit zwei birnförmigen Drüsen an der Mündung. Der Haupttheil ist umgekehrt birnförmig (der, breite Pol ist der Mündung zuge wandet) und communicirt an der Spitze mit dem Darm. Durch Ein senkung und darauf folgende Ueberwucherung entsteht am Grunde

Erwähnen will ich noch, dass ich bei einem Thiere einen Verbindungsgang zwischen zwei aufeinander folgenden Segmentalorganen gefunden habe, eine Abnormität, wie Vejdovský sie von einer Anachaeta bohemicæ beschreibt (8). Das Anteseptale des zweiten Segmentalorgans war stark verlängert und ging nach vorne in das Postseptale des ersten hinein. Der das Verbindungsstück durchziehende Kanal zeigte lebhafte Flimmerung. Noch eine andre, ziemlich häufig auftretende Abnormität will ich beschreiben. Ich fand bei einigen Thieren im VI., bei einem andern im VII. und VIII., bei wieder andern im IX. Segment in der ventralen Medianlinie warzenförmige Hypodermiswucherungen, die sowohl im optischen Längsschnitt wie an Querschnitten ganz das Aussehen undurchbohrter Penisse hatten; sogar eine centrale grubenförmige Einsenkung der Cuticula war erkennbar. Die Unpaarigkeit spricht freilich gegen die Annahme, dass diese Wucherungen rudimentäre Penisse seien; sollte es sich aber nachweisen lassen, dass diese Annahme doch Berechtigung hätte, so würde sie eine interessante Beziehung zwischen der abweichenden Lage der Geschlechtsorgane von B. appendiculata und diesen bis jetzt noch räthselhaften Organen ergeben.

B. fallax lebt in fettiger, düngerhaltiger Erde auf Steinwärder bei Hamburg.

System der Enchytraeiden.

Borsten S-förmig gebogen.

Gatt. Mesenchytraeus Eisen.
Kopfpornus klein, zwischen Kopfring und Kopflappen. Samenleiter lang.

Borsten abortirt.

Es sei mir gestattet, dieser systematischen Zusammenstellung noch einige erlauternde Worte hinzuzufügen. Aus den Ergebnissen der obigen Erörterungen folgerte sich diese Combination der beiden gegebenen Systeme direkt. Sie weicht von der älteren Combination Vejdovský's in erheblichem Maasse ab. Vejdovský stellt die Gattung Pachydrilus neben die Gattung Enchytraeus und theilt dann die letztere nach dem Eisen'schen Eintheilungsprinzip in die drei Untergattungen Mesenchytraeus, Archienchytraeus und Neoenchytraeus. (Er lässt jedoch den einzelnen Arten den Namen der Hauptgattung Enchytraeus.) Gegen diese Combination spricht die Thatsache, dass die eigentlichen Mesenchytraen (damals nur die 3 Eisen'schen Arten) als Enchytraeiden ohne Speicheldrüsen und mit S-förmig gebogenen Borsten gar nicht in die Gattung Enchytraeus eingeordnet werden dürfen. Sie stehen den Pachydrilen viel näher. Da nun auch die vierte Art, die Vejdovský in diese Untergattung gestellt hat, Enchytraeus (Buchholzia aut.) appendiculatus Buchh. meiner Ansicht nach aus der Gattung Enchytraeus auszuscheiden ist, so muss die Vejdovský'sche Untergattung der Enchytraeus-Arten mit hinten grade abgestutztem Gehirn ganz fallen. Ich hätte jetzt allerdings die
Gattung Enchytraeus meines Systems immer noch in die Unter-
gattungen Archienchytraeus und Neoenchytraeus spalten können,
doch glaube ich nicht, dass dadurch eine natürliche Gruppierung
entstanden wäre. Die Gattung Enchytraeus ist vorläufig eine
Sammlgattung geblieben. Ich habe die Arten dieser Gattung noch
nicht durchgearbeitet und es fehlt mir in Folge dessen noch an
der nötigen Uebersicht, um schon jetzt angeben zu können, durch
welche Eintheilungsprinzipien sich am besten eine Zerlegung in
natürliche Gruppen bewerkstelligen lässt. Ich glaube aber durch
die Abänderungen, die ich an dem System vorgenommen habe,
einen Schritt auf dem richtigen Wege gethan zu haben, auf dem
Wege, der uns zu einer endgültigen, natürlichen Systematisirung
der interessanten Enchytraeiden-Familie führt.

Erklärung der Abbildungen auf Tafel XXI.

Fig. 1. Mesenchytraeus Beumeri aut.
 a) Borstenbündel.
 b) Lymphkörper.
 c) Gehirn, von oben gesehen.
 c = Commissur, ku = Kopfnerv, om = oberes, um = unteres
 Gehirnmuskelpaar.
 d) Segmentalorgan.
 e) Querschnitt durch das Rückengefass mit dem Herzkörper.
 f) Samentasche.

Fig. 2. Mesenchytraeus flavidus aut.
 a) Samentasche.
 b) Gehirn (Buchstabenbezeichnung wie bei Fig. 1 c).
 c) Segmentalorgan.
 d) Samenleiter.

Fig. 3. Mesenchytraeus mirabilis Eisen.
 a) Flächenschnitt durch einen Segmentalorgan-Lappen.
 b) Querschnitt durch das Rückengefass mit dem Herzkörper.

Fig. 4. Buchholzia fallax aut.
 a) Borstenbündel.
 b) Lymphkörper.
 c) Querschnitt durch den Oesophagus mit dem Darmdivertikel im
 VII. Segment (entspr. 9), Fig. 8).
 d) Gehirn (Buchstabenbezeichnung wie bei Fig 1 c).
 e) Samentasche.
Untersuchungen über die Samenkörper der Säugethiere, Vögel und Amphibien.

Von

O. S. Jensen.

Stipendiat der Zoologie an der Universität Kristiania.

I. Säugethiere.

Hierzu Tafel XXII, XXIII und XXIV.

In letzterer Zeit haben mehrere Forscher die Structur des Schwanzes der Samenkörper von Säugethieren studirt, ohne indess zu einem übereinstimmenden Resultate zu gelangen. Die Structur des Schwanzes soll daher Gegenstand der meisten hier mitgetheilten Untersuchungen sein; hierzu füge ich einige Beobachtungen über die Structur des Kopfes.

Während nämlich Gibbes (12, 14) eine mit einem Randfaden verschene Membran annimmt, die, wie die Flossenmembran der Samenkörper der Urodelen, auf der einen Seite des Schwanzes herabläuft, nehmen andere einen Spiralsaum (Krause 15, 16, 23,

Dies fordert zu weiteren Untersuchungen auf. Das hier in Rede stehende Strukturverhältniss gehört ja auch seiner Feinheit wegen zu denjenigen, die nur mittelst einer grösseren Anzahl übereinstimmender Beobachtungen in's Reine gebracht werden können.

Hinsichtlich der Methoden, die ich angewandt habe, verweise ich auf die Darstellung der Structur der Samenkörper selbst. Ein paar Worte über die so häufig benutzte Osmiumsäure dürften doch vielleicht hier am Platze sein. Ich habe bei meinen Untersuchungen über die Structur des Schwanzes dieses Reagens öfter versucht, und erwies sich dasselbe, was die Samenkörper der Ratte angeht, die ich namentlich zum Gegenstand meiner Untersuchungen gemacht, nur wenig vortheilhaft. Zur Untersuchung des querstreiften Aussehens des Verbindungsstückes fand ich es sogar sehr unzweckmässig, sowohl in schwächeren als stärkeren Lösungen (0,1\(^{\text{a}}\)—1,0\(^{\text{a}}\)); Farbstoffe (worunter auch Säurefuchsin, siehe

1) Sonderbarer Weise wird von mehreren Autoren Gibbes'Membran fälschlich als "Spiralsaum" bezeichnet, wie denn auch der Membran der Samenkörper der Urodelen noch immer dieser Name beigelegt wird, während doch schon längst constatirt, dass dieselbe einseitig ist. Dass Gibbes selbst die Membran für eine einseitige hält, zeigt sofort ein Blick auf seine Abbildungen (12, Taf. XXIV; siehe seine Figuren von den Samenkörpern der Salamandra maculata, namentlich Fig. 1 und 2 und vergl. seine Fig. 5 b).

2) Siehe auch Romiti's Artikel (22), ref. von W. Krause in Virchow's Jahresbericht für 1885. Der Aufsatz selbst ist mir nicht zur Hand gekommen.
1. Die Samenkörper der Ratte (Mus decumanus, Pall.).

a) Der Schwanz.

Am Verbindungsstücke der Samenkörper, welche den Hoden entnommen und sich in dem der fertigen Form unmittelbar vorangehenden Stadium befinden, bemerkt man oft an ganz frischen Zerzupfungspräparaten in 0,6 proc. Kochsalzlösung, aber auch ohne irgendwelche Zusatzflüssigkeit, eine ähnliche regelmässige Querstreichung wie die, welche Leydig (19) und A. v. Brunn (21) an den Samenkörpern der Maus beobachtet haben; siehe Taf. XXII, Fig. 1; V das Verbindungsstück mit den Streifen (die eine schräge Stellung haben). Die zahlreichen, stark lichtbrechenden, prominenten Streifen, die sich in der ganzen Länge des Verbindungsstückes finden, sind durch kurze Zwischenräume von einander ge-
trennt; am hinteren Theil des Verbindungsstückes wird der Abstand der Streifen von einander gewöhnlich nach und nach etwas grösser.

Nicht immer sind diese Querstreifen deutlich. Erstens liegen sie bei vielen Samenkörpern im vorderen Theil des Verbindungsstückes so dicht an einander, dass sie kaum zu unterscheiden sind, oder die einzelnen Streifen hier gar nicht entdeckt werden können. Zweitens habe ich unter den zahlreichen untersuchten Individuen nicht selten solche getroffen, wo sich überhaupt eine deutliche Querstreifung bei nur wenigen Samenkörpern zeigte; bei den allermisten waren die Streifen am ganzen Verbindungsstück viel schwieriger als sonst zu beobachten, obgleich sich die Samenkörper in demselben (noch nicht reifen) Stadium befanden, und die Hoden in beiden Fällen gesund und voll waren. Dieser Umstand könnte verhängnisvoll werden. Denn ohne gründliche Untersuchung würde man die Querstreifen ganz übersehen und glauben, dass sie sich nicht vorhanden, oder vielleicht annehmen, dass sämtliche Streifen des Verbindungsstückes sehr dicht an einander lagen, so dass desswegen eine Unterscheidung derselben unmöglich sei. Die eine sowie die andere Annahme ist unrichtig. Bei recht scharfer Beobachtung habe ich mich mehrmals von dem Vorhandensein der Querstreifen überzeugt; sie liegen nicht dichter beisammen, sondern der Unterschied in der Lichtbrechung, wodurch sie sonst deutlich hervortreten, ist viel geringer, so dass das Verbindungsstück homogen oder fast homogen zu sein scheint. Solche Individuen hat vielleicht Eimer vor sich gehabt, wenn er (8, p. 97) sagt, dass bei der Ratte kaum Andeutungen einer Querstreifung zu beobachten seien.

Sehr allgemein treten jedoch die Querstreifen gerade bei den Samenkörpern der Ratte besonders distinct hervor; man sieht sie mit hom. Imm. und Abbé's Beleuchtungsapparat sehr deutlich schon bei 300maliger Vergrösserung. Und wenn sie auch in gewissen Fällen an frischen Samenkörpern kaum oder nicht zum Vorschein kommen, so ist doch das der quergestreiften Zeichnung zu Grunde liegende Strukturverhältniss jedenfalls constant.

Sehen wir denn nach, welches dieses Strukturverhältniss ist, oder in welcher Weise die Querstreifen zu deuten sind.

Sehr häufig sind sämtliche Streifen schräg gestellt (vergl. eine ähnliche Beobachtung von Leydig 19, p. 113); oft ist diese schräge Stellung sehr ausgeprägt (Fig. 1). Betrachtet man nun
die Streifen zuerst bei höherer Einstellung auf der oberen Seite des horizontal liegenden Verbindungstückes und schraubt dann den Tubus herab, so sieht man sie oft deutlich auch auf der unteren Seite desselben und nimmt wahr, dass alle Streifen hier constanter die entgegengesetzte Richtung der oberen haben und mit denselben alterniren. Schon durch diese Beobachtung, die mit gutem Licht und guten Immersionsystemen nicht schwierig ist, überzeugt man sich bald davon, dass die vielen Streifen nicht in sich geschlossene Ringe, sondern Windungen eines einzigen langen Streifens sind, der in zahlreichen Spiraltonren den übrigen Theil des Verbindungstückes umgibt (Fig. 2, V, die hintere Partie des Verbindungstückes; man sieht die Windungen; die unteren Streifen, oder richtiger die unteren Theile der Windungen, die in der Figur nur angedeutet sind, treten bei tiefser Einstellung ganz distinct hervor).

Oft bemerkt man an irgend einer Stelle in der langen Reihe von Windungen, dass eine oder ein Paar derselben mehr ausgezogen sind als die übrigen; desto leichter erkennt man, selbst bei mehr flüchtiger Beobachtung, die Spiralform (Fig. 3, bei *). Dies ist häufig der Fall, wenn die Samenkörper nach kurzem Hinliegen in einer Kochsalzlösung von 0,6% eine leichte Alteration erlitten haben. Ich habe indessen solche Fälle auch unmittelbar nach Zusatz von 0,6% Kochsalzlösung an Samenkörpern, die übrigens ein völlig intactes Aussehen hatten, angetroffen; wahrscheinlich können sie auch bei den ganz frischen Elementen vorkommen.

Merkwürdiger Weise haben die Windungen eine verschiedene Richtung, indem sie bei einigen Samenkörnern von rechts nach links, bei anderen von links nach rechts herablaufen. Meine Untersuchungen, die ich an Zerzupfungspräparaten angestellt habe, genügen nicht, um darüber entscheiden zu können, welcher der beiden Fälle der häufigere ist; durch gelegentliche Beobachtungen habe ich gefunden, dass bei ziemlich vielen Samenkörnern die Windungen von rechts nach links verliefen; dies ist demnach unter allen Umständen nicht selten.

Durch Essigsäure von 1% wird der Spiral faden ebenfalls abgelöst; dieses Reagens wirkt zwar zugleich zersetzend auf denselben ein; er zerfällt in kleinere Partien und verschwindet; an Samenkörperrn, die von der Säure weniger angegriffen sind, sieht man ihn doch noch immer als einen zusammenhängenden Faden, dessen Ablösung sich oft sehr schön zeigt. Durch Färbung mit Fuchsin tritt er deutlicher hervor.

Endlich löst sich auch der Spiral faden ab, wenn Präparate, mit 0,6 proc. Kochsalzlösung verdünnt, in der feuchten Kammer eingeschlossen gehalten werden, siehe Fig. 5; die Querstreifung ist, wie man sieht, nur theilweise erhalten; auf längeren Strecken ist sie durch Maceration verschwunden; hier hat sich der Spiral faden ausgestreckt und bildet grosse Windungen. Schon nach 1—2stündigem Liegenlassen in Kochsalzlösung habe ich bei einzelnen Samenkörpern den Spiral faden abgelöst gesehen; nach längerem Hinliegen wird die Ablösung allgemeiner. — Allerdings treten bei dieser Methode täuscheende Alterationsbilder auf: Es steht aus, als ob der Spiral faden mitten in seinem Verlauf, und ohne dass dessen Zusammenhang unterbrochen wird, sich in einen dickeren Strang verwandelt hätte, der auf kürzeren oder längeren Strecken den Achsenfaden in Form von mehr oder weniger langgestreckten Windungen umgibt. Diese sonderbaren Bilder haben mir viel
Untersuchungen über die Samenkörper der Säugethiere etc. 385

Mühe und Kopfzerbrechen verursacht, bis ich endlich ermittelte, dass sie in folgender Weise entstehen. Lässt man die Samenkörper einige Zeit in 0,6% Kochsalzlösung liegen, so wird der Spiraladingenbeleg sehr häufig derart angegriffen, dass derselbe den Achsenfaden nicht mehr gleichmässig umgibt, sondern streckenweise eine mehr laterale Lage, theils auf der einen und theils auf der anderen Seite des Achsenfadens, einnimmt. Immer noch habe ich die Querstreifen unterscheiden können; dann verschwinden sie aber, indem sich der Spiraladingenbeleg in eine homogene Masse umwandelt; siehe Fig. 6, wo nur noch einige wenige Querstreifen übrig sind. Schliesslich — früher oder später — wird der Spiraladingenbeleg völlig vom Achsenfaden getrennt und zeigt sich nun in Gestalt eines dickeren, den Achsenfaden spiralförmig umgebenden Stranges, dessen Windungen von der ursprünglichen Richtung des Spiraladingens herrühren, die sich in diesen Spiralturnen noch kundgibt.

Der scharf contourirte Achsenfaden zeigt sich sehr schön isolirt, wenn die mit Kochsalz von 0,6/0 verdünnten Präparate einige Zeit in der feuchten Kammer liegen bleiben, wodurch sich der Spiraladingen auflöst und verschwindet, während sich der Achsenfaden erhält (Fig. 7, der vordere Theil des Achsenfadens; S_f ein Rest des Spiraladingens). In einem viel früheren Stadium, wo die Samenzellen rund sind, ist der Achsenfaden überaus dünn und wird
später dicker; in dem Stadium, womit wir uns hier beschäftigen, hat er an Dicke beträchtlich zugenommen. Er ist dicker und stärker lichtbrechend als der Spiralfaden.

Ferner unterscheiden sich die beiden Fäden in folgenden Punkten von einander:

1) Der Spiralfaden löst sich durch Maceration in 0,6 proc. Kochsalzlösung leichter auf als der Achsenfaden, der ein vollkommen unverändertes Aussehen haben kann, nachdem der Spiralfaden schon verschwunden ist.

2) Der Spiralfaden löst sich in Essigsäure von 1% ebenfalls viel leichter auf als der Achsenfaden (vergl. eine ähnliche Beobachtung von A. v. Brunn (21) über die Samenkörper der Maus). In einigen Fällen nimmt er ein Aussehen an, als ob er feinkörnig geworden wäre. Gewöhnlich bleiben nur kleine Partikeln von demselben übrig, und er verschwindet vollständig, während der Achsenfaden erhalten bleibt.

3) Der Spiralfaden färbt sich stark, wie Brown (24) bemerkt hat, durch Goldchlorid (von 1%). Der Achsenfaden dagegen ist, meinen Beobachtungen zufolge, ganz ungefärbt; man kann sich hiervon leicht überzeugen, wenn — wie es an Goldchloridpräparaten nicht selten der Fall ist — die Windungen des Spiralfadens stellenweise etwas ausgezogen sind, wodurch der Achsenfaden deutlich zum Vorschein kommt; auch habe ich den Achsenfaden streckenweise völlig isolirt gesehen.

Nach vorn endet der Achsenfaden mit einem weiteren Knöpfchen, das viel stärker lichtbrechend ist als der übrige Achsenfaden (Kn, Fig. 7, 1, 3 und 5). Grade hinter diesem Knöpfchen beginnt der Spiralfaden. Das Knöpfchen, das somit bei den Samenkörpern der Ratte und mehrerer anderer Säugethiere — der Vögel dagegen nicht — für sich allein auch das vorderste Ende des ganzen Schwanzes bildet, findet sich bei den ganz frischen Elementen; dasselbe ist etwas stärker lichtbrechend — beim Herabsehrauben des Tubus dunkler — als die Querstreifen. Durch Goldchlorid wird es ebenso wenig gefärbt wie der Achsenfaden selbst.

Mit diesem kleinen vordersten Stück hängt nun der Schwanz nicht unmittelbar mit dem Kopf zusammen; zwischen letzterem und dem Knöpfchen findet sich in frischem Zustand constant ein sehr kleiner Zwischenraum, der einem ähnlichen, aber grösseren Zwischenraum bei den Samenkörpern des Pferdes und des Schafes
Untersuchungen über die Samenkörper der Säugethiere etc. 387

entspricht, und ohne Zweifel wie dieser von einer durchsichtigen verbindenden Substanz eingenommen ist.

Bei der weiteren Ausbildung der Samenkörper behält das Knöpfehen die gleiche Grösse, während der eigentliche Achsenfaden, namentlich in seiner vorderen Partie, kurz hinter dem Knöpfehen, fortwährend an Dieke zunimmt, so dass er bedeutend dicker als dasselbe wird, während er früher dünner war. Von der vorderen dickeren Partie an verschmäler sich dann der Achsenfaden allmählich gegen das Knöpfehen hin. In dieser Partie zeigt sich, der Mittellinie des Achsenfadens entlang, ein kurzer, nach vorn und nach hinten schmäler werdender Längsstreifen, der bei höherer Einstellung dunkel, bei tieferer ganz hell erscheint (Fig. 8; man sieht den Achsenfaden mit dem hellen Streifen s, umgeben von dem Spiralfaden, der theilweise alterirt (abgelöst) ist, was jedoch hier ohne Bedeutung ist; der Längsstreifen hat ganz dasselbe Aussehen wie bei den frischen Samenkörpern, wo er durch die Querstreifen hindurchscheint). Bei vielen Samenkörperrn entdeckt man ferner, dass sich dieser Streifen nach hinten in der ganzen Länge des Verbindungsstückes als eine ganz feine Linie im Achsenfaden fortsetzt, welche — bei tieferer Einstellung — dasselbe helle Aussehen wie der Streifen zeigt (Fig. 9; der vordere Theil des Verbindungsstückes in stark vergrössertem Maassstabe gezeichnet). Der Streifen und die Linie persistiren während der ganzen folgenden Entwicklung; an den fertigen Elementen aus Epididymis oder Vasa deferentia treten sie besonders distinct hervor, so dass ich sie sogar während der Bewegung der Samenkörper deutlich beobachten konnte. Von welcher Seite nun auch der Samenkörper gesehen wird, so erscheint dieser Streifen, nebst seiner linienförmigen Fortsetzung, längs der Mitte des Achsenfadens, was namentlich in Betreff der Linie leicht zu erkennen ist. Dieselben liegen offenbar im Innern des Achsenfadens und rühren von einem schmalen, mit einer durchsichtigen Substanz erfüllten Lumen dieses Fadens her, welch' letzterer also röhrenförmig ist. Noch viel deutlicher sieht man dieses Lumen mittelst Zusatz von 1\% Essigsäure, wodurch der Achsenfaden augenblicklich etwas dicker wird; sein Lumen wird weiter und ist sehr in die Augen fallend, überall von den scharf abgegrenzten, durch die Einwirkung der Essigsäure etwas dünner und stärker lichtbrechend gewordenen Wänden des Achsenfadens umgeben; siehe Fig. 10, mittlere Partie des Verbindungs-
stückes; \(Af \) der Achsenfaden mit seinem Lumen; \(Sf \) der Spiralfaden, der abgelöst ist und ein körniges Aussehen angenommen hat; Fig. 11, der vorderste Theil des Achsenfadens; Fig. 12, der hinterste Theil des Achsenfadens (nebst einem Theil des Hauptstückes \(II \)).

Noch habe ich in Betreff des Achsenfadens einen merkwürdigen und sehr wichtigen Vorgang zu besprechen, der durch Einwirkung von 1 proc. Essigsäure leicht eintritt. Nachdem der Achsenfaden die erwähnte Veränderung erlitten hat, zeigt sich nämlich sehr häufig eine veritable Längsspaltung dieses röhrenförmigen Gebildes in zwei gleich dicke Hälften, entweder nur auf kürzeren Strecken des Verbindungsstückes oder in der ganzen Länge desselben. Die Spaltung vollzieht sich in einer, bei der in Fig. 1 oder 17 angegebenen Lage des Samenkörpers, senkrechten Ebene (oder, da der Kopf hier in der Flächenansicht erscheint, in einer Ebene, die senkrecht zu derjenigen der Kopfscheibe steht). Im Voraus ist der Spiralfaden an den Stellen, wo die Spaltung vor sich geht, verschwunden. Die beiden Hälften, die von der Wand des Achsenfadens gebildet sind — die im Lumen des Achsenfadens enthaltene Substanz sieht man jedenfalls nicht — und sich dem Auge als zwei stark lichtbrechende Fäden zeigen, sind durch einen Zwischenraum von einander getrennt, der bei partiellen Spaltungen in der Regel ziemlich schmal ist (vergl. Fig. 13, wo der Achsenfaden auf einer Strecke bei \(x \) entblösst und gespalten ist; siehe übrigens rücksichtlich dieser Figur p. 390). Bei einer totalen Spaltung ist der Zwischenraum dagegen oft sehr weit; siehe Taf. XXIII, Fig. 30, wo ein schöner Fall totaler Spaltung dargestellt ist, samt Fig. 31, ein kleiner Theil der Fig. 30 in vergrössertem Maassstabe; die beiden Hälften (\(I \) und \(II \)) hängen nur vorne durch das Knöpfchen des Achsenfadens (\(Kn \)) und hinten zu Anfang des Hauptstückes (\(H \)) zusammen: kurz hinter dem vorderen Ende kreuzen sie sich zufällig und gehen dann wieder sehr weit aus einander. Diese beiden Hälften, in die sich der Achsenfaden spaltet, sind von ganz unveränderter Dieke (jede derselben genau halb so dick als der Achsenfaden) und sehen im Uebrigen einander vollkommen ähnlich, mögen sie nun nahe zusammen liegen oder weit von einander entfernt sein; sie sind überall, sowohl an ihrer äusseren als ihrer inneren Seite scharf contourirt und vollständig getrennt; denn es ist nicht nur unmöglich irgendwelche Verbindung der-
Untersuchungen über die Samenkörper der Säugethiere etc. 389

selben zu entdecken, sondern ich habe auch grosse Zellenmassen zwischen denselben schwimmen sehen.

Der Spaltungsproccss beschränkt sich indessen nicht bloss auf die Trennung des Achsenfadens in zwei Hälfiten, sondern derselbe kann noch viel weiter gehen, indem sich jede dieser Hälfiten der Länge nach wieder in eine Anzahl von mehr oder weniger feinen Fasern spaltet; einige derselben sind überaus fein, so dass sie mittelst der stärksten homogenen Immersionssysteme kaum verfolgt werden konnten. Bald ist nur die eine der zwei Hälfiten, bald sind beide gleichzeitig in dieser Weise gespalten. In Taf. XXIII, Fig. 32 z. B., welche einen Samenkörper darstellt, wo die beiden Hälfiten der ganzen Länge des Verbindungsstückes nach getrennt sind, sieht man die eine derselben in 4 Fasern, a—d, gespalten; a ist die grösste und bildet die Hauptpartie dieser Hälfte; von den anderen, viel feineren Fasern hat sich b der ganzen Länge nach, c und d, die aussenordentlich fein waren, auf grösseren Strecken abgelöst; d bildet eine Schlinge. In Fig. 33 sind beide Hälfiten in mehrere feinere Fasern gespalten; drei derselben, a, b und c, sind gröber; b und c haben sich bei b*, c* und c** abermals in zwei gleich feine Fäserchen gespalten. Ausserdem sind noch andere sehr feine Fäserchen (zwischen a und b) abgelöst. Diese Spaltung in feinere Fasern ist häufig wahrzunehmen. Viel allgemeiner jedoch tritt dieselbe ein, wenn die mit Essigsäure von 1% behandelten Samenkörper einem Druck ausgesetzt, wodurch die Fasern auseinander gesprengt werden. Verkittet man mittelst Paraffin und drückt dann, durch Klopfen auf das Deckglas, abwechselnd dasselbe auf das Präparat herab, so erhält man die mannigfaltigsten Bilder. Erstens spaltet sich der Achsenfaden fast aller Samenkörper nicht bloss in zwei Hälfiten, sondern diese theilen sich wiederum in feinere Fasern. Und diese Fasern liegen nun, in Folge des wiederholten und ungleich vertheilten Druckes, in den verschiedensten bogenförmigen oder schlingenförmigen Stellungen. Ich verweise nur auf Taf. XXIV, Fig. 39; das vordere und das hintere Ende des Verbindungsstückes (Kn und h E) sind hier zufälliger Weise nahe an einander gekommen, und zwischen denselben bilden die Fasern des Achsenfadens einen wahren Wirrwar. Stets haben die Fasern hiebei einen so gleichmässig gebogenen oder geschlungenen Verlauf, dass man sie als sehr elastisch ansehen muss. In welcher Stellung nun auch die Fasern lagen, so
waren sie doch immer vorne durch das Knöpfehen des Achsenfadens und hinten am vordersten Ende des Hauptstückes mit einander verbunden. Die Verbindung mittelst des kleinen Knöpfehens ist offenbar eine sehr feste. Selbst wenn die beiden Hälften des Achsenfadens oder die Fasern dieser Hälften derart umgebogen waren, dass sie längs den Seiten des Kopfes lagen, so blieb die Verbindung doch hier noch erhalten. Durch genauere Untersuchungen entdeckte ich, dass das Knöpfehen bei den Samenkörpern der Ratte eigentlich aus zwei Partien, und zwar aus einer größeren vorderen und einer kleineren hinteren besteht, die durch einen kleinen Zwischenraum von einander getrennt sind; beide sind gleich stark glänzend und offenbar von sehr fester Beschaffenheit (Taf. XXIV, Fig. 40 a, b, die beiden Abschnitte des Knöpfehens). Diese beiden Abschnitte fand ich dann auch bei den ganz frischen Samenkörpem wieder. An einem Präparat, das einen Tag lang in 1 proc. Essigsäure gelegen, kam mir ferner ein Fall vor, wo sich beide Partien abermals in zwei nebeneinander liegende Theile getrennt zu haben schienen (Fig. 41). Man darf jedoch kaum annehmen, dass jede Partie in der That wieder aus zwei besonderen Theilen bestehe. In diesem Fall würde die starke Verbindung mittelst des Knöpfehens weniger leicht zu erklären sein. Die Sache ist dagegen in der Weise aufzufassen, dass die beiden Abschnitte des Knöpfehens ringförmig sind und nur bei mittlerer Einstellung den Eindruck machen, als ob jede derselben aus zwei separaten Seitentheilen gebildet sei. In frischem Zustand haben sie einen kleineren Diameter und lassen dann keine Ringform erkennen. Ihre centrale Partie ist jedoch wohl unter allen Umständen von einer anderen Beschaffenheit als die peripherische.

In Betreff des oben geschilderten Spaltungsproces ses des Achsenfadens bemerke ich nun weiter, dass ein solcher auch bei der Selfsmaceration nicht selten eintritt. Namentlich spaltet sich hiebei der Achsenfaden öfters in seine zwei Hälften, obwohl dies nicht so leicht, und gewöhnlich auch nicht auf so langen Strecken vor sich geht, wie bei Anwendung von Essigsäure (Fig. 13, bei x die Spaltung des Achsenfadens). Bisweilen löst sich nur eine sehr feine Faser von der einen der beiden Hälften ab, noch ehe sich diese von der anderen getrennt hat. Bald war dieses Fäserchen überaus dünn, bald ein wenig dicker, aber verhältnissmässig doch sehr dünn. Ein hübsches Beispiel von der Spaltung des Achsen-
Untersuchungen über die Samenkörper der Säugethiere etc. 391

fadens fand ich einmal ganz zufällig bei der Untersuchung eines gefrorenen Ratten-Hodens 1); das Verbindungsstück eines Samenkörpers war abgebrochen und an dem abgebrochenen Ende, wo der Spiralfaden verschwunden, hatte sich der Achsenfaden in mehrere auseinander gespreizte Fäden aufgefasert (Fig. 42).

Aus diesen Spaltungsbildern lässt sich mit Recht der Schluss ziehen, dass der mit Lumen versehene Achsenfaden, der übrigens ganz homogen aussieht, in Wirklichkeit aus mehreren, nebeneinan-
der liegenden, feineren Fasern zusammengesetzt ist. Die näheren Verhältnisse dieser Struktur fasse ich in folgender Weise auf. Die fibrilläre Zusammensetzung kommt der Wand des Achsenfadens zu. Die letztere besteht erstens aus zwei Hälften, die mittelst einer leicht löslichen Kittsubstanz verbunden sind (Fig. 43, gedachter Querschnitt des Achsenfadens; a, a die beiden Hälften, die längs den Linien *,* zusammengekittet sind). Denn nicht allein spaltet sich der Achsenfaden leicht der Länge nach in zwei Hälften, sondern diese Hälften müssen auch sehr wohl gegen einander abgegrenzt sein; im entgegengesetzten Falle müsste man ja erwarten, dass sie, bei der Spaltung des Achsenfadens in zwei, öfters durch feinere, von der einen zur anderen Hälfte gehende Fasern zusammenhingen. Dies erinnere ich mich aber nicht beobachtet zu haben; wenigstens muss ein solcher Fall sehr selten sein. — Jede der beiden Hälften kann man sich weiterhin als aus mehreren grösseren Theilen bestehend denken, welche die ganze Dicke der Wand des Achsenfadens einnehmen und ebenfalls mittelst Kittsub-
stanzz verbunden sind (siehe Fig. 43, wo die radiären Linien in jeder Hälfte die Verbindungsstellen dieser Theile bezeichnen sollen). Nicht so selten fand ich nämlich, dass der Achsenfaden in mehrere gröbere Fasern gespalten war, welche ebenso dick als die Wand des Achsenfadens waren. Auch diese Theile sind ohne Zweifel gut gegen einander abgegrenzt; sie trennen sich indessen nicht so leicht wie die Hälften in toto; ich habe die Verbindungslinien derselben deshalb feiner gezeichnet. Gewöhnlich sind jedoch die Theile oder Fasern, in welche sich jede Hälfte spaltete, viel dünner als die Wand des Achsenfadens, übrigens von verschiedener Fein-

1) Die Ratte war in der Nacht getödtet worden und wurde am folgen-
den Tag untersucht. (Mittlerweile waren die Hoden in der Winterkälte gefroren.)

heit, oft so fein, dass sie kaum zu erkennen sind. Ich muss demzufolge annehmen, dass die einzelnen Abtheilungen jeder Hälfte wiederum aus einer Anzahl durch Kittsubstanz verbundener Fäserchen bestehen, welche wahrscheinlich alle von ganz ausserordentlicher Feinheit sind; denn dass einige Fäserchen dicker als andere erscheinen, rührt gewiss nur daher, dass der Spaltungsprocesse keineswegs gleichmassig vor sich geht; in einigen Fällen ist dieselbe weniger weit fortgeschritten als in andern, so dass mehrere der sehr feinen Fasern noch mit einander verbunden sind, und machen dann dieselben den Eindruck einer einzigen dickeren Faser; es ist denn auch eine der gewöhnlichsten Erscheinungen, dass sich eine solche Verhältnissmassig grobe Faser streckenweise in zwei oder mehrere dunnere Fasern spaltet. Ob ich wirklich die allerfeinsten Fibrillen des Achsenfadens beobachtet habe, ist zweifelhaft. Vielleicht repräsentirten die dünnsten von mir observirten doch Bündel von noch feineren Fibrillen.

Bereits früher (13) habe ich dieser feinfaserigen Structur der Samenkorper Erwähnung gethan, beging aber damals einen Fehler, den ich nun berichtigen muss. Den wirklichen Spiralfaden sah ich bei den Samenkörpem der Ratte nicht, was mir jetzt leicht verständlich ist, denn wahrscheinlich habe ich solche Individuen vor mir gehabt, an deren Samenkörpern die Querstreifen oder Windungen wegen des geringen Unterschiedes in der Lichtbrechung nicht oder nur schwierig zu bemerken waren (siehe p. 382). Auch gelang es mir nicht das Lumen des Achsenfadens zu beobachten. Dagegen entdeckte ich dessen Spaltung in zwei fadenähnliche Hälfen, sowie die Ablösung sehr feiner Fasern, und war nun der Meinung, dass der ganze Schwanz nur aus diesen zwei Fäden besteh, die wiederum aus zahlreichen Fibrillen zusammengesetzt waren. Da ich von dem wirklichen Spiralfaden nichts wahrnahm, so fasste ich den einen der genannten Fäden als einen solchen auf. Wenn nämlich die Spaltung auf kürzeren Strecken vor sich geht (und solche Fälle waren es, die mir zu Gesichte kamen), haben die beiden fadenähnlichen Hälfen häufig einen derartigen Verlauf, dass der eine bogenförmig neben dem anderen liegt, der geradlinig ist, Fig. 44 bei x (Copie von Fig. 16 in „Die Structur der Samenfäden,“ hier nur theilweise wiedergegeben); vergl. die neue Fig. 13, Taf. XXII, ein Theil eines Samenkörpers, wo beide Hälfiten eine ähnliche Lage hatten. Obgleich ich nun nicht ent-
decken konnte, dass sich der eine Faden um den anderen herumwand, so glaubte ich doch, als ich dieselben zum ersten Mal beobachtete, annehmen zu müssen, dass der bogenförmige Faden ein theilweise abgelöster Spiralfaden sei; den anderen geraden Faden hielt ich für den Achsenfaden. Den oben erwähnten hellen Längsstreifen in der vorderen Partie des Achsenfadens deutete ich als eine Ritze oder Spalte; der auf einer kurzen Strecke die beiden Fäden von einander trennte; der durchscheinende Streifen sieht auch, ohne die sorgfältigste Untersuchung, ganz wie eine kleine, durch das Verbindungsstück gehende Spalte aus.

Nachdem ich dies bereits niedergeschrieben, kommt mir eine vorläufige Mittheilung von Ballowitz (30) zu Gesicht, welche gerade die fibrilläre Zusammensetzung des Achsenfadens behandelt. Die früheren, von mir gemachten, bisher alleinstehenden Beobachtungen über diese Structur werden hier genau durchgegangen, bestätigt und zugleich berichtet, indem Ballowitz erkennt, dass die fibrilläre Zusammensetzung lediglich dem Achsenfaden zukommt, und dass sich die eine der beiden fadenähnlichen Hälften, in die sich der Achsenfaden spaltet, nicht um die andere herumwindet, sondern dass beide neben einander liegen.

In Bezug auf einen anderen Punkt dagegen hat dieser Forscher nicht den gleichen Erfolg gehabt. Der Achsenfaden ist nach Ballowitz nicht röhrenförmig, sondern besteht einfach aus zwei neben einander liegenden und durch Kittsubstanz verbundenen Fäden, von denen jeder aus Fibrillen zusammengesetzt ist, so dass sie also zwei Bündel von solchen darstellen; indem die beiden Fibrillenbündel (d. h. die beiden Hälften des röhrenförmigen Achsenfadens) im vorderen Theil des Achsenfadens ein wenig von einander abrücken, wird der hier befindliche, helle Längsstreifen hervorgerufen.

Gegen diese Anschauung sprechen nun meine erneuerten, direkten Beobachtungen ganz entschieden. Das durch den ganzen Achsenfaden gehende Lumen tritt, wie bereits erwähnt, an Essig säurepräparaten besonders schön zu Tage, aber auch an frischen Präparaten ist es ganz unzweifelhaft vorhanden. — Ballowitz's Auffassung von dem Verhältniss der beiden Fäden am vordersten Ende des Achsenfadens (dem sogenannten „Halsstück“) soll später
gelegentlich der Besprechung der Samenkörpere des Schafes Berücksichtigung finden. — Ubrigens kann ich auch mit Rücksicht auf Ballovitz’s Untersuchungen nicht umhin einen Zweifel darüber auszusprechen, dass er die wirklichen Elementarfibrillen gesehen hat. Er berichtet, dass er einmal eine Zerspaltung des Achsenfadens in 7 feinste Fibrillen — die grösste Anzahl, deren er erwähnt — gesehen hat. Von diesen 7 konnten nun jedenfalls nur einige eigentliche Elementarfibrillen sein. Denn ich habe selbst einmal eine Spaltung des Achsenfadens in 9 Fasern gesehen, und von diesen waren drei viel dicker als die anderen, so dass dieselben ohne Zweifel wiederum aus mehreren feineren Fasern bestanden, die sich noch nicht von einander getrennt hatten. Die übrigen Fasern waren freilich sehr fein, aber auch diese waren doch von ungleicher Dicke; eine der dickeren hatte sich abermals auf einer kurzen Strecke in zwei Fasern gespalten; es lagen also auch hier nicht lediglich Elementarfibrillen vor.

Auf Ballowitz’ höchst interessante Mittheilungen über die Structur des Achsenfadens kann ich für jetzt nicht näher eingehen. Wir werden bei späteren Gelegenheiten wieder darauf zurückkommen. Seine Untersuchungen über dieses höchst schwierige Thema sind sehr extensiv; offenbar sind sie auch tief eingehend; welch’ scharfe Beobachtung z. B. bei Untersuchung des kleinen Endstückes! welch’ bewundernswerthe Ausdauer!

Im Vorhergehenden habe ich die Structur des Verbindungsstückes der noch nicht ganz entwickelten Samenkörper geschildert und fahre nun weiter fort.

Bei der vollständigen Ausbildung der Samenkörpere werden die Windungen des Spiralfadens noch zahlreicher und rücken in Folge dessen dichter zusammen (Taf. XXII, Fig. 14). Allmählich schliessen sich auf diese Weise die Windungen sehr nahe an einander und können nur bei sehr gutem Licht und den stärksten Immersionssystemen entdeckt werden, Fig. 15, V der hinterste Theil des Verbindungsstückes. Die Windungen scheinen nun immer eine ganz transversale Stellung zu haben, was ja ganz natürlich ist. Schliesslich liegen sie so dicht zusammen, dass sie nicht mehr von einander zu unterscheiden sind: das Verbindungsstück sieht in
frischem Zustand völlig homogen aus (Fig. 16)1). Dieser Process vollzieht sich nun nicht am ganzen Verbindungsstück gleichzeitig. Zuerst nimmt der vordere Theil des Verbindungsstückes ein homogenes Aussehen an (Fig. 17); sehr allgemein scheinen die Windungen hier bereits von Anfang an auf kürzerer oder längerer Strecke sehr dicht an einander zu liegen, so dass das Verbindungsstück fast oder ganz homogen aussieht. Im folgenden Theil des Verbindungsstückes sind sie allerdings näher zusammengerückt, können aber doch von einander unterschieden werden und zwar um so deutlicher, je weiter sie nach hinten liegen. Darauf kommt dann das homogene Aussehen immer weiter nach hinten zur Geltung, bis das ganze Verbindungsstück schliesslich homogen erscheint. Das letztere trifft man bei vielen Samenkörpern schon in den Hoden, und in Epididymis und Vas deferens ist dies bei allen Samenkörpern der Fall.

In seiner Beschreibung der Samenkörper der Maus erklärt A. v. Brunn (21) das homogen gewordene Aussehen des Verbindungsstückes bei den Säugethiereu dadurch, dass die Querstreifen oder Windungen mit einander verschmelzen, und der Achenfaden somit von einer wirklich homogenen Masse eingehüllt ist. Von einer Vermehrung der Anzahl der Querstreifen und dem dichteren Zusammenliegen derselben erwähnt er gar nichts. Hat man sich erst einmal davon überzeugt, und zieht man zugleich die starke Lichtbrechung der Windungen mit in Betracht, so wird man wohl nicht so leicht eine Verschmelzung annehmen. Infolge ihres starken Reflexes würden die dicht an einander liegenden Windungen für's Auge ganz zusammenfließen, auch wenn sie nicht mit einander

1) Bei genauer Beobachtung findet man bloss, dass das hinterste Ende desselben stärker lichtbrechend ist, Fig. 16, S; vergl. Fig. 15, S; näheres hierüber siehe p. 411.

1) Brown (24) bildet sogar einen der Epididymis entnommenen und mit Goldechlorid behandelten Samenkörper ab, wo sich die Windungen in der ganzen Länge des Verbindungsstückes zeigen. Ein solcher Fall ist mir jedoch nicht vorgekommen.

2) Andere Reagentien, deren ich mich versuchsweise bediente (Chromsäure 0,5%, Chromosmium-Essigsäure nach F o l’s Vorschrift, u. m. a.) waren ohne Erfolg.
reifen Samenkörper aus dem Hoden dagegen wird durch 1 proc. Essigsäure sofort angegriffen und beginnt sich aufzulösen. In einer Kochsalzlösung von 0,6% war der Spiralfaden einzelner unreifer Samenkörper bisweilen schon nach 4—5 Stunden streckenweise verzehrt; nach Verlauf von 24 Stunden bemerkt man allgemein Spuren von Auflösung, während die Samenkörper aus Epididymis und Vas deferens nach 3—4 wöchentlichem Liegenlassen in dieser Flüssigkeit noch immer einen homogenen, vollständig erhaltenen Beleg um den Achsenfaden hatten (das Verbindungsstück hatte sich nur ein wenig erweitert, was von einer schwachen Anschwellung des Achsenfadens herzurühren schien); in Aqua destillata wird der Spiralfaden der noch nicht völlig entwickelten Samenkörper noch schneller angegriffen, während Präparate aus Epididymis oder Vas deferens allenfalls mehrere Tage lang in der feuchten Kammer eingeschlossen werden können, ohne dass irgendwelche Spuren von Zersetzung zu bemerken sind.

Dieselbe Veränderung nun, der zufolge die Samenkörper im fertigen Zustand so schwierig angegriffen oder zersetzt werden, ist vielleicht auch die Ursache, dass sich der Spiralfaden auch nicht ablöst, obgleich er noch immer als Faden existirt.

Der früher (p. 386) erwähnte kleine Zwischenraum zwischen dem Knöpfchen des Achsenfadens und dem Kopf erhält sich bei den fertigen Samenkörpem. Das Knöpfchen erkennt man am besten mittelst Säurefuchsin, wodurch es sich sehr stark färbt, während das übrige Verbindungsstück keine oder nur eine sehr schwache Farbe zeigt, die wohl nur von dem gefärbten und durchscheinenden Achsenfaden herrührt. Umgekehrt ist das Knöpfchen und der ganze Achsenfaden an Goldchloridpräparaten völlig ungefärbt, während der den Achsenfaden umgebende Beleg sehr stark
tingirt wird, wodurch das Verbindungsstück ein dunkel gefärbtes Aussehen annimmt; auch auf diese Weise ist das Knöpchen leicht zu entdecken, indem es gegen das übrige dunkle Verbindungsstück scharf contrastirt.

Ich gehe nunmehr zur Structur des Hauptstückes des Schwanzes über.

In frischem Zustand waren Querstreifen oder Windungen weder an den unreifen noch an den fertigen Samenkörperrn zu bemerken; das Hauptstück hatte ein ganz homogenes Aussehen. Dasselbe war der Fall bei Anwendung mehrerer Reagentien, von denen jedoch Sublimat eine Ausnahme machte. An den mit Sublimat von 2—3% behandelten Präparaten nahm ich bisweilen eine Reihe distin]=cierter, prominender, stark lichtbrechender Querstreifen wahr, welche denen des Verbindungsstückes ganz ähnlich waren (Taf. XXII, Fig. 18, H der vordere Theil des Hauptstückes). Bei sorgfältiger Durchmusterung der Präparate wird es nicht ermangeln, mehrere Samenkörper anzutreffen, deren Hauptstück ein solches Aussehen darbietet. Ein Mal sah ich auf einer kurzen Strecke die Streifen ausserordentlich schön (Fig. 19); in den meisten Fällen waren, wie in Fig. 18, dieselben näher an einander situirt, oder sie lagen noch dichter als in letzterer Figur beisammen. Am öftesten zeigten sie sich an der vorderen Partie des Hauptstückes; ich habe dieselben indessen auch weiter nach hinten in der grössten Länge des Hauptstückes gesehen. Oft sind sie deutlich schräg gestellt, und bin ich nach genauer Untersuchung der Streifen zu dem sicheren Resultate gelangt, dass dieselben auch am Hauptstück von einem einzigen langen, den Achsenfaden spiralförmig umgebenden Streifen gebildet sind. Der Achsenfaden, der sich, wie A. v. Brunn (21) erwiesen, durch den ganzen Schwanz fortsetzt, wurde oft blossgelegt gesehen, wenn das Hauptstück abgebrochen war (Fig. 20, das Ende eines abgebrochenen Hauptstückes; Af der Achsenfaden). In einzelnen, freilich äusserst seltenen Fällen hatte sich einer der Streifen in Form eines distincten Fadens abgelöst. In Anbetracht der vollständigen Aehnlichkeit mit den Windungen am Verbindungsstück möchte ich übrigens der Beobachtung einer Ablösung nur geringe Bedeutung beilegen.

Die Streifen oder Windungen des Hauptstückes sind wenigstens ebenso deutlich und häufig an den Samenkörperrn aus Epi-

Immerhin ist eine Unterscheidung der Streifen am Hauptstück zu den Ausnahmen zu zählen, was, meiner Meinung nach, nur dadurch zu erklären ist, dass die Windungen an diesem Theil des Schwanzes der reifen Samenkörper, sowohl als derjenigen in den späteren Entwickelungsstadien, in der Regel so dicht an einander liegen, dass sie für's Auge zu einer scheinbar homogenen Masse zusammenfließen. Gleichsam nur zufälliger Weise sind sie hier bisweilen durch grössere Zwischenräume von einander getrennt, so dass die einzelnen Streifen erkannt werden können. Hierzu kommt wohl noch eine, durch die Einwirkung von Sublimat hervorgerufene Änderung hinsichtlich der Lichtbrechung, wodurch die Querstreifen glänzender werden und somit deutlicher hervortreten; auch am Verbindungsstück werden die Streifen durch Sublimat stärker lichtbrechend als in frischem Zustand.

In der That beobachtete ich auch alle Übergänge von Fällen, wo die Streifen weiter aus einander, bis zu solchen, wo sie sehr dicht an einander lagen und kaum zu unterscheiden waren; hätten sie bloss ein ganz klein wenig dichter zusammen gelegen, so würde das Hauptstück sein gewöhnliches homogenes Aussehen gehabt haben.

In 1 proc. Essigsäure und in 0,6 proc. Kochsalzlösung zeigte das Hauptstück der unreifen und der fertigen Samenkörper die-

Der Spiralfaden des Verbindungsstückes und der des Hauptstückes geben auch nicht direct in einander über. An der Grenze dieser beiden Abschnitte des Schwanzes bemerkt man an ganz frischen, dem Hoden entnommenen Samenkörpern, eine kleine, constante vorkommende Partie, die nur vom Achsenfaden eingenommen ist. Dass hier der Achsenfaden isolirt auftritt, sieht man am deutlichsten, wenn die Windungen des Verbindungsstückes dichter an einander gerückt sind, und das Hauptstück homogen erscheint, oder wenn sowohl das Verbindungsstück als das Hauptstück ein homogenes Aussehen hat (Fig. 15 u. 16, z die bloss aus dem Achsenfaden bestehende Zwischenpartie). Liegen die Windungen
weiter von einander, so kann diese Partie einem der zwischen jenen befindlichen Zwischenräume dermassen ähnlich sehen, dass man sie von einem solchen nicht zu unterscheiden vermöge. Gewöhnlich ist sie jedoch etwas grösser als die Zwischenräume und kann dadurch von denselben unterschieden werden (Fig. 17 bei z). Diese Partie erhält sich bei den Samenkörpem des Hodens sehr lange, nimmt aber doch an Grösse ab; bei den Samenkörpem der Epididymis und Vas deferens ist sie ganz verschwunden, so dass der Spiralfadenbeleg des Verbindungsstückes und derjenige des Hauptstückes bei den frischen Samenkörpem continuirlich in einander überzugehen scheinen.

Der Schwanz schliesst mit einem kleinen, dünneren und blasseren Endstück ab (Fig. 1, E). Oft bildet dasselbe mit dem Hauptstück einen stumpfen Winkel, Fig 1*, der hinterste Theil des Hauptstückes mit dem Endstück E. (Nach Retzius 17, Taf. X, Fig. 17 und 18 kann ein ähnlicher Fall bei den Samenkörpem des Menschen vorkommen.) Vielleicht rührt dies nur von einer leichten Alteration her.

b) Der Kopf.

Zunächst werde ich den Kopf beschreiben, wie sich uns derselbe an den frischen Samenkörpern aus Vasa deferentia zeigt.

Der Kopf hat bekanntlich eine eigentümliche hakenförmig gekrümme Gestalt (Fig. 21, 22). Die grössere Partie (Ks) von der Hakenkrümmung an bis zum hintersten Ende des Kopfes ist stark abgeplattet und bildet eine Scheibe; in Fig. 21 und 22 sieht man dieselbe von der Fläche aus. Die eine Kante (a) dieser Scheibe, von der convexen Seite der Hakenkrümmung an bis zum hintersten Kopfende, will ich die untere Kante, die entgegengesetzte Kante (b), von der concaven Seite der Hakenkrümmung an bis zur Insertionsstelle des Schwanzes, die obere Kante nennen 1). Zwischen diesen beiden, vom hintersten Ende des Kopfes bis zur Insertionsstelle des Schwanzes, findet sich die aufsteigende Kante. — Was den vorderen, hakenförmig gebogenen Theil des Kopfes betrifft, so krümmt sich derselbe zugleich etwas nach der einen Seite hin, wie dies in Fig. 23 (ein Kopf von der unteren Kante gesehen) und in Fig. 24 (ein Kopf von der unteren Kante und halb von der Seite gesehen) dargestellt ist.

Ferner nimmt man in frischem Zustand am Kopf folgende Details wahr: Längs der aufsteigenden Kante ist der Kopf sehr stark lichtbrechend. An dessen hinterem Theil bemerkt man eine zu der aufsteigenden Kante parallele oder fast parallele, feine, dunkle Linie (kr), welche über die Kopfscheibe hin und zwar in ihrer ganzen Breite verläuft; da, wo diese Linie an der oberen Kante der Kopfscheibe endet, findet sich ein ganz kleiner Absatz. Um dies zu beobachten, sind sehr starke Vergrösserungen erforderlich; namentlich ist die Linie überaus fein; zuerst richte man daher die Aufmerksamkeit auf den Absatz; hat man diesen gefunden, so kann man überzeugt sein, dass auch die Linie vorhanden ist. Linie und Absatz sieht man nun an vielen Samenkörpern, an an-

Säugethieren ganz anderen Ursprungs sind, dass sie nämlich, wie die Spermatoblasten bei Raja, von den Follikelzellen gebildet werden, sowie ich es in meiner Arbeit über die Spermatogenese (20) ausgesprochen habe.

1) Ich denke dabei an die Beilform der Scheibe bei mehreren Nagern; auch bei der Ratte kann die Scheibe mit einem schmalen Beilblatt verglichen werden.
deren sucht man sie vergebens, und die Ursache liegt nicht bloss darin, dass sich dieselben, ihrer Feinheit wegen, der Aufmerksamkeit entziehen, sondern in vielen Fällen kommen sie wirklich nicht vor, was ich unten näher erklären werde. — Der äusserste Theil des Kopfes (hs) ist völlig durchsichtig. Ich nenne denselben die Hakenspitze, zum Unterschied von dem übrigen, dunkleren Theil des Kopfes oder dem eigentlichen Kopf. Die Hakenspitze erscheint von zwei Linien begrenzt, einer vorderen, sehr feinen und einer hinteren (hst), die viel dicker und stärker lichtbrechend ist und eine Strecke längs der concaven Seite der Hakenkrümmung verfolgt werden kann. An dem äussersten, freien Ende der Hakenspitze sind diese beiden Linien mit einander vereint.

In Wirklichkeit bildet die Hakenspitze eine spitz auslaufende Röhre. Ich konnte mich davon überzeugen, indem dieselbe einmal zufällig quer abgebrochen war (Fig. 25, das nach oben gekehrte Ende der abgebrochenen Hakenspitze in stark vergrössertem Maassstab). Die Wand der Röhre besteht aus einer sehr feinen, durchsichtigen Membran; an der hinteren Seite derselben findet sich ein der Länge nach verlaufendes, stark lichtbrechendes, stäbchenförmiges Gebilde, das in der Figur im Querschnitt erscheint (hst). Dieses Stäbchen ist es, das sich bei der Seitenansicht als die hintere dickere Linie zeigt (hst, Fig. 21); dasselbe erstreckt sich, wie man sieht, bis zum vorderen Ende der Kopfscheibe und soll im Folgenden als Hakenstäbchen bezeichnet werden; die seitlichen Theile der durchsichtigen Röhrenwand bemerkt man bei dieser Ansicht nicht; nur der oberste Theil der Röhre ist in Form der oben genannten vorderen feinen Linie sichtbar.

Betrachten wir nunmehr die frischen, noch nicht völlig entwickelten Samenkörper, so erkennen wir, dass sich die Röhre viel weiter erstreckt und den eigentlichen Kopf ganz bis an die schräge Linie umhüllt; diese Linie ist nichts anderes als der hintere Rand dieser Hülle; siehe Fig. 26; längs der convexen Seite der Hakenkrümmung und der ganzen unteren Kante des Kopfes ist die Hülle durch einen hellen Zwischenraum vom Kopf getrennt. Längs der oberen Kante des Kopfes und der concaven Seite der Hakenkrümmung dagegen liegt die Hülle mit dem Hakenstäbchen dem Kopf überall dicht an und kann von diesem nicht unterschieden werden; man bemerkt hier nur, dass der Hinterrand der Hülle einen Absatz bildet, den kleinen Absatz nämlich am Ende der
schrägen Linie, dessen ich oben erwähnt habe. — In einem etwas früheren Entwickelungsstadium des Kopfes (der Schwanz befand sich bereits im Stadium Fig. 1 oder 17) findet sich aber, freilich nur längs der concaven Seite der Hakenkrümmung, ein Zwischenraum zwischen Kopf und Hülle; siehe Fig. 27; C ist eine grosse Cytoplasma-Ansammlung, die constant den Raum zwischen der hakenförmig gebogenen Partie und der oberen Kante des Kopfes (oder richtiger der den Kopf umgebenden Hülle) einnimmt; liegt der Kopf auf der Kante, so zeigt dieselbe eine ovale Form (Fig. 28); hst das Hakenstäbchen, das, nebst der Hülle, an der concaven Seite der Hakenkrümmung vom Kopfe getrennt ist. Die erwähnte Ansammlung, die eine Anzahl kleiner, stark lichtbrechender Körner enthält, und übrigens ein ganz homogenes, blasses Aussehen hat, besteht aus dem unveränderten Cytoplasma, welches sehr lange am Kopf sitzen bleibt. Dieselbe reicht genau so weit nach hinten wie die Hülle selbst; der von der Hülle gebildete Absatz kommt deswegen nicht zum Vorschein; aber oft reisst bei der Präparation die Cytoplasma-Ansammlung ab, und der Absatz tritt dann wie in Fig. 26 hervor). Eine derartige Ansammlung sieht man übrigens auch in dem in Fig. 26 abgebildeten Stadium; in dieser Figur habe ich nur, der Deutlichkeit wegen, einen Kopf gezeichnet, an dem sie fehlte (abgerissen?).

Behufs weiterer Untersuchung wurden mehrere Reagentien in Anwendung gebracht und gelang es mir schliesslich in einzelnen Fällen durch ein ziemlich stark einwirkendes Mittel, nämlich 2—3-procente Kalilauge, die Hülle längs der ganzen oberen Kante des Kopfes bis zum Absatz zu isoliren (Tab. XXIII, Fig. 34, der Kopf eines Samenkörpers aus Vasa deferentia, ziemlich stark eingeschrumpft; ka die Hülle).

Ich führe nur noch an, dass die den Kopf umgebende Hülle sich mehr oder weniger weit nach hinten erstreckt, vergl. Fig. 1 und 35. An dem in Fig. 35 abgebildeten Kopf verlängert sich die Hülle längs der unteren Kante desselben und deckt diese bis zum hintersten Kopfende; es ist dies sehr gewöhnlich; jedoch

1) Sehr gewöhnlich zieht sich auch durch Alteration in 0,6 proc. Kochsalzlösung die Cytoplasma-Ansammlung in einen Klumpen um die hakenförmig gebogene Partie des Kopfes zusammen und lässt so einen Theil der Hülle mit dem Absatz frei (Fig. 29).
Untersuchungen über die Samenkörper der Säugethiere etc.

kommen auch Fälle vor, wo sich die Hülle in toto so weit nach hinten erstreckt, dass sie den Kopf vollständig umschliesst, und in solchen Fällen sieht man natürlich nichts von der schrägen Linie oder dem Absatz.

Diese Hülle ist, wie jeder einsehen wird, nichts anderes als die Kopfkappe, die, mit einem stäbchenförmigen Körper versehen, für sich den äussersten Theil des Kopfes oder die Hakenspitze bildet. Von den Verfassern, welche die Kappe besprechen, bildet Helman (11) einen noch nicht ganz reifen Samenkörper der Ratte ab, wo die Kappe angedeutet ist. Fürst (29) gibt eine kurze Beschreibung derselben. Keine Details, sagt er, konnten am Kopf unterschieden werden, weder an frischen noch an mit Fuchsin gefärbten Präparaten, — ein Satz, mit dem ich keineswegs einverstanden sein kann. Namentlich mittelst Retzius's Ueberosmiumsäuregoldchlorid-Methode 1) gelangt er zu dem Schlusse, dass die Hakenspitze der fertigen Samenkörper von der Kappe gebildet ist; durch dieses Mittel färbi sich nämlich nach Fürst der ganze Kopf mit Ausnahme einer Spitze (d. h. der Hakenspitze), die durchaus ungefärbt und stark lichtbrechend sein soll. Bei der Untersuchung frischer Präparate sieht man indessen, dass die Hakenspitze nur längs ihrer hinteren Seite, wegen des hier befindlichen Hakenstäbchens stark lichtbrechend und übrigens ganz hell und durchsichtig ist 2); ferner ergiebt sich, dass die Kappe sich viel weiter nach hinten erstreckt. — An den noch nicht völlig entwickelten Samenkörpem findet Fürst die Kappe durch Behandlung mit der Müller'schen Flüssigkeit und Hämatoxylin und liefert eine vollständigere Abbildung derselben in gleichem Stadium wie meine Fig. 27.

Was das Hakenstäbchen anbetrifft, so steht dieses bisher unbekannte Gebilde mit der Kappe immer in genauer Verbindung. Die Verbindung mit dem eigentlichen Kopf ist eine mehr lose; bei den noch nicht entwickelten Samenkörpem ist, wie oben erwähnt, das Hakenstäbchen sogar in frischem Zustand durch einen

2) Dies war auch der Fall, wenn die frischen Samenkörper direct, ohne vorherigen Zusatz von Osmiumsäure, mit Goldchlorid gefärbt wurden. Das Hakenstäbchen zeigte keine Farbe. Der eigentliche Kopf war nur theilweise gefärbt (siehe unten).

Der von der Kappe umgebene eigentliche Kopf erstreckt sich nach vorn bis zur Hakenspitze, ist indessen hier bei den fertigen Samenkörpern sehr schwierig zu entdecken; bei denselben scheint es, als ob der vorderste Theil des eigentlichen Kopfes allmählich in die helle Hakenspitze übergehe. In mehreren Fällen gelang es mir jedoch, dessen Abgrenzung der Hakenspitze gegenüber wahrzunehmen 1). Viel schärfer aber zeigt sich die Grenze durch Behandlung mit Reagentien z. B. Eisenperchlorid und besonders durch Färbung mit Goldechlorid (Fig. 36, Eisenperchlorid; Fig. 38, Goldechlorid; * die Grenze zwischen dem eigentlichen Kopf und der Hakenspitze).

An dem eigenen Kopf lassen sich mit Hilfe von gewissen Reagentien eine besondere äussere Schicht und ein Inhalt von einem andern unterscheiden. Was die äussere Schicht anbetrifft, so besteht dieselbe wiederum aus zwei Partien, einer vorderen und einer hinteren.

Setzt man frischen Präparaten aus Vasa deferentia eine wässerige Lösung von Säurefuchsin zu, so färbt sich anfangs nur der Inhalt, während die Aussenschicht, die wie ein ziemlich breiter Saum erscheint, ungefärbt ist (Fig. 37); alsbald verschwindet dieser Unterschied, indem auch die Wand gefärbt wird. Die Farbe der

1) Siehe Fig. 21 und Fig. 22 bei *; der an die Hakenspitze angrenzende Theil des eigentlichen Kopfes ist übrigens in diesen Figuren beim Lithographiren allzu distinct ausgefallen.

An Goldchloridpräparaten bemerken wir nun die Eigenthümlichkeit, dass sich nicht die ganze äussere Schicht färbt; an der hinteren Partie des Kopfes ist sowohl Wand als Inhalt völlig ungefärbt. Die scharfe Grenze zwischen dem gefärbten und ungefärbten Theil beginnt an der oberen Kante des Kopfes, verläuft von hier in schräger Richtung nach hinten über die Seiten des Kopfes hin bis zur unteren Kante (Fig. 38; die Farbengrenze); an der unteren Kante verlängert sich der gefärbte Theil noch etwas nach hinten zu in Form eines schmalen Fortsatzes in ähnlicher Weise wie die Kappe. (An dem abgebildeten Kopf endigt er

1) 1% Goldlösung mit etwas Ameisensäure versetzt; dann Reduction am Sonnenlicht in Essigsäure von 2%; auch andere Methoden wurden versucht; die genannte zeigte sich indessen ganz zweckmässig.
gerade am hinteren Rand der Kappe; die Grenze des gefärbten Theiles liegt übrigens weiter vorne als der hintere Kappenrand und verläuft in mehr schräger Richtung als dieser).

Vielleicht sind diese beiden Theile nichts anderes als die umgebildeten Kernhemisphären der Samenzelle (M e r k e l u. a.), welche an Goldchloridpräparaten noch bei den fertigen Samenkörpern von einander unterschieden werden können. Es scheint mir nur in diesem Falle sonderbar, dass die hintere Grenze des gefärbten Theiles nicht mit dem Hinterrand der Kopfkappe zusammenfällt; nie hat sie einen geschlängelten Verlauf, wie dies A. v. Br u n n (9) für die Grenze beider Kernhemisphären angiebt.

Die Differenzierung in eine äussere Schicht und Inhalt hat, wie es scheint, G r o h e (4), besonders aber M i e s c h e r (10) beobachtet. G r o h e lässt irrhümlich den „contractilen“ Inhalt sich als einen axialen Streifen (Achsenfaden?) in den Schwanz fortsetzen. Eines Unterschiedes zwischen einem vorderen und hinteren Theil der Wandabsicht wird nicht erwähnt. Dagegen findet M i e s c h e r beim Stier (und noch deutlicher bei mehreren Fischen: Lachs, Karpfen, Hecht) ein besonderes Gebilde im Innern des Kopfes und entdeckt den Mikroporus. Leider hat man seinen ausgezeichneten Untersuchungen nur wenig Aufmerksamkeit geschenkt. Es ist doch gar nicht schwierig, den Saum, welchen M i e s c h e r als eine Wand (Hülle, Kapsel) deutet, sowie den Mikroporus an den Samenkörpern des Stieres zu sehen. Bei der Ratte war ein Mikroporus nicht zu entdecken (dagegen beim Hengst; siehe unten; ferner beim Schwein und Kaninchen).

2. Pferd.

Dass ein um einen Achsenfaden gelegter Spiralfaden am Verbindungsstück der Samenkörper des Pferdes vorhanden ist, habe ich schon längst nachgewiesen (13).

Die mütz samen Untersuchungen habe ich nun wieder aufgenommen, namentlich um das Verhalten des Spiralfadens beim Uebergang der noch nicht reifen Samenkörper zum fertigen Stadium näher zu beleuchten.
Untersuchungen über die Samenkörper der Säugethiere etc. 409

Das Verbindungsstück solcher Samenkörper, die ihrer völligen Ausbildung nahe sind, zeigte sich in $3\frac{1}{2}-4$ Spiraltouren gewunden (Tab. XXIV, Fig. 45) — eine geringere Anzahl ist mir bei den vorliegenden Untersuchungen nicht vorgekommen. Am öftesten sind die Windungen wenig hervortretend und sehen nur wie eine Reihe von Unebenheiten aus. In solchen Fällen, wo sie stärker hervortreten, wie in Fig. 45, bedarf es jedoch einer sehr scharfen Beobachtung und recht guten Lichtes, um entscheiden zu können, ob man es hier in der That mit Windungen oder mit einfachen seitlichen Schlängelungen zu thun hat. Bei wiederholten Untersuchungen war nun die gewundene Form mit solcher Deutlichkeit zuerkennen, dass ich keinen Augenblick daran zweifeln konnte.

Den Spiralfaden, von dem die Windungen herrühren, habe ich in vielen Fällen mehr oder weniger vom Achsenfaden abgelöst gesehen; siehe Fig. 46 (nachdem die Ablösung begonnen) und Fig. 47 (der Spiralfaden ist durch einen weiteren Zwischenraum vom Achsenfaden getrennt). Man braucht nur dem frischen Präparat Aqua destillata zuzusetzen, um sogleich solche Bilder wie Fig. 47 hervorzubringen. Da der Spiralfaden indessen sehr fein ist, kann man mit einer starken Fuchsinlösung färben; einige meiner Präparate hatte ich im Voraus nach Aqua destillata Osmiumsäure von 1% zugesetzt; die Tintion der Osmiumpréparate mittelst Säurefuchsin (vgl. Krause 23) erwies sich nicht als zweckmässig; es gelang mir mit Hilfe dieses Mittels keine oder wenigstens keine intensivere Färbung des Spiralfadens zu erzielen.

Bei frischen Sameukörpern liegt der Spiralfaden immer dicht am Achsenfaden, welcher Umstand in Verbindung mit der Feinheit und Lichtbrechung der Fäden zur Folge hat, dass dieselben für das Auge in einander überfliessen. Beide Fäden machen den Eindruck eines einzigen, welcher den Windungen des einen Fadens wegen, ein spiralförmiges oder scheinbar geschlängeltes Aussehen bekommt.

Der Spiralfaden ist, wie bei den Samenkörpern der Ratte, schwächer lichtbrechend und, wie mich dünkt, auch etwas dünner als der Achsenfaden. Bleiben die Samenkörper einige Zeit in Kochsalzlösung von 0,6% liegen, so schwillt der Spiralfaden an und wird dadurch sogar dicker als der Achsenfaden; einen solchen Fall stellt Fig. 3 in meiner „Structur der Samensäden“ dar; gleichzeitig löst sich der Spiralfaden vom Achsenfaden ab und zieht sich
zusammen. Der Spiralfaden ist alsdann sehr deutlich zu sehen. Bei stärkerem Grad von Fäulniss wird derselbe verzehrt, während sich der Achsenfaden unverändert erhält.

Der geradlinige Achsenfaden endigt auch beim Pferd nach vorn nur mit einem viel stärker lichtbrechenden, wohl abgesetzten Knöpfchen, das das vorderste Ende des Schwanzes bildet; dasselbe ist einfach, besteht also nicht, wie bei der Ratte, aus zwei auf einander folgenden Abschnitten. Fig. 48 u. a. Fig.; Kn das Knöpfchen.

Während der weiteren Entwicklung verbleibt nun der Achsenfaden immer dünner als dieses Knöpfchen. Sonst zeigen die Samenkörper des Pferdes die grösste Übereinstimmung mit denen der Ratte. Die zahlreicher werdenden Windungen legen sich näher an einander, und das Verbindungsstück bietet nun ein ganz ähnliches quergestreiftes Aussehen dar, wie bei den Samenkörpern der Ratte (Fig. 49). Theils sind diese Streifen schräg gestellt, theils scheinen sie eine transversale Stellung zu haben; da die Streifen sehr klein und kurz sind, so kann natürlich die schräge Stellung nur mit Schwierigkeit beobachtet werden; öfters habe ich doch dieselbe ganz deutlich erkannt.

Fig. 50 und 51 stellen einen sehr häufig vorkommenden Fall dar. Einige der Windungen liegen nahe an einander; andere sind durch Alteration ausgezogen; die Spiralform, die in den Querstreifen versteckt liegt, kommt dadurch zum Vorschein. Ähnliche langgezogene Windungen habe ich bereits früher bei den Samenkörpern der Ratte erwähnt.

Die dicht an einander liegenden Windungen nebst dem Knöpfchen des Achsenfadens haben übrigens eine täuschende Ähnlichkeit mit einer Reihe Glieder. Das Knöpfchen ist ein wenig stärker lichtbrechend, oder bei tieferer Einstellung dunkler, als die Querstreifen; sonst sieht es einem derselben ähnlich, so dass es leicht damit verwechselt werden könnte.

Ich muss nun auch darauf aufmerksam machen, dass man nicht selten hinter den Windungen, am Ende des Verbindungsstückes, ein breites, transversal situiertes, ziemlich dickes, scheibenförmiges Gebilde von gleich starker Lichtbrechung wie das Knöpfchen wahrnimmt, Fig. 52, S die Scheibe; vor dieser erbliekt man 2 Querstreifen-ähnliche Windungen, darauf ein Paar grössere Windungen; am vordersten Theil des Verbindungsstückes waren
die Querstreifen oder Windungen nicht deutlich zu beobachten. (Die Figur stellt einen etwas alterierten Samenkörper dar; leider besitze ich keine andere Abbildung und bitte daher den Leser, sich das Verbindungsstück seiner ganzen Länge nach mit regelmäßigen, jenen zwei dicht vor der Scheibe liegenden ähnlichen Querstreifen versehen zu denken; die Scheibe sieht ganz ebenso aus wie bei den frischen Samenkörpern). Während sich der Spiralfaden bei Selbstmaceration auflöst und verschwindet, erhält sich das genannte Gebilde unverändert; man sieht dann auch deutlich, dass dasselbe scheibenförmig ist (Fig. 53, S). Ich betrachte es also als ein besonderes, bisher unbekanntes Stück, das von dem Querstreifen wohl zu unterscheiden ist. Es persistiert während der folgenden Entwicklung; bei den am meisten entwickelten Samenkörpern des Hodens fand ich dasselbe wieder; es war indessen bei diesen kleiner und konnte nur dadurch, dass das hinterste Ende des Verbindungsstückes stärker lichtbrechend war, erkannt werden. — Eine ähnliche Scheibe habe ich bei den noch nicht entwickelten Samenkörpern der Ratte, wo der Achsenfaden wie in Fig. 53 entblösst war, bei sehr genauer Untersuchung aber auch bei den fast fertigen Samenkörpern gefunden, Taf. XXII, Fig. 15 und 16; S die Scheibe, die dicker und stärker lichtbrechend als die Querstreifen ist. — Manchmal war ich nicht im Stande, diese Scheibe zu entdecken, und es ist somit nicht sicher, ob sie constant vorkommt. Beim Pferd konnte ich ihre Entstehung verfolgen; sie wird von der Cytoplasma-Ansammlung gebildet, welche am hinteren Ende des Verbindungsstückes oft so lange sitzen bleibt, und zeigt sich als eine Verdichtung der hintersten Partie derselben.

Was die Windungen anbetrifft, so werden dieselben, indem sie fortwährend an Zahl zunehmen und näher an einander rücken, immer schwieriger von einander zu unterscheiden. Schliesslich zeigt das Verbindungsstück ein ganz homogenes Aussehen, was schon in Testes, vor allem aber in Epididymis und Vas deferens der Fall ist (Fig. 54, 55). An einzelnen Samenkörpern habe ich jedoch noch in Vasa deferentia die Querstreifen, die sehr nahe zusammen lagen, entdecken können; dieselben müssen bei tieferer Einstellung, wodurch sie dunkel erscheinen, beobachtet werden; bei höherer Einstellung macht der Reflex der glänzenden Querstreifen eine Unterscheidung derselben von einander unmöglich; lägen die Streifen auch nur ein ganz klein wenig näher zusammen,

Gleichzeitig mit diesem Prozess legen sich die Windungen auch nach vorn dicht an das Knöpfchen des Achsenfadens an, so dass dieses mit dem Spiralfadenbeleg scheinbar in eins übergeht.

Zwischen dem Verbindungsstück und dem Hauptstück der Samenkörper aus Testes findet sich, in ganz ähnlicher Weise wie bei der Ratte, eine kleine nur aus dem Achsenfaden bestehende Partie. In Epididymis ist dieselbe verschwunden oder war doch wenigstens so unbedeutend geworden, dass sie nicht mit hinlänglicher Sicherheit zu entdecken war.

Dem Hauptstück schliesst sich ein dünneres Endstück an, das verhältnissmässig länger als bei den Samenkörpern der Ratte ist (Fig. 54 und 55, E). Dasselbe war in Osmiumssäure und Fuchsin noch schwächer gefärbt als das Hauptstück, wenn es überhaupt irgend eine Farbe hatte.

Was Gibbs' Abbildungen von den Samenkörpern des Pferdes (12, Taf. XXIV, Fig. 4) betrifft, so zeigen dieselben nur eine sehr

1) Siehe p. 414, Anmerkung.
Untersuchungen über die Samenkörper der Säugethiere etc.

entfernte Ähnlichkeit mit der Wirklichkeit. Den Achsenfaden hat er gar nicht beobachtet; von den Windungen hat er allerdings etwas gesehen; das was er gesehen, hat er jedoch in ganz unrichtiger Weise als einen wellenförmigen feinen Faden aufgefasst, der, wie der Randfaden der Samenkörper der Urodelen, längs der einen Seite des Schwanzes heruntergehen soll.

Die Samenkörper des Schafes stimmen hinsichtlich der Struktur des Schwanzes mit denen des Pferdes derart überein, dass eine eingehendere Beschreibung nicht von nöthen ist. Ich bemerke nur folgendes. Die früher von mir in „Die Struktur der Samenfäden“ gelieferte Fig. 8 stellt einen ähnlichen Fall dar wie Fig. 51 der Samenkörper des Pferdes in vorliegender Abhandlung; nur lagen beim Schaf die Windungen im vorderen Theil des Verbindungsstückes so nahe zusammen, dass sie hier nicht deutlich von einander unterschieden werden konnten, weshalb ich dieselben in der Figur nicht dargestellt habe. Uebrigens haben gewöhnlich die Windungen auch bei den Samenkörpern des Schafes das Aussehen von nahe an einander liegenden Querstreifen in der ganzen Länge des Verbindungsstückes. An Fig. 10 (l. e.), woselbst der Achsenfaden auf eine längere Strecke blossgelegt erscheint, erblickt man am vorderen Ende desselben das Knöpfchen, das, wie beim Pferd, einfach ist und immer weiter als der Achsenfaden bleibt. — In Betreff der in Fig. 11 und 12 (l. e.) dargestellten Formen bin ich jetzt zu einer anderen Anschauung gekommen. In beiden Fällen ist es nur der Achsenfaden, den ich beobachtet und abgebildet habe; Fig. 12 zeigt denselben, wie bei der Ratte, im Bereich des Verbindungsstückes in zwei gleich dicke, fadenähnliche Hälften gespalten, die vorne mittelst des Knöpfchens verbunden sind. Schon Ballowitz (30) hat diese Figur ganz richtig gedeutet.

In Fig. 56 (hier) habe ich einen Samenkörper aus Epididymis des Schafes in frischem Zustand abgebildet. Das Verbindungsstück hat das den fertigen Samenkörnern zukommende, homogene Aussehen. Zwischen Schwanz und Kopf sieht man, wie an den Samenkörnern des Pferdes, eine deutliche von einer ganz klaren Substanz eingenommene Zwischenpartie, die constant vorkommt und auch bei den noch nicht entwickelten Samenkörpern der Ho-
den vorhanden ist. An jeder Seite ist dieselbe von einer feinen dunklen Linie begrenzt, die sich vom Umkreis des vorderen Schwanzendes (d. h. des Knöpfchens des Achsenfadens) in gerader Richtung bis an den Kopf erstreckt, und die ich nur als den optischen Durchschnitt einer feinen Membran auffassen kann (siehe Fig. 56). Den Mikroporus konnte ich nur andeutungsweise beobachten und kann somit nichts darüber angeben, wie sich die Membran zu diesem verhält (vielleicht befestigt sie sich an der Peripherie des Mikroporus).

Die feinen Linien hat schon Schweigger-Seidel beobachtet (5, Taf. XIX, E; cfr. H, I, J, 1, 2 und die Figuren von Grohe (4), namentlich Fig. 3 b und 7 c; sie machen einen Theil seiner „Grenzschicht“ aus; unwahrscheinlich ist es wohl auch nicht, dass die Membran sich weiter am Kopf und Schwanz fortsetzt. — Spätere Forscher haben die Linien übersehen oder dieselben in anderer Weise gedeutet.

In letzterer Zeit hat Ballowitz (30) über die kleine Partie zwischen Kopf und Schwanz Untersuchungen mitgetheilt, die näher besprochen zu werden verdienen.

Nach diesem Forscher sollen sich die zwei Fäden oder fadenähnliche Hälften, aus denen der Achsenfaden zusammengesetzt ist, durch diesen Zwischenraum fortsetzen und das sogenannte „Halsstück“ bilden: dieselben sollen hierbei etwas divergiren und jeder mit einer dunklen, rauhen, knöpfchenförmigen Verdickung endigen, womit sie sich am Kopf befestigen. Ballowitz verweist auch auf eine meiner früheren Figuren von den Sameukörpern des Schafes (13, Fig. 11), wo die beschriebene Gabelung des Halsstückes „schon ganz zutreffend abgebildet wird“.

Die genannten Verdickungen sind nun nichts anderes als das schon längst von mir beobachtete Knöpfchen, womit der Achsenfaden nach vorn endigt. Wenn Ballowitz annimmt, dass dasselbe aus zwei nebeneinander liegenden Knöpfchen bestehe, so hat er vermutlich ähnliche Bilder wie Fig. 41 (hier) von den Samekörpern der Ratte vor sich gehabt; nur hat man sich hierbei das eine Paar knöpfchenähnlicher Theile weg oder mit dem anderen

1) Vielleicht oder vielmehr wahrscheinlich wird man ähnliche Linien bei den Samekörpern des Pferdes finden; es fehlt mir jetzt die Gelegenheit Untersuchungen darüber anzustellen.
Untersuchungen über die Samenkörper der Säugethiere etc. 415

der Samenfäden" betrifft, so besteht die vorderste kleine, "ge-
gabelte" Partie, wenigstens zu einem wesentlichen Theil, lediglich
aus dem erweiterten Knopfstück. Bei Betrachtung dieser Figur
erblickt man sogleich, dass der Achsenfaden mit seinem gabeligen
Ende nicht ganz bis zum hinteren Rand des Kopfes
reichet, sondern, wie es immer der Fall ist, durch einen Zwischen-
raum von derselben getrennt ist. — Beim Schwein glaubte ich
früher selbst zwei feine Fäden im Zwischenraum zwischen Schwanz
und Kopf gesehen zu haben (13, p. 28). "Diese Fäden", sagte ich
an der betreffenden Stelle, "lagen einander und divergirten
ein wenig in ihrem ganz kurzen Verlauf bis an den Kopf". Nach
meinen früheren Notizen kann ich hier hinzufügen, dass jeder
derselben an Samenkörpern, deren Kopf abgefallen war,
mit einer dunklen und stark lichtbrechenden, knöpfchenähnlichen
Verdickung — ganz so wie es Ballowitz angiebt — endigte (Fig.
57, eine meiner alten genau, aber früher nicht publicirten
Figuren, wo sich dieses Verhalten sehr schön zeigt). Dass diese
Verdickungen den Seitentheilen vom Knopfstück des Achsenfadens bei der Ratte
entsprechen, ist hinsichtlich sicher, und dass die zwei Fäden von
der zunächst dahinter liegenden Partie des Achsenfadens gebildet
sind, ist auch unzweifelhaft. Wenn ich nun glaubte, dass diese
Fäden die Partie zwischen Kopf und Schwanz einnähmen, so lag
die Ursache davon wohl in folgenden Umständen. Wie einige
meiner alten Figuren vermuten lassen, so ist diese Partie bei den
Samenkörpern des Schweines nicht immer deutlich; in gewissen
Fällen kann der Schwanz gerade an den Kopf stossen, so dass
ein Zwischenraum nicht vorhanden ist oder vielleicht richtiger: ein
solcher kommt zwar vor, ist aber so klein, dass er sich der Be-
obachtung entzieht. Da ich denselben nicht entdeckte, so verfiel
ich in den nämlichen Irrthum, wie nun Ballowitz, indem ich
den hinter dem Knöpfchen liegenden Theil mit der Partie, die sich
sonst zwischen dem Knöpfchen und dem Kopf findet, verwechselte.

4. Mensch.

Da die kleinen Samenkörper des Menschen ein für die Unter-
suchung nur wenig günstiges Object darbieten, musste es sehr be-
fremden, dass Gibbes (14) gerade bei diesen das von ihm erwähnte Gebilde vollständig beobachtet habe. Die ziemlich rohe
Untersuchungen über die Samenkörper der Säugethiere etc. 417

Einen solchen in langgestreckte Windungen gelegten Spiralsaum, wie ihn Krause (16, 23) abbildet, und welcher am Hauptstück herabläuft, habe ich nicht gefunden. Das Hauptstück hatte ein ganz homogenes Aussehen. Kommt ein Spiralfaden am Hauptstück vor, was höchst wahrscheinlich ist, so kann ich nur annehmen, dass derselbe den Achsenfaden mit sehr dicht an einander liegenden Windungen umgiebt, so dass dieselben für das Auge zu einem scheinbar homogenen Beleg zusammenfließen.

Indem ich hiermit diese Darstellung der Structur der Samenkörper der Säugethiere abschliesse, möchte ich noch der inter-
essanten Bilder Eimer's (8) Erwähnung thun, denen zufolge das Verbindungsstück aus einem Centralfaden (dem Achsenfaden) und einem diesen umgebenden Protoplasmamantel, der häufig einen gegliederten Bau zeigtd h. in eine Reihe annähernd kubischer Portionen abgetheilt ist, gebildet sein soll. Wenn ich von den Samenkörpern der Fledermäuse absche, so kann ich jetzt keinen Zweifel hegen, dass diese „Glieder" in der That nichts anderes sind als die dicht an einander liegenden Windungen, sammt dem Knöpfchen, welches das vorderste „Glied" repräsentirt). In Eimer's Figuren von der Gliederung der Samenkörper des Ochsen und Hermelins erkennt man ohne Weiteres eine solche Streifung, wie bei der Ratte, dem Pferde oder Schafe (8, Taf. V, Fig. 6, 8). In anderen Figuren hat Eimer die Glieder als grössere quadratische Stücke abgebildet. Ich bin überzeugt, dass dieses abweichende Aussehen der Eimer'schen Abbildungen, die übrigens etwas schematisch sind, lediglich von der verschiedenen Einstellung; bei der die Windungen beobachtet sind, herrührt. Die ersteren Figuren sind bei tieferer, die letzteren bei höherer Einstellung, wobei die Windungen stark lichtbrechend erscheinen, gezeichnet worden. Aber dieser starke Glanz, der vom Achsenfaden und Spiralfaden zugleich herrührt, bewirkt, dass die Windungen grösser erscheinen. Die Glieder in Eimer's Fig. 6 würden beispielsweise bei höherer Einstellung ungefähr so dick wie in seiner Fig. 5, A sein; wenn sie etwas weiter von

Unsere Untersuchungen über die Samenkörper der Säugethiere etc. 419

Literaturverzeichniss.

2) Czermak, Ueber die Spermatozoiden von Salamandra atra (Uebersicht der Arbeiten der Schlesischen Gesellsch. f. vaterländische Cultur im Jahre 1848).

4) Grohe, Ueber die Bewegung der Samenkörper (Virchow's Archiv, Bd. XXXII, 1865).

6) V. v. Ebner, Untersuchungen über den Bau der Samenkanälen und die Entwicklung der Spermatozoiden bei den Säugetieren und beim Menschen (Rollet's Untersuchungen aus dem Institute für Physiologie und Histologie, Graz 1871).

7) Fr. Merkel, Erstes Entwicklungssstadium der Spermatozoiden (Untersuchungen aus dem anatomischen Institut zu Rostock, 1874).

9) A. v. Brunn, Beiträge zur Entwicklungsgeschichte der Samenkörper (Archiv f. mikroskopische Anatomie, Bd. XII, 1876).

10) Miescher, Die Spermatozoen einiger Wirbeltiere (Verhandl. der naturforschenden Gesellsch. in Basel, Bd. VI, 1878).

13) O. S. Jensen, Die Structur der Samenfäden. Bergen 1879. (Bei Friedländer zu haben.)

17) Retzius, Zur Kenntniss der Spermatozoen (Biologische Untersuchungen, 1881).
Untersuchungen über die Samenkörper der Säugethiere etc. 421

18) Renson, De la spermatogénèse chez les Mammifères (Archives de Biologie, Tome III, 1882).
20) O. S. Jensen, Récherches sur la Spermatogénèse (Archives de Biologie, Tome IV, 1883), p. 73 u. 74, Anm.
27) Barfurth, Biologische Untersuchungen über die Bachforelle (Archiv f. mikroskopische Anatomie, Bd. XXVII, 1886).
29) C. M. Fürst, Bidrag till kännedomen om sädeskropparnas struktur och utveckling (Nordiskt medicinskt Arkiv, Bd. XIX, 1887).

Erklärung der Abbildungen auf Tafel XXII—XXIV.

Bedeutung der Buchstaben.

Wo nichts anderes bemerkt, sind die Samenkörper frisch in Kochsalzlösung von 0,6\% beobachtet.

Tafel XXII.

Ratte (Mus decumanus, Pall.).

Fig. 1—17. Noch nicht ganz reife Samenkörper aus den Hoden.

Fig. 1. Samenkörper mit schräg gestellten Streifen am Verbindungsstück (V).

Fig. 1*. Hinterster Theil des Schwanzes mit winkelförmig gebogenem Endstück (E). Alterirt (?).

Fig. 2. Hinterster Theil des Verbindungsstückes (V) nebst einem Theil des Hauptstückes (H). Stark vergrößerte Zeichnung.

Fig. 3. Vorderer Theil des Verbindungsstückes nach kurzem Verweilen in 0,6\% Kochsalzlösung; bei * ausgezogene Windungen.

Fig. 4. Ein Theil des Verbindungsstückes mit abgelösten Spiralfäden. Aqua destillata.

Fig. 5. Ein Theil des Verbindungsstückes; die Querstreifen nur auf kürzeren Strecken erhalten; der theilweise abgelöste Spiralfaden hat sich ausgestreckt und bildet grosse Windungen. Maceration in Kochsalzlösung von 0,6\%.

Fig. 6. Ein Theil des Verbindungsstückes. Macerationsbild (siehe p. 384 u. f.). Kochsalzlösung von 0,6\%.

Fig. 7. Vorderer Theil des Achsenfadens mit einem kleinen Rest vom Spiralfaden (Sf). Maceration in Kochsalzlösung von 0,6\%.

Fig. 8. Kopf und ein Theil des Verbindungsstückes, letzteres etwas alterirt (der Spiralfaden theilweise abgelöst); s heller Längstreifen (Lumen) im Achsenfaden. Kochsalzlösung von 0,6\%.

Fig. 9. Vorderster Theil des Verbindungsstückes.

Fig. 10. Mittlerer Theil des Verbindungsstückes. Essigsäure von 1\%.

Fig. 11. Vorderster Theil des Achsenfadens. Essigsäure von 1\%.

Fig. 12. Hinterster Theil des Achsenfadens (Af) nebst einem Theil des Hauptstückes (H). Essigsäure von 1\%.

Fig. 13. Ein Theil des Verbindungsstückes (V) und des Hauptstückes (H); der Achsenfaden auf einer Strecke bei x entblösst und der Länge nach in zwei Hälften gespalten. Selbstmaceration.

Fig. 14. Hinterer Theil des Verbindungsstückes mit zahlreicheren und näher an einander gerückten Windungen (vergl. Fig. 2).

Figg. 15 u. 16 illustrieren zwei spätere Zustände, wo die Windungen am Verbindungsstück (V) noch zahlreicher und dichter zusammengerückt (Fig. 15), bis sie schliesslich eine homogene Masse zu bilden scheinen (Fig. 16).

Fig. 17. Samenkörper, wo die zahlreicher und dichter an einander gelegenen Windungen am vorderen Theil des Verbindungsstückes (V) einen scheinbar homogenen Beleg bilden.
Untersuchungen über die Samenkörper der Säugethiere etc. 423

Fig. 18 u. 19 zeigen die Querstreifen am Hauptstück (II). Epididymis. Sublimat von 2—3%.

Fig. 20. Ende eines abgebrochenen Hauptstückes mit entblösstem Achsenfaden (Af). Epididymis. Sublimat von 2—3%.

Fig. 21 u. 22. Samenkörper aus Vasa deferentia. Kopf in Flächenansicht; a die untere, b die obere Kante des Kopfes; kr hinterer Rand der Kopfkappe. * (in Fig. 22) Grenze zwischen dem eigentlichen Kopf und der Hakenspitze; siehe p. 406, Anmerkung. s durchscheinender, heller Längsstreifen (Lumen) im Achsenfaden.

Fig. 23. Kopf, von der unteren (convexen) Kante gesehen. Vasa deferentia.

Fig. 24. Kopf, von der unteren (convexen) Kante und halb von der Fläche gesehen. Vasa deferentia.

Fig. 25. Nach oben gerichtetes Ende einer abgebrochenen Hakenspitze, in stark vergrössertem Maasstabe. Vasa deferentia (?).

Fig. 26. Kopf eines noch nicht ganz reifen Samenkörpers. Testes.

Fig. 27. Kopf in einem ein wenig früheren Stadium, mit anhängender Cytoplasma-Ansammung (C).

Fig. 28. Kopf in demselben Stadium wie Fig. 27, von der unteren (convexen) Kante gesehen. C die Cytoplasma-Ansammung.

Fig. 29. Kopf in demselben Stadium wie Fig. 26, mit anhängender Cytoplasma-Ansammung (C), die durch Alteration in Kochsalzlösung von 0,6% aus ihrer Lage gebracht und einen Klumpen um den hakenförmig gebogenen Theil des Kopfes bildet.

Tafel XXIII.

Ratte (Mus decumanus, Pall.).

Fig. 30. Spaltung des Achsenfadens in zwei Hälften (I, II) auf der ganzen Strecke des Verbindungsstückes. Noch nicht ganz reifer Samenkörper aus den Hoden. Essigsäure von 1%.

Fig. 31. Ein Theil der vorigen Figur in vergrössertem Maasstabe.

Fig. 32 u. 33. Noch nicht ganz reifer Samenkörper, deren Achsenfaden sich im Bereich des Verbindungsstückes in mehrere feinere Fasern gespalten hat. Essigsäure von 1%. Fig. 32: Spaltung des Achsenfadens in zwei Hälften, von denen eine wiederum in mehr oder weniger feine Fasern gespalten ist. a der Haupttheil dieser Hälfte; b, c, d abgespaltene, viel feinere Fasern; c und d überaus fein; d bildet eine Schlinge. Fig. 33: Spaltung des Achsenfadens in drei dickere (a, b, c) und mehrere dünnere Fasern; b und c haben sich bei b*, c* und c** abermals in zwei gleich dünne Fasern getrennt.

Fig. 34. Ausgebildeter Kopf nach Zusatz von 2—3% Kalilauge. Vasa deferentia.

Fig. 35. Kopf, noch nicht ganz entwickelt. Testes.

Fig. 36. Ausgebildeter Kopf; * Grenze zwischen dem eigentlichen Kopf und der Hakenspitze. Epididymis. Eisenperchloridtinctur.

O. S. Jensen:

Fig. 37. Ausgebildeter Kopf; Differentierung in Wandschicht und Inhalt. Vasa deferentia. Frisch in Kochsalzlösung von 0,6%/o und Färbung mittelst wässerigen Säurefuchsins.

Fig. 38. Ausgebildeter Kopf; Differentierung der Wandschicht in eine vordere und hintere Partie; g die schräg verlaufende Grenze zwischen denselben. Vasa deferentia. Goldchlorid von 1%/o.

Tafel XXIV.

Fig. 39—44. Noch nicht ganz reife Samenkörper der Ratte (Mus decumanus, Pall.).

Fig. 39. Durch abwechselnden Druck auf das Deckgläschen hervorgerufene Spaltung des Achsenfadens in einen Wirrwarr von gebogenen und geschlungenen, mehr oder weniger feinen Fasern; h E hinteres Ende des Verbindungsstückes. Am Kopf sieht man die abgelöste Kopfkappe (ka). Essigsäure von 1%/o.

Fig. 40 zeigt das Knöpfchen des Achsenfadens, aus zwei Abschnitten, a und b, bestehend. Essigsäure von 1%/o.

Fig. 41. Scheinbare Zusammensetzung jeder dieser Abschnitte aus zwei besonderen Theilen. Aus einem Präparat, das einen Tag in 1%/o Essigsäure gelegen.

Fig. 42. Spaltung des Achsenfadens in feinere Fasern am Ende eines abgebrochenen Verbindungsstückes. Aus einem gefrorenen Hoden, mehrere Stunden nach dem Tode des Thieres1).

Fig. 43. Gedachter Querschnitt des Achsenfadens. a, a die beiden Hälften dieses Fadens, welche längs der Linien * * mittelst Kittsubstanz verbunden sind und von denen jede wiederum aus mehreren, längs der radiären Linien in jeder Hälfte zusammengekitteten, grösseren Theilen besteht; 1 Lumen des Achsenfadens.

Fig. 44. Copie von Fig. 16 in „Structur der Samenfäden, 1879“; nur ein Theil des Verbindungsstückes ist hier wiedergegeben; bei x Spaltung des Achsenfadens in seine zwei Hälften. Selbstmaceration.

Fig. 45—55. Pferd.

Fig. 45. Noch nicht entwickelter Samenkörper aus den Hoden, mit spiralgewundenem Verbindungsstück (V). Das Hauptstück (II) nur teillweise abgebildet.

Fig. 46. Ein do., nach kurzem Hinliegen in 0,6%/o Kochsalzlösung; die Ablösung des Spiralfadens am Verbindungsstück begonnen.

Fig. 47. Ein do.; der Spiralfaden hat sich durch einen weiteren Zwischenraum vom Achsenfaden getrennt. Aqua destillata.

1) Die Ratte war in der Nacht getödtet worden und wurde am folgenden Tag untersucht. (Mittlerweile waren die Hoden in der Winterkälte gefroren).
Untersuchungen über die Samenkörper der Säugethiere etc. 425

Fig. 48. Ein der, dessen Spiralfaden am Verbindungsstück durch Maceration in Kochsalzlösung von 0,6% verschwunden ist.

Fig. 49. Weiter entwickelter Samenkörper aus den Hoden; die Windungen am Verbindungsstück zahlreicher und näher an einander gelegen.

Figg. 50 u. 51 Gleichfalls weiter entwickelte Samenkörper; die Windungen des Spiralfadens durch Alteration in 0,6% Kochsalzlösung zum Theil ausgezogen und etwas weiter geworden.

Fig. 52. Aehnliches Stadium; man sieht das eigenthümliche scheibenförmige Gebilde (S) am Ende des Verbindungsstückes. In Betreff der Windungen ist übrigens auch hier eine Alteration eingetreten; am vorderen Theil des Verbindungsstückes waren die Windungen nicht deutlich zu beobachten. Der Kopf zeigt sich von der Kante. Kochsalzlösung von 0,6%.

Fig. 53. Ein Samenkörper aus den Hoden, wo der Spiralfaden des Verbindungsstückes durch Maceration in Kochsalzlösung von 0,6% verschwunden, während sich das scheibenförmige Gebilde (S) erhalten hat.

Fig. 54. Fast völlig ausgebildeter Samenkörper aus den Hoden.

Fig. 55. Samenkörper aus Epididymis.

Fig. 56. Samenkörper des Schafes. Epididymis.

Fig. 57. Samenkörper des Schweines: Vorderster Theil des Verbindungsstückes, bei niedriger Einstellung gesehen. Vasa deferentia. Jodserum.

Fig. 58. Samenkörper des Menschen: Vorderer Theil des Schwanzes mit im Bereich des Verbindungsstückes entblösstem Achsenfaden (Af). Testes. Maceration in Kochsalzlösung von 0,6%.

Fig. 59. Ein junger Samenkörper des Menschen, wo der Achsenfaden des Verbindungsstückes (Af) vom noch nicht umgebildeten Cytoplasma umhüllt ist und durch dieses hindurchscheint. Jodserum.
Spermatologische Beiträge.

Von

v. la Valette St. George.

Fünfte Mittheilung.

Hierzu Tafel XXV.

Über die Bildung der Spermatocysten bei den Lepidopteren.

Wie ich mir bereits in der letzten Mittheilung¹) hervorzuheben gestattete, habe ich schon vor langen Jahren und seitdem wiederholt nachgewiesen, dass bei den Insekten „die Cystenhaut durch eine Aneinanderlagerung einzelner Zellen zu Stande komme“. Als Untersuchungsobercote dienten mir Tenebrio molitor, Ranatra linearis und zuletzt Phratora vitellinae sowie insbesondere Ilybius fenestratus, der mir über die erste Entwicklung der Spermatocysten sehr instruktive Bilder lieferte, welche die Theilung der Spermatogonie, von 0,015 mm Grösse, in Spermatocyten und Cystenzellen mit den Cystenkernen zeigten a. a. O. Taf. IV, Fig. 50–53. Auch im vorigen Sommer und Herbst gewann ich eine Anzahl darauf bezüglicher Präparate, über welche ich hier kurz referiren möchte.

Sie sind den Raupen von Cossus ligniperda, Pieris napi, Sphinx ligustri, Phragmatobia fuliginosa, Mamestra persicariae und Gastropacha rubi entnommen.

Die paarigen Hoden des Weiden-Holzbohrers fand ich 4 mm lang, 2,5 mm breit, in vier Fächer getheilt.

Es gelang mir, ganz junge Spermatocysten herauszupräpariren, welche die Entwicklung der Cystenhaut sehr schön zur Anschauung brachten.

Ich habe sie auf Taf. XXV, Fig. 1 abgebildet.

Die kleinste, Fig. 1 a, scheint eben durch Theilung der Spermatogonie hervorgegangen. Sie enthielt zwei Zellen. Die eine derselben war gross und zeigte einen körnigen Kern mit grossem, runden Körnchenehen, die andere lag ihr seitlich an und liess einen ovalen, glänzenden, glatten Kern erkennen.

Ein offenbar darauf folgendes Stadium, Fig. 1 b, wurde durch eine Spermatocyste mit zwei Spermatocyten und einer Cystenzelle mit Kern repräsentirt. Weiterhin fand ich eine grössere Spermatocyste mit drei Spermatocyten und zwei Cystenkernen. Fig. 1 c.

In diesen Bildern wird man eine überraschende Aehnlichkeit finden mit dem von mir früher über diesen Gegenstand dargestellten.

Nachdem ich bereits in meiner zweiten Mitteilung über die Genese der Samenkörper die Entstehung der Spermatocysten genau beschrieben hatte, gab ich in der darauf folgenden genaue Abbildungen von jungen Spermatocysten, ihren Cystenzellen, welche die Cystenhaut zusammensetzen und deren Kernen.

Weder Gilson1) hat diese Angaben beachtet, noch scheint es Wielowieyski2) für nöthig gehalten zu haben, sich über dieses Thema etwas näher zu informiren; er würde wohl sonst gefunden haben, dass seine vermeintliche Entdeckung schon vor langer Zeit bekannt war, wie manches Andere, von dem seine Arbeit handelt.

Auf meine letzte Bearbeitung dieses Gegenstandes habe ich bereits eingangs dieser Mittheilung verwiesen. Vergleicht man die an jenem Orte gegebenen Abbildungen über die Entwicklung der Spermatocysten von Ilybius fenestrat us Taf. IV. Fig. 50—53, so wird die grosse Aehnlichkeit derselben mit den eben beschriebenen Objecten gewiss nicht zu verkennen sein.

Beide Präparate zeigen in gleicher Weise das erste Theilungsstadium der Spermatogonie, aus welchem die erste Spermatocyte mit grossem, körnigem Kerne hervorgeht nebst der ersten Cystenzelle, durch ihren grossen, platten, fast die ganze Zelle ausfüllenden Kern characterisirt.

1) G. Gilson, Etude comparée de la spermatogénèse chez les arthropodes. La cellule. Tome I.
Bei etwas älteren Spermatocysten, deren wandständige Spermatocyten sich rasch vermehrt haben, kann es vorkommen, dass die Cystenhaut sehr dünn wird und ihre Kerne, durch den Cysteninhalt verdeckt, sich der Beobachtung entziehen. Fig. 1 c.

Im weiteren Wachstum der Spermatocyste erscheint die Cystenhaut oft recht dick, mit feinkörnigem Inhalt und zahlreichen Cysten kernern versehen. Fig. 2.

Auch aus dem viertheiligen, 2 mm langen und 1 mm breiten Hoden der Raupe des Rübenweisslings erhielt ich instructive Bilder von Spermatocysten. Fig. 3 stellt eine junge Spermatocyste dar mit wenig Spermatocyt en und zwei Cystenzellen; Fig. 4 lässt noch sehr schön die Zusammensetzung der Cystenhaut aus einzelnen Cystenzellen erkennen.

Ein ähnliches Bild giebt Fig. 5; doch scheinen hier die einzelnen Zellen, welche die Cystenhaut zusammensetzen, bereits mit einander verwachsen. Die Körner der dicken Cystenhaut liessen eine lebhafte Molecularbewegung erkennen.

Sehr geeignet zum Studium der Spermatogenese fand ich den L i g u s t e r s c h w ä r m e r. Der Hoden seiner Raupe war 4 mm lang, 3 mm breit und besass einen centralen Ausführungs gang.

Cystenhaut und Cystenkerne traten sehr schön hervor. Fig. 6 und 7.

Der 1,5 mm grosse, runde, braunrothe Hoden des Zinnober Bärenspinners, dessen Raupe ich noch Ende Oktober zergliederte, liess die Structur der Spermatocysten sehr gut erkennen.

Es gelang mir sogar, zusammenhängende Stücke von denselben abzutrennen. Fig. 8.

Spermatocy esten, von oben gesehen, zeigten noch recht deutlich die Abgrenzungslinien der die Cystenhaut zusammensetzenden, einzchen Zellen mit ihren Kernen, deren Kernkerne aus unregelmässigen Klümpchen bestanden. Fig. 9.

Die Raupe der Floh k r a u t e n l e besass einen 2 mm langen, 1 mm breiten Hoden mit vier Abtheilungen. Die Spermatocysten enthielten vielfach kleine, fettartig glänzende Tröpfchen zwischen den Spermatocy ten. Fig. 10.

Die schönsten Präparate erhielt ich von der Raupe des Brombeerspinners. Fig. 11.

Alle von mir untersuchten Schmetterlingsraupen hatten in
ihren älteren Spermatocysten das Besondere und von den Käfern Verschiedene, dass die Vermehrung der Spermatocyten sich als eine von der Peripherie der Cyste ausgehende erwies, denn nach der optischen Durchschnitt im Innern der Spermatocyste einen Hohlraum zeigte, was übrigens bereits bekannt ist und hier nur constatirt werden soll.

Neu hingegen war mir die Beobachtung, dass die Spermatocyten der von mir untersuchten Lepidopteren gar häufig kürzere oder längere, breitere oder schmälere Fortsätze zeigten.

Meist reissen diese bei der Präparation ab; unter recht sorgsamer Behandlung gelingt es jedoch nicht selten, sie recht schön zur Anschauung zu bringen.

Dergleichen breitere Fortsätze, welche unmittelbar von der Cystenhaut auszugehen schienen und gerade, wie diese, feine Körnchen mit Molecularbewegung zeigten, habe ich auf Fig. 8 und 10 abgebildet.

Bei Gastropacha rubi fand ich lange, dünne, mit Kernen versehene Fortsätze, welche mit breiter Basis, deutlich abgesetzt, von der Follikelhaut ihren Ursprung nahmen und mit benachbarten Spermatocysten in Zusammenhang traten. Fig. 11.

Die Bedeutung dieser Anhänge ist offenbar die, unter den einzelnen Spermatocysten eine Verbindung herzustellen.

Ob diese Fäden, ebenso wie die Zellen der Cystenhaut, aus einer Abspaltung der Spermatogonie hervorgehen, habe ich nicht ermitteln können.

Vielleicht ersetzen sie die Follikelhaut und dienen, wie jene, dazu, die einzelnen Spermatocysten gegen einander zu fixiren.

Die physiologische Bedeutung der Cystenhaut scheint mir leicht ersichtlich.

Sie soll zunächst ihren Inhalt: eine gewisse Summe von Spermatocyten, räumlich abgrenzen und gleichzeitig der Reife entgegen führen.

Es können durch diese Einrichtung Spermatocysten die verschiedenen Stadien der Entwicklung ihres Inhalts ungestört nebeneinander durchlaufen, während auf der andern Seite für die ganze Dauer der Brunstperiode stets eine grössere Zahl von reifen Spermatozomen zur Befruchtung der Eier in Vorrath gehalten wird.

Auf das Vorkommen ähnlicher Verhältnisse in anderen Klassen
des Thierreiches hat jüngst Waldeyer in einer meisterhaften, ebenso gründlichen wie geistvollen, dabei durchaus objectiv gehaltenen Zusammenfassung der über die Spermatogenese gewonnenen Untersuchungsresultate hingewiesen 1).

Offenbar dienen die „Deckzelle“ der Schwämme, der „Cytophor“ der Würmer, und Mollusken, die „Cystenzelle“ der Plagiostomen, wie die „Fusszelle“ der Säugethiere, welche alle am letzten Ende aus der Spermatogenie hervorgehen, demselben Zwecke: der Befestigung der Spermatozelle und sind in demselben Sinne aufzufassen, wie die Cystenzellen der I secten.

Damit fällt dann der Merkele'sche Begriff der Stützzelle fort, wenn diese auch selbst, als zu Recht bestehend, bleiben muss.

Diese Auffassung hat denn auch Hensen 2) wiedergegeben,

Ein gleiches gilt von Hensen's Angaben über die Samenentwicklung bei den Plagiostomen, wo er in einer Epithelzelle (Spermatoblast) die Samenkörper als Bündel entstehen lässt. Dass ihm meine, die Spermatogenese der Plagiostomen behandelnde Abhandlung 2) unbekannt geblieben, will ich ihm gern nachsehen, dass es ihm jedoch nicht aufgefallen ist, wie Semper 3) in seiner klassischen Arbeit die Spermatoblastzellen erst in jenen Epithelzellen durch Abschnürung von einem Mutterkern entstehen lässt, demnach unter dieser Bezeichnung etwas ganz anderes versteht, als v. Ebner, ist zu verwundern.

Weiss der geehrte Kieler Physiologe vielleicht bessere Ausdrücke an die Stelle der von mir gebrachten, die er für unpraktisch hält, zu setzen? Selbst dem verdienten Nestor unserer

1) v. la Valette St. George, Die Spermatogenese bei den Säugerthieren und dem Menschen 1878.
2) v. la Valette St. George, Dissertatio de spermatosomatum evolutione in Plagiostomis. 1878.

Nicht etwa zu meinem Privatvergnügen habe ich die betreffenden Namen erfunden, auch Niemanden ihre Anwendung vorgeschrieben; sie dienten mir zunächst dazu, ganz bestimmte Begriffe und nicht — vielleicht für Hensen — „unsichere Gegenstände" in kurzen und correcten Bezeichnungen wiederzugeben.

Die Bitte Merkel's') um „eine möglichst indifferente Nomenclatur"; wie „runde Hodenzellen" und „lange" oder ramifizirte „Hodenzellen" klingt doch etwas zu bescheiden, da bekanntlich ein und dieselbe Hodenzelle aus der runden in die lange, oder ramifizirte Gestalt übergehen kann.

Dass die von mir eingeführte Terminologie weder unberechtigt, noch unpraktisch ist, beweisen übrigens die Stimmen solcher Historologen, welche sich in eingehendster und fruchtbringendster Weise mit der Spermatogenese beschäftigt haben.

Um nur ein einziges Beispiel dafür anzuführen citer ich die Worte Jensens") gegenüber den Bedenken Hensens:

„Quant à moi je ne tiens pas à conserver ce terme „Spermatoblast" qui a été employé dans des sens fort différents par von Ebner et d'autres auteurs. J'aime mieux me rallier à la terminologie de de la Valette St. George."

Ich sehe mich demnach, leeren Einwänden gegenüber, durchaus nicht veranlasst, von meiner Terminologie, welche eine grosse Zahl von Anhängern bereits gefunden hat, durch Semper und Voigt zweckmässig erweitert und noch in neuester Zeit von Bolles Lee") in einer trefflichen Arbeit über die Spermatogenese bei den Nemertinen als berechtigt anerkannt, wenn auch aus anderen Gründen nicht angewandt worden ist, abzuweichen und unterscheide mit diesen Autoren folgende Entwicklungsstadien in der Spermatogenese: Genoblasti, Genoblasten, Geschlechtszellen, cellules sexuales vor der Differenzirung und beim männlichen Geschlechte:

3) A. Bolles Lee, Recueil Zoologique Suisse. 1887, p. 409.
1) Spermatogoniae, Spermatogonien, Stammsamenzellen, cellules de souche.
2) Spermatocyta, Spermatocyten, Samenvermehrungszellen, cellules prolifératives.
3) Spermatides, Spermatiden, Samenausbildungszellen, cellules transformatrices.
4) Spermatosomata, Spermatosomen, Samenkörper, corpus spermatiques.

Im Anschluss an frühere Mitteilungen hoffe ich in dieser eine weitere Stütze geliefert zu haben für das von mir formulirte Gesetz der Spermatogenese und darf wohl die Resultate der letzten Untersuchungen in nachstehenden Worten zusammenfassen:

Die Stammsamenzelle oder Spermatogonie produziert durch Theilung einen Zellhaufen, Spermatogemme, welcher bei den Insecten, wie bei den Amphibien durch Aneinanderlagerung der peripherischen Zellen eine besondere Hülle erhält und zum Samenschlauch, der Spermatocyste wird, als deren Inhalt die, die Spermatogemme zusammensetzenden „Samenvermehrungszellen“, Spermatocyten sich vervielfältigen durch fortgesetzte Theilung, aus welcher die „Samen-Ausbildungszellen, Spermatiden und schliesslich die Samenkörper oder Spermatosomen hervorgehen.

Erklärung der Abbildungen auf Tafel XXV.

Untersuchungsmedium: Dahliaserum.
Maassstab für Fig. 1: 1 = 0,00175; die übrigen Figuren sind auf die Hälfte reduziert.

Fig. 1. Cossus ligniperda.
Fig. 1. a Übergangsstadium der Spermatogonie zur Spermatocyste. Von der Spermatogonie hat sich eben die erste Cystenzelle mit ihrem Cystenkern abgezweigt.
b Junge Spermatocyste mit zwei Spermatocyten und einer Cystenzelle mit Cystenkern.
c Spermatocyste mit drei Spermatocyten und zwei Cystenkernen.
V. la Valette St. George: Spermato-logische Beiträge.

d Spermato-cyste mit wandständigen Spermatoziten. Cystenkerne sind nicht sichtbar.

Fig. 2. Weiter entwickelte Spermato-cyste mit vielen Spermatoziten und mehreren Cysten- kernern. Von derselben Raupe.

Fig. 3—5. Pieris napi.

Fig. 3. Junge Spermato-cyste mit zwei Cystenzellen.

Fig. 4. Spermato-cyste, deren Cystenzellen deutlich von einander abgegrenzt sind.

Fig. 5. Spermato-cyste mit mehreren, anscheinend verschmolzenen Cystenzellen.

Fig. 6 und 7. Sphinx Ligu- stri.

Fig. 6. Junge, Fig. 7 ältere Spermato-cyste mit dicker Cystenhaut und mehreren Cystenkernen.

Fig. 8 und 9. Phragmatobia fuliginosa.

Fig. 8. Theil einer Spermato-cyste mit Spermatoziten, einem Cystenkern und Cystenhaut, welche sich in einen Zipfel fortsetzt.

Fig. 9. Ganze Spermato-cyste, von oben gesehen. Die Cystenhaut lässt ihre Zusammensetzung aus Cystenzellen deutlich erkennen.

Fig. 10. Mamestra persica riae.

Fig. 10. Spermato-cyste mit dicker Cystenhaut und davon ausgehendem breiten Fortsatz.

Fig. 11. Gastropacha rubi.

Fig. 11. Spermato-cysten mit Fortsätzen der Cystenhaut und durch einen derselben mit einander verbunden.
Beiträge zur Kenntniss des Baus der Nervenfasern.

Von

Dr. P. Schiefferdecker.

Hierzu Tafel XXVI.

Untersuchungen über den Faserverlauf im centralen Nervensystem und die zur Demonstration desselben benutzten Färbungsmethoden führten mich zum Studium des Baus der Nervenfaser selbst. Dieser ist so oft schon Gegenstand der Untersuchungen so vieler und namhafter Forscher gewesen, dass die Literatur eine bedeutende ist, obwohl der Gegenstand selbst noch immer ein in mancher Hinsicht nicht genau bekannter genannt werden kann. Betreffs der Allgemeinheit der Literatur will ich hier auf die Arbeiten von Key und Retzius (5) und von Kuhnt (4) verweisen, sowie auf die von Boveri (1) und nur einige Literaturangaben selbst machen, da wo sie besonders wünschenswerth erscheinen.

In letzter Zeit sind es besonders Kupffer und seine Schüler gewesen, die sich mit dem Bau der Nervenfaser beschäftigten und die Arbeit von Boveri, enthält wohl die umfassende Zusammenstellung der Ansichten dieser Forscher.

Die Resultate meiner Untersuchungen stehen nun mit denen dieser Arbeiten zum überwiegenden Theile im Widerspruch, ebenso wie auch mit manchen anderen der gangbareren Anschauungen.

Betrachten wir nacheinander die einzelnen Bestandtheile der Nervenfaser.
1) Markscheide.

cylinder hindurchgeht. Diese Scheiben zeigen eine scharfe Begrenzung und in ihrer Masse liegen die Silberkörnchen resp. die Scheibe zeigt sich mitunter auch diffus gelb gefärbt. Taf. XXVI, Fig. 1 und 2 stellen derartige Bilder aus dem Rückenmarke des Rindes dar. Fig. 1 zeigt genau den optischen Durchschnitt. Man bemerkt daher hier in der Mitte der Scheibe den scharf conturirten durchtretenden Axencylinder, auf dem sich körniger Silberniederschlag befindet, der, wie man an den Seitenconturen erkennt, aussen dem Axencylinder aufliegt. Diese Silbereconturlinie geht durch die Scheibe unverändert hindurch. Diese selbst ist in diesem Falle nicht ganz von Silber gefärbt, ihre peripheren Partien bleiben frei, erscheinen hell und zeigen eine deutliche Begrenzung. Fig. 2 giebt eine Darstellung von einer solchen Scheibe, die man schiefl von der Fläche sieht, in der Mitte der abgerissene Stumpf des durchtretenden braun gefärbten Axencylinders. Diese Scheibe ist bis zum Rande durch das Silber gefärbt.

Da die Fasern des Rückenmarks keine Schwann'sche Scheide besitzen, so können weder die Ranvier'schen Schnürringe noch die Lantermann'schen Einkerbungen zu dieser in irgend welcher Beziehung stehen. Wie sich die Schwann'sche Scheide an den Stellen der Schnürringe verhält, zeigt Fig. 3. Das Präparat war eine Faser des N. ischiadic. des Frosches. Der Nerv war mit Igelstacheln auf eine Korkscheibe ausgespannt in einer Mischung von Arg. nit. 1 % und Osmium 1 % zu gleichen Theilen gehärtet (nach der Angabe von Boveri), dann in Wasser ausgewaschen und in sehr verdünnte Kalilauge (etwa 2 — 3 Tropfen concentrirte Lösung auf 15 ccm Wasser) für 24 Stunden gelegt, dann in Glycerin zerzupft. Man erkennt leicht die Einschnürungsstelle und an dieser, dass das etwas geschrumpfte Mark sich von der sonst dicht anliegenden Schwann'schen Scheide ein wenig zurückgezogen hat, so dass diese als eine feine Membran deutlich beiderseits über die Einschnürungsstelle hinaufend zu erkennen ist. In der Mitte dieser Stelle liegt der inneren Seite der Schwann'schen Scheide jederseits (die Zeichnung ist genau im optischen Durchschnitte gemacht) eine Hälfte jener oben schon beschriebenen, durch Silber dunkel gefärbten Scheibe an, und zwischen diesen beiden Stücken geht in der Mitte der hell gefärbte Axencylinder hindurch. Es liegt also an jeder Einschnürungsstelle zwischen den beiden Enden der Markscheide eine aus einer andersartigen Substanz bestehende,
wohlbegrenzte Scheibe, welche den Raum zwischen den Enden der Markscheide ausfüllt und an Fasern, welche mit Schwann'scher Scheide versehen sind, sich an die innere Seite dieser anlegt. Wie wir später noch sehen werden, zeigt die Schwann'sche Scheide an dieser Stelle keine Unterbrechung. Da dieselbe im centralen Nervensystem fehlt, so geht sie also an den peripheren Fasern als etwas zufällig hinzugekommene an der marklosen, schmäleren Stelle der Markscheide vorüber. Thut sie das, so ist es zunächst auffallend, dass sie überhaupt an dieser Stelle eine Einschnürung besitzt. Betrachtet man die Nervenfasern junger Thiere, so z. B. solche von neugeborenen Kätzchen, so sieht man, dass die Einschnürungsstellen bei diesen eigentlich nicht existiren. Man sieht wohl deutlich die Stelle der Markunterbrechung und die zwischen den Markenden liegende Zwischensubstanz, aber man bemerkt entweder gar keine oder nur eine sehr geringe und dann scharfe und kurze Einschnürung, eine Art Einkerbung. Dieselbe Erscheinung trifft man bei denjenigen Nerven älterer Thiere, die eine sehr dünne Markscheide haben. Der Grund dafür ist bei beiden der gleiche, nämlich eben die geringe Entwicklung des Marks. Ursprünglich ist die Nervenfaser von gleichmässiger Dicke im ganzen Verlauf und die Schwann'sche Scheide begleitet sie als ein ebenso gleichmässig weites Rohr. Nimmt das Mark im Laufe der Entwicklung an Masse zu, so bleiben diejenigen Stellen, an denen die Zwischensubstanz-Scheiben sich befinden, schmäler, da diese an Dicke jedenfalls weniger zunehmen als die Markscheiden, vielleicht nur bis zu einem bestimmten Alter überhaupt zunehmen, und früher constant bleiben als die Markscheiden. Dem entsprechend muss der Durchmesser der Schwann'schen Scheide überall da zunehmen, wo Mark liegt, eng bleiben an den Stellen der Zwischensubstanz. Der Name Schnürring ist demgemäß falsch, denn es findet keine Schnürung an diesen Stellen statt, und ich würde vorschlagen, statt dessen die Zwischenscheibe oder die Markunterbrechung als das wesentliche hervorzuheben und danach den Namen zu wählen. Da die Markunterbrechung aber auch den Lantermann'schen Einkerbungen zukommt, so würde sich der Name der „Zwischenscheibe“ vielleicht mehr empfehlen.

Unvollständige Unterbrechungen des Marks an dieser Stelle, wie sie in der Literatur mehrfach erwähnt werden, habe ich niemals finden können. Immer war das Mark in ganzer Ausdehnung
unterbrochen. Die Enden der beiden Markstücke erscheinen auch bei Fasern mit dicker Markscheide immer ganz gleichmässig quer abgestutzt.

Behandelt man Nervenfasern nach der oben angegebenen Boveri'schen Methode mit Silber-Osmium, so färben sich die Zwischenscheiben durch Silber. Legt man solche Fasern weiterhin in verdünnte Kalilauge (wie vorhin beschrieben), so quillt die Zwischenscheibe etwas, wird heller und die Silberfärbung breitet sich gleich einer bräunlichen Flüssigkeit nach beiden Seiten hin aus, die umliegenden Theile diffus durchtränkend. Die Fig. 3 ist nach einer Faser entworfen, bei der jene Aufhellung und Quellung gerade genügend eingetreten war, um den Axencylinder deutlich zu erkennen. Die Quellung und allmähliche Zerstörung der Zwischenscheibe durch verdünnte Kalilauge tritt zu einer Zeit ein, da die Schwann'sche Scheide durchaus gut erhalten ist, und die Markscheide wird bei dieser Verdünnung, wie es scheint, zunächst wenigstens nicht angegriffen, dagegen wird der Axencylinder gleichfalls zerstört.

An Nervenfasern, welche mit Silber-Osmium behandelt sind, schlägt sich das Silber sehr gewöhnlich nicht nur in den Zwischenscheiben nieder, sondern ebenso auch in den Lantermann'schen Einkerbungen. Das Silber dringt in diese mehr oder weniger tief ein, und so entsteht dann entweder nur ein schmaler Ring aussen, oder ein breiterer, mehr trichterförmig ausschender, oder ein Doppelring, in welchem Falle der äussere grösser ist als der innere. Fig. 4 und 5 zeigen solche Nervenfasern aus dem Ischiadicus einer etwa 3 Wochen alten Ratte. Jede besitzt in der Mitte eine Zwischenscheibe, an der eine leichte Einkerbung wahrzunehmen ist. Die Schwann'sehe Scheide liegt, wie normal, so nahe der Markscheide an, dass sie nicht als eine besondere Contur zu erkennen ist. Die deutlich vortretende Scheide ist die Fibrillenscheide. Man sieht leicht, dass, wie bekannt, die Segmente verschieden gross sind bei verschiedenen Fasern und an derselben Faser. Die Methode ist bei günstiger Einwirkung der Reagentien ausgezeichnet, und erlaubt noch Einkerbungen mit Sicherheit an Fasern nachzuweisen, an denen man sie bei der Dünne der Markscheide sonst nicht erkennen würde.

Mitunter springt der äussere Silberring etwas über die Oberfläche der Marks substanz vor. Die Schwann'sche Scheide, welche
Dr. P. Schiefferdecker:

glatt und ohne Veränderung über die Einkerbungen hinzieht, muss in solchem Falle mit vorgebuckelt werden. In manchen Fällen trifft man eine solche Vorbuckelung auch an den silbergefärbten Zwischenscheiben. Wahrscheinlich ist die Schrumpfung der Marksubstanz durch die Osmiumeinwirkung in beiden Fällen die Ursache des Vortretens der Zwischensubstanzen. Es wäre ja auch denkbar, dass diese selbst durch die Einlagerung des Silbers sich vergrössert hätten, doch ist das schwer zu entscheiden, da ja auch wiederum eine Schrumpfung durch die Einwirkung der Reagentien eingetreten sein kann und man weder die Grösse der Zunahme noch die der Abnahme kennt.

Behandelt man solche Silber-Osmium-Fasern wieder mit verdünnter Kalilauge, so tritt bei den Lantermann'schen Einkerbungen dasselbe ein, was wir schon von den Zwischenscheiben hervorgehoben haben: die zwischen den Segmenten liegende silbergefärbte Substanz quillt, und wird allmählich aufgelöst, das Silber durchtränkt als ein diffuser brauner Farbstoff die umliegenden Theile. Die Marksegmente bleiben dabei völlig unverändert. Durch diese Quellung der Zwischensubstanz, die natürgemäß mit einer Aufhellung verbunden ist, werden die Lantermann'schen Marksegmente, welche zunächst unverändert bleiben, sehr deutlich. Man sieht zuerst ihre Grenzen und damit ihre Form sehr schön, später, wenn die Zwischensubstanz weiter zerstört wird, und auch der Axencylinder sich auffüllt, isoliren sich die Segmente mehr und mehr. Ein wirkliches weiteres Auseinanderrücken derselben ist natürlich nur möglich gegen das offene Schnittende einer peripheren Faser, von diesem bis zur nächsten Einschnürungsstelle, wenigstens bei Fasern, bei denen diese Einschnürungen deutlich ausgesprochen sind, bei anderen wird es wohl auch weiter gehen können. Man sieht an solchen Fasernenden die Marksegmente sich von einander entfernen und die äussersten theilweise aus dem Schlauch der Schwann'schen Scheide hervortreten. Fig. 6, welche das offene Ende einer entsprechend behandelten Faser aus dem Ischiadien des Frosches darstellt, gibt solch ein Bild wieder. Man sieht die Schwann'sehe Scheide von den Segmenten ziemlich stark abgehoben, sieht aus dem offenen Ende (o) ein Segment etwas hervorragend und mehr oder weniger weite Räume zwischen den Segmenten. Der Axencylinder scheint aufgelöst zu sein, oder wenigstens genau an der Stelle der Segmentenden abgerissen zu sein,
denn man bemerkt niemals etwas von ihm zwischen den getrennten Segmenten oder am Ende der Faser. Die Schwann'sche Scheide erscheint auch etwas gequollen, aber sonst durchaus intact. Sehr instructive Bilder liefert diese Methode auch für Rückenmarkfasern, die allerdings häufig nur in kurzen Stücken dabei zur Anschauung gelangen, da die zusammenhaltende Schwann'sche Scheide fehlt.

Dass das Silber sich in der Zwischensubstanz zwischen den Segmenten niederschlägt und nicht die Enden der Marksegmente färbt, wie Bo\textit{veri} es deutet, kann man mit Sicherheit nachweisen. Man kann diese Zwischensubstanz nun auch für sich isolieren, gerade wie die Zwischenscheiben an den Einschnürungsstellen. Koch (2) hat das schon gethan. Er behandelte Nervenfasern mit Chloroform und färbte sie dann mit Dahlia, oder imprägnierte die Fasern zuerst mit Silber und behandelte sie dann mit Chloroform. Hierbei möchte ich gleich bemerken, dass Bo\textit{veri} irrt, wenn er schreibt (1, p. 472): "Was nun die Silberbilder Koch's betrifft, so ist in erster Linie gegen ihre Deutung als Reaction auf Kittsubstanz der Umstand geltend zu machen, dass sie nicht durch directe Behandlung frischer Fasern mit der Silberlösung gewonnen werden können, sondern erst, nachdem die Fasern zwei Tage in Chloroform gelegen haben, während Kittlinien nur in frischen Geweben auftreten." Die Koch'sche Methode ist aber, nach der betreffenden Mittheilung zu schliessen, durchaus so, dass der frische Nerv mit Silber behandelt wird und dann erst in Chloroform kommt. Koch sagt (2, p. 13): "Das zweite Verfahren, durch welches es gelang, die fragliche Kittsubstanz darzustellen, beruht auf einer Modification der Silbermethode. Es wurden die Nervenfasern in eine Silberlösung von $\frac{1}{400} - \frac{1}{700}$ pCt. (soll jedenfalls heissen $\frac{1}{4} - \frac{1}{7}$ pCt.) gelegt, nachdem sie vorher in $\frac{1}{2}$ procentiger Kochsalzlösung zerzupft worden waren. Man kann ebenso gut die Nerven auch gleich in der Silberlösung zerschneiden. Nach kurzem Verweilen in der letzteren werden die Nervenfasern rasch ausgewaschen und in Chloroform gebracht, worin sie 2 Tage verbleiben, ehe sie untersucht werden können." Der Einwand Bo\textit{veri}'s gegen die Koch'sche Methode fällt also dadurch fort. Koch findet nun, dass sich durch beide Arten der Präparation Trichterbildungen in den Nervenfasern nachweisen lassen, welche den Eiakerbungen Lantermann's entsprechend von der Schwann'schen Scheide
Sohiefferdecker: bis zum Axencylinder durchgehen. Er fasst diese Trichtern auf als bestehend aus einer dünnen Schicht Kittsubstanz, die zwischen die Segmente eingeschoben ist. Die Gründe, die er dafür anführt, dass die Substanz eine Kittsubstanz und keine Membran sei (Kuhnt) sind folgende:

1) Die Schicht imprägnirt sich mit Silber.
2) Beim Herausziehen der Axencylinder aus der Markscheide bleiben die Trichter bald mehr an dem Axencylinder, bald mehr an der Schwann'schen Scheide haften, doch können sie sich von beiden auch glatt entfernen.
3) Bei Einwirkung verdünnter Osmiumsäure tritt eine Verbreiterung der die Segmente trennenden Linien und ein Uebergang dieser in rundliche oder ovale Tropfen einer hellen, flüssigen Masse auf, also wohl eine Quellung. Und diese Tropfen kann man wieder zum Verschwinden bringen, wenn man die Osmiumsäure durch Glycerin verdrängt. Hierdurch wird eine Schrumpfung bewirkt und statt der Tropfen finden wir wieder die hellen Linien.
4) Die Zwischensubstanz in den Einkerbungen setzt dem nach Wassereinwirkung ausfiessenden Marke keinen Widerstand entgegen.

Auch ich muss nach dem, was ich gesehen habe, der Ansicht von Koch, dass wir hier in den Einkerbungen eine Kittsubstanz oder neutraler gesagt eine Zwischensubstanz vor uns haben, beipflichten, und möchte mich durchaus gegen die Annahme einer Membran erklären. Kuhnt (3), der eine „Zwischenmarkscheide“ beschrieb, sagt von derselben, dass sie einerseits mit der Axencylinderscheide fest verbunden sei, andererseits aber die Conturen der Schwann'schen Scheide und des äusseren Randes der Zwischenmarkscheide nicht selten bis zu 0,007 mm von einander abständen. Auch er hat danach also einen festen Zusammenhang seiner Membran mit der Schwann'schen Scheide nicht behauptet. Die Bilder, welche Boveri erhalten hat, sind gemäss der ange- wandten Präparationsmethode durchaus nicht dafür beweisend, dass eine Membran und nicht eine Schicht von Zwischensubstanz vorhanden ist.

Man bekommt übrigens auch nach anderen Behandlungs- methoden Bilder zu Gesicht, welche diese Zwischensubstanztrichtern mehr oder weniger deutlich erkennen lassen. So stellt Fig. 7 eine Faser aus dem Nerv. ischiad. des Hundes dar, der in gespanntem
Zustände in Müller'scher Flüssigkeit gehärtet und dann mit der Weigert'schen Hämatoxylin-Blutlaugensalz-Methode gefärbt, aber in der Differenzirungsflüssigkeit wieder fast ganz entfärbt worden war. Man sieht deutlich zwischen Axencylinder und Schwann'scher Scheide trichterförmige Figuren von mehr oder weniger grosser Vollständigkeit, welche weder an den Axencylinder, noch an die Schwann'sche Scheide sich festsetzen, und den ersteren eventuell in Form eines Ringes umgeben. Diese Figuren bestehen aus einer mehr körnigen, jedenfalls unregelmässig dicken Masse, welche sicherlich die Zwischensubstanz, kaum aber als Membran gedeutet werden kann.

Bei den centralen Fasern endlich, denen eine Schwann'sche Scheide fehlt, sind ebenso wenig Membranen nachzuweisen, die ja hier unschwer für sich darstellbar sein müssten, da das Mark der Fasern leicht durch das Zerzupfen zerstört wird. Auch würden diese Membranen hier jedes Haltes an der Schwann'schen Scheide entbehren. Dagegen sieht man hier bei Schnittpäparaten nach Härting in Müller'scher Flüssigkeit oft sehr klare Bilder, welche für eine Zwischensubstanz sprechen. Fig. 10 zeigt eine Faser aus einem Längsschnitte (Frontalschnitt des Vorderstrangs) vom Rückenmark des Rindes. Man sieht sehr klar wie die im ganzen sehr helle Marksubstanz durchzogen wird von stark lichtbrechenden, ziemlich geraden Linien, welche schräg verlaufend nach dem Axencylinder zu convergiren und unter Umständen quere Verbindungen ihrer oberen und unteren Enden erkennen lassen, durch welche zarte Trichter entstehen. Aussen endigen diese Linien frei, denn es existirt hier keine die Nervenfaser umgebende Scheide, innen endigen sie vom Axencylinder durch einen Raum getrennt, wendif gleich sie mitunter eine kurze Streeke nahe denselben hinziehen. Ich glaube kaum, dass man diese Bildungen für etwas anderes halten kann als die Zwischensubstanztänder der Lanthemann'schen Einkerbungen. Dieselben stellen öfter keine ganz zusammenhängenden Linien dar, aber das ist ja bei einer geronnenen Zwischensubstanz auch ganz verständlich. Das Mark sieht an diesen Präparaten ausserordentlich hell aus, und zeigt vielfach auch eine Streifung. Es ist diese wohl der Ausdruck einer anfänglichen Aufblätterung. Färbt man solche Fasern mit Pikrinsäure, so sieht man überall das Mark deutlich gelb färben, und bekommt die deutlichen Conturen des Markmantels, in welchem
Dr. P. Schiefferdecker:

die Conturen der Zwischentrichter gewissermassen das Skelett darstellen.

Macht man Querschnitte solcher Fasern, so sieht man in dem Markmantel kreisförmige Figuren, welche in ihrem starken Lichtbrechungsvermögen den schräg verlaufenden Linien der Längsschnitte entsprechen. Fig. 11 zeigt solche Querschnitte. Die Kreise sind nicht immer vollständig und liegen in verschiedener Entfernung von dem Axencylinder. Es ist manchmal nur ein Kreis zu sehen, manchmal findet man zwei auch drei. Diese Linien scheinen mir den Trichtern zu entsprechen. Auch R a n v i e r (6) deutet die concentrischen Linien, welche er an den Querschnitten von Nerven, die mit Osmium behandelt waren, auftreten sah als den Ausdruck der L a n t e r m a n n’schen Einkerbungen. Nun möchte ich aber doch noch hervorheben, dass man, ebenso wie auf dem Längsschnitt sich feinere Linien erkennen liesse, welche ungefähr parallel gerichtet waren den Conturen der Zwischentrichter, so auf dem Querschnitte feinere concentrische Linien erkennt, welche dem Mark selbst angehören müssen und wohl wiederum auf dessen Aufblätterung zurückzuführen sind. Das Bild des Querschnittes wie des Längsschnittes setzt sich also aus beiden zusammen.

Gegen die Existenz derselben spricht endlich auch eine leicht zu machende Beobachtung, die K o c h (2) und andere anführen und auch L a v d o w s k y (8, p. 881) hervorhebt. Der letztere sagt: „Durchmustert man scharf abgeschnittene Enden der Nervenfasern (solche Fasern sind immer vorhanden, wenn das Zerzupfen mit guten Nadeln ausgeführt wird) und beobachtet sie einige Zeit lang,
so beobachtet man wie die Myelinmasse aus einigen von denselben in den bekannten Formen herausfliesst, während dagegen aus anderen das Austreten derselben in Form eines zusammenhängenden Markstranges vor sich geht, an welchem nun alle die so gut von Lantermann, Kuhnt, Ranvier u. A. beschriebenen Einkerbungen (ich nenne sie mit Ranvier Incisuren) ganz unversehrt erhalten, sogar in diesem Falle deutlicher ausgeprägt sind, als wenn die Myelinmasse in der Schwann'schen Scheide liegt.

Ich habe die Myelinmasse allerdings niemals, wie das hier Lavdowsky beschreibt, unverändert ausserhalb der Schwann'schen Scheide liegen gesehen, aber ich habe beobachtet, wie von einer Zwischenscheibe aus, in Folge von Wasserzusatz bei frisch zerzupften Nervenfasern, sich das ganze Stück der zwischen jener Zwischenscheibe und dem offenen Ende der Faser liegenden Markmasse in Bewegung setzte und sich ziemlich rasch in gleichmässiger Bewegung in der Schwann'schen Scheide nach aussen schob. Bei diesem Hingleiten in der Schwann'schen Scheide blieben die Lantermann'schen Einkerbungen und die Segmente der sehr gut conservirten Faser durchaus unverändert (mitunter wurden die Einkerbungen etwas breiter und deutlicher, und ebenso auch die doppelte Contur des Marks im ganzen), und es war nicht der leiseste Zug, die leiseste Zerrung an den Einkerbungsstellen zu sehen. Ausserhalb der Schwann'schen Scheide bildeten sich dann die bekannten Myelinformen. In anderen Fällen beobachtet man bei Wasserzusatz zu frisch zerzupften Fasern, dass die verdünnte Flüssigkeit gleichmässig längs der Faser durch die Schwann'sche Scheide tritt, und dass dann zuerst die äussersten Theile der Markscheide der bekannten, von Pertik (9) studirten Aufblätterung unterliegen; die inneren Theile bleiben dabei zunächst ganz gut erhalten und zeigen die Einkerbungen ganz klar. Dann beginnt ein Strömen und die aufgeblätterten und die noch gut erhaltenen Theile fliessen hinaus. Die Zwischenscheibe stellt
angenscheinlich eine festere Unterbrechung dar als die Zwischentrichter, denn wieder bei solchen mit Wasser behandelten Fasern kann man deutlich beobachten, wie zunächst die Markmasse bis zu der Zwischenscheibe sich entleert, dann eine Pause eintritt, endlich wird ziemlich plötzlich die Zwischenscheibe durchbrochen, resp. ihr Widerstand überwunden, und die Markmasse der nächsten Abtheilung strömt nun durch den Schlauch der Schwan n’schen Scheide hinaus. Es kann übrigens auch sehr wohl sein, und das ist noch wahrscheinlicher, dass die an dieser Stelle befindliche Verengerung des Schlauches der Schwan n’schen Scheide das Haupthinderniss bildet. Denn da diese Verengerung es verhindert, dass die Markscheide als Ganzes sich verschieben kann, so muss das Wasser erst eine weitergehende Zerstörung derselben herbeiführen, so dass dann ein tropfenweises Vorbeitreten, ein Vorbeitreten der aufgelösten Scheide eintreten wird. Und der Moment, da dieses zuerst eintritt, wird, da er mit der Zerstörung der Zwischenscheibe nothwendigerweise verbunden ist, den Eindruck machen als ob diese einen besonderen Widerstand geboten habe, der nun plötzlich überwunden wird, während doch im Grunde nur die jetzt gerade bis zu einem gewissen Grade gediehene Verflüssigung des Markes, das Vorfließen des ersten Tropfens bedingt und bewirkt.

Beiträge zur Kenntniss des Baus der Nervenfasern. 417
dieser Nerven sowohl Mark wie Unterbrechungen sich deutlich
markierten. Ebenso wenig war bei centralen und peripheren Fasern
des Nemueges, welche bekanntlich alle marklos sind, nach Hartung
in Müller'scher Flüssigkeit, irgend etwas von derartigen Dingen
einblöcken. Von den Nerven dieses Tierees machen auch Axel
Key und Gustav Retzius (5) in ihrem umfassenden Werke derselben Angaben. Auch sie bemerken dabei (5 II, p. 95): „Diese
die Schnürringe und Einkerbungen) scheinen hier also vollständig
tzu fehlen, ebenso wie an den myelinfreien Fasern bei anderen
Thieren, was gerade von Interesse ist, da es hierdurch sehr wahr-
scheinlich wird, dass dieselben nur im Zusammenhange mit der
Myelinscheidenbildung auftreten.“

Auch wenn ich die Milznerven mit der Weigert'schen Hä-
matoxylin-Blutlauge-Natrium-Methode färbte, war niemals durch Blau-
färbung eine Spur von Mark nachweisen, was ich hier Boveri
gegenüber besonders hervorheben möchte.

Wie ich schon im Anfange bemerkte, kann ich nach meinen
Resultaten natürlich die neue von Boveri (1, p. 482) aufgestellte
Einteilung der Nerven in:
a) „segmentirte“: periphere markhaltige Fasern, und feinste
markhaltige Fasern des Sympathicus,
b) „unsegmentirte“: Remak'sche Fasern, Fasern der nervösen
Centralorgane, des Opticus, des Olfactorius,
nicht anerkennen, sondern bin geneigt die alte Eintheilung in:
„markhaltige“ Fasern, die nach dem bisher Mitgetheilten in
Bezug auf die Configuration des Markes nunmehr alle überein-
stimmen würden, und
„marklose“ Fasern, über die ich, in ihrer Gesammtheit wenig-
stens, zunächst nicht aussagen kann, beizubehalten.

Was die physiologische Bedeutung der Unterbrechungen des
Markes anlangt, so ist es ja schon nach der eben geschilderten
Übereinstimmung in der anatomischen Beschaffenheit wahrschein-
lich, dass an den Stellen der Zwischentrichter gerade wie an denen
der Zwischenscheiben Stoffe von aussen her leichter zu dem Axen-
cyliner hin durchdringen werden als an den mit Mark bekleideten
Stellen. Da die Unterbrechungen des Markes an den Zwischen-
scheiben grösser sind und die Entfernung von aussen bis zum
Axencylinder geringer ist als an den Zwischentrichtern, so wird
auch bei jenen leichter ein solches Durchdringen eintreten als bei
Dr. P. Schiefferdecker:

diesen. Wie bereits von mehreren Beobachtern constatirt worden ist, entspricht diese Annahme der Wirklichkeit, insofern wenigstens gelöste färbbende Stoffe, wie Silber, Anilinfarben bei zerzupften Nerven ausserhalb des Körpers, an den Unterbrechungsstellen bis zum Axencylinder vordringen und zwar an den Zwischenscheiben leichter als an den Zwischenröhren. Sehr auffallend ist es, dass an den Stellen der Einschnürungen so sehr viel öfter als an anderen Stellen der Fasern Veränderungen des Marks zu beobachten sind auch bei einer Behandlungsweise der Fasern, welche sonst eine durchaus günstige für die Erhaltung der normalen Beschaffenheit ist. An frisch in der Körperflüssigkeit isolirten peripheren Fasern, deren Markscheide sonst ganz glatt und gut erhalten ist, sieht man an den beiden Seiten der Einschnürung oft Myelinformen. Dieselbe Erscheinung findet sich bei Nerven, welche als ganze Stämme auf Kork ausgespannt und dann in Osmium erhärtet waren. Es ist mir indessen wahrscheinlich, dass der Grund für diese Veränderungen nicht darin zu suchen ist, dass an diesen Stellen eine schnellere Einwirkung der umgebenden Flüssigkeit (z. B. stärkere Concentration in Folge von Verdunstung bei der Körperflüssigkeit) oder des Reagens stattfindet, denn dann müsste bei den frischen Fasern jene Markveränderung von der Zwischenscheibe aus doch allmählich Fortschritte machen, was nicht zu geschehen pflegt, und es wäre merkwürdig, dass die Osmiumsäure, die ja an allen anderen Stellen der Faser das Mark gerade im normalen Zustande fixirt, hier anders wirkte, sondern ich möchte annehmen, dass die Zerrung bei dem Zerzupfen des Nerven, die Zerrung bei dem Aufspannen des Nervenstamnes die Ursache ist. Dass die Zerrung gerade hier an den Einschnürungsstellen anders wirken muss als an den übrigen Stellen der Faser, ist leicht einzusehen, wenn man bedenkt, dass die einen zusammenhängenden Schlauch darstellende Schwannsche Scheide an dieser Stelle allein bei der Zerrung einen Druck auf das Mark ausüben kann. An den Stellen, an welchen die Schwannsche Scheide als ein gleichmässig dicker Schlauch hinzieht, wird bei der Zerrung dieser Schlauch vielleicht ein wenig verlängert werden, diese Veränderung that dem Mark nichts, denn die Scheide geht an diesem nur vorüber, ohne mit ihm zusammenzuhängen, vielleicht wird der Schlauch bei dieser Dehnung auch ein klein wenig enger, diese Verengerung wird dann aber durch die Verlängerung wieder ausgeglichen, an den Einschnürungsstellen
aber bildet die Schwan'sche Scheide einen Winkel, indem sie von dem engen Theil erst nach aussen und dann parallel der Axe der Faser umbiegt, und bei einer Zerrung wird dieser mitunter einem Rechten sich nähernde Winkel mehr ausgeglichen, stumpfer gemacht, und so wird ein directer Druck auf das Mark ausgeübt werden. In der That finden sich die Hauptveränderungen des Marks immer an der Stelle des Winkels und ich habe bei den Fasern jugendlicher Thiere, deren Einschnürungen noch nicht so ausgeprägt waren, derartige Veränderungen weit schwächer oder gar nicht bemerkt, am stärksten sie aber gesehen bei dicken Fasern mit stark ausgesprochener Einschnürung.

Bei ziemlich rohem Zerzupfen frischer Fasern kann unter Umständen das Mark an den Stellen der Einschnürungen sich auf beiden Seiten weit zurückziehen, die Einschnürungsstelle kann als eine ganz allmählich auftretende Verdünnung der Faser erscheinen, und der Axencylinder kann so auf eine längere Strecke hin frei, allein von der Schwan'schen Scheide und einer dünnen Substanzschicht an der Innenseite derselben bekleidet erscheinen. Es würde in diesem Falle also die Schwan'sche Scheide so stark gezerrt worden sein, dass sich der rechte Winkel der Einschnürung in einen stumpfen verwandelt hätte.

Voraussichtlich würden die ernährenden Flüssigkeiten gegenüber der im Körper befindlichen Faser sich ähnlich verhalten wie die färbenden etc. Flüssigkeiten gegenüber der aus dem Körper entfernten und es würde an beiden Stellen der Markunterbrechung ein Austausch von Flüssigkeiten stattfinden. Bei den marklosen Fasern, welche der so gut abschliessenden Scheide entbehren, würden die Ernährungsverhältnisse wahrscheinlich im ganzen Verlauf der Faser so günstige sein oder noch günstigere wie an den Markunterbrechungen der anderen.

Ich möchte hier am Ende der Betrachtungen über das Mark noch einer Färbemethode gedenken, die auf das Mark speziell wirkt, ich meine die Weigert'sche Hämatoxylin-Blutlaugensalz-Methode. Die Bilder, welche diese Methode an guten Präparaten des Centralnervensystems gibt, sind ja bekannt, und werden von keiner anderen Methode an Schönheit und Eleganz erreicht. Es fragt sich nun, was färbt sich hierbei und ist die Art der Färbung eine Bürgschaft für die Genauigkeit der Bilder. Die Weigert'sche Färbung war eigentlich die Ursache, warum ich diese ganze Unter-
beim Längsschnitt wie beim Querschnitt, als wenn die blauen Flecken mit den L a n t e r m a n n’schen Einkerbungen, den Zwischen-
trichtern, etwas zu thun hätten, denn man sieht häufig in regel-
mässigen Zwischenräumen solche blauen trichterförmige Figuren, die
jedoch immer nur ein Stück der Trichter einnehmen. Ich meine
indessen damit nicht, dass die Zwischentrichter sich etwa specifisch
färbten, es sind nur die gefärbten Stellen etwa in ihrer Form und
Gegend. Es finden sich aber auch andere Formen, und man kann
leicht nachweisen, dass die ganze Art der Färbung abhängt von
der Art des chromsauren Salzes, das zur Härtung benutzt worden
ist, und von den in Folge dessen auftretenden Myelinformen. Mit
Mü l l e r’scher Flüssigkeit behandelte Fasern geben die eben be-
schriebenen Bilder, indessen kommen hier ausser den mehr trichter-
förmigen Figuren auch sehr viele unregelmässige klumpige Formen
vor, mit Chromsäure (1/2−1/6 pCt.) behandelte geben ganz andere
Bilder, auf die ich weiterhin noch einzugehen haben werde, das
Mark bleibt hier ganz oder fast ganz ungefärbt und nur eine dünne
den Axeneylinder umgebende Hülle färbt sich intensiv blau, legt
man Nervenfasern in Chromsäure (1/2 pCt.), zu der man soviel
Kochsalz geschüttet hat als sich löst, wobei man unter Chlorent-
wicklung eine Natronverbindung der Chromsäure erhält, so bieten
die Nervenfasern nach der Weigert’schen Färbung wieder ein
ganz anderes Bild dar, weder der Axeneylinder noch Trichter-
oder Klumpen-Figuren treten vor, und die Nervenfaser erscheint
intensiv dunkel und sehr gleichmässig grob punktiert. Es scheint
mir hieraus mit Bestimmtheit hervorzugehen, dass sich die Art der
Färbung ganz danach richtet, in welcher Weise das Mark durch
die Einwirkung des härternden Reagens verändert ist, d. h. welch
eine Art der Aufblätterung, Netzbildung etc. vor sich gegangen
ist, und dann bleibt der Farbstoff wahrscheinlich an allen beson-
ders geschützten Stellen haften, also wahrscheinlich in den Spalten
zwischen den Blättern des Marks etc., so kommen dann auch jene
trichterförmigen Bildungen zu Stande, da, wie ich oben schon er-
wähnt habe, bei Härtung in Mü l l e r’scher Flüssigkeit die Zwischen-
trichter mitunter stark vortreten und das Mark sich diesen einiger-
massen parallel zu spalten scheint. Es ist ja möglich, dass auch
bestimmte bei dieser Zerklüftung entstehende Substanzen, geronnene
Massen oder andere, noch ausserdem besonders stark durch den
Farbstoff gefärbt werden und dann später langsamer entfärbt wer-
den als andere, das ist gleichgültig, denn jedenfalls sind dieses keine für die Faser als solche irgendwie wichtige und charakteristische Theile, auch bleiben dieselben im besten Falle nicht dauernd gefärbt, sondern nur etwas länger als andere. Ist dies nun aber der Fall, dass gar keine für die Faser wichtigen charakteristischen Formelemente gefärbt werden, und dass schliesslich alle wieder entfärbert werden, und zwar ganz unregelmässig, zufällig, je nachdem die Differenzirungslüssigkeit einwirken kann, dann folgt daraus, dass die Färbungsmethode trotz ihrer Eleganz eine unsichere ist, und dass namentlich für pathologische Untersuchungen die grösste Vorsicht bei ihrer Benutzung geboten erscheint. Es ist ja zweifellos schon ein grosser Nachtheil der Methode, dass sie den wichtigsten, ja den einzig wichtigen Bestandtheil der Nervenfaser, den Axencylinder, überhaupt ungefärbt lässt, und man aus diesem Grunde schon die Bilder, welche sie liefert, niemals als ganz vollständige ansehen kann, aber meine jetzigen Wahrnehmungen haben mich noch mehr zur Vorsicht bei der Benutzung derselben gemahnt. Ich bin ja weit entfernt die Schönheit der Bilder im ganzen oder den Nutzen der Methode für Uebersichtsbilder zu leugnen, aber sowie es sich um genaueres und um pathologische Veränderungen, würde ich den Bildern durchaus misstrauen.

2) Die Schwann'sche Scheide.

Bei der Schwann'schen Scheide handelt es sich um drei Fragen:

1) Kommt die Schwann'sche Scheide sowohl den centralen wie den peripheren Fasern zu oder nur den letzteren?

2) Ist die Schwann'sche Scheide an den Lantermann'schen Einkerbungen oder an den Schnürringen unterbrochen oder bildet sie einen zusammenhängenden Schlauch?

3) Gehören die Kerne, welche der Schwann'schen Scheide innen anliegend sich in das Mark hineinbuchen, der Scheide oder dem Mark an?

ad 1. Als ich den Bau der centralen Faser dem der peripheren so völlig gleich gefunden hatte, lag es nahe auch nach einer Schwann'schen Scheide bei den centralen Fasern zu suchen, und ich habe dieses auch mit Zuhilfenahme verschiedener Me-
Beiträge zur Kenntniss des Baus der Nervenfasern. 453

thoden gethan, bin aber zu dem Schlusse gekommen, dass eine solche Scheide den centralen Fasern durchaus fehlt, und erst, wie bekannt, mit dem Austritt aus dem Rückenmark auftritt. Mitunter sieht man Bilder, namentlich an den Stellen der Schnürringe, welche dafür zu sprechen scheinen, dass eine Scheide vorhanden ist, man sieht, wie ich es auf Fig. 2 gezeichnet habe, an Silber-Chloroformpräparaten feine Linien an die Zwischenscheibe herantreten mit einem leichten Knick an der Stelle dieser, oder man glaubt bei Silber-Glycerinpräparaten deutlich eine feine Contur an den Marke hin nach der Einschnürung verfolgen zu können, niemals aber habe ich bei centralen Fasern wirklich eine Haut abgehoben von der Markscheide oder eine solche gar isoliren können. Ich bin also zu demselben Schlusse gekommen, wie alle bisherigen Forscher und nehme an, dass die centralen Fasern der Schwan'schen Scheide entbehren.

ad 2. In Bezug darauf, ob die Schwan'sche Scheide an den Schnürringen unterbrochen sei, sind die Forscher verschiedener Ansicht, dagegen wird zugegeben, dass sie an den Lantermann'schen Einkerbungen ohne Unterbrechung vortäuschen. Von den Forschern, welche eine Unterbrechung der Schwan'schen Scheide an der Stelle der Schnürringe konstatiren, geht am weitesten Bo ver i (1), der annimmt, dass die Schwan'sche Scheide an dieser Stelle sich völlig umbiegt, und auf der Oberfläche des Axencylinders als innere Begrenzung der Markscheide weiter zieht. Ich war zuerst ebenfalls geneigt, eine Unterbrechung der Scheide an den Schnürringen anzunehmen, bin aber zu der Ueberzeugung gelangt, dass eine solche nicht nachzuweisen ist, dass also die Schwan'sche Scheide einen continuirlichen Schlauch darstellt, der entweder ganz gleichmässig ist, oder, wie oben schon hervorgehoben wurde, je nach der Dicke der Markscheide seichtere oder tiefere Einschnürungsstellen zeigt. Um sich von diesem Verhalten der Schwan'schen Scheide guten Bilder zu verschaffen, ist das von K uh n t (5) angegebene Verfahren sehr empfehlenswerth: man legt mit Osmium oder mit Silber-Osmium behandelte Fasern in verdünntes Ammoniak, etwa 20—30 Tropfen auf 10 ccm Wasser, lässt sie hierin längere Zeit, einen Tag oder mehrere liegen, und zerzupft dann in Wasser oder Glycerin. Durch das Ammoniak wird die Markscheide und der Axencylinder zerstört, man sieht nur noch feine Körnchen in einem leeren hellen Schlauche liegen, und
kann so sehr schön die Form und Beschaffenheit dieses hellen Schlauches, eben der Schwan'schen Scheide, studiren. Fig. 8 zeigt eine solche Faser. An dem einen Ende ist die Markscheide noch ziemlich vollständig erhalten, an dem anderen ist der Schlauch fast leer. Dieser letztere Theil der Faser war der angesehnittene, der andere Theil setzte sich weiter in die Faser fort. Aussen liegt die Fibrillenscheide, dann folgt die Schwan'sche Scheide. Die R a n v i e r'sche Einschnürung ist noch völlig frei von Inhalt. Mark, Zwischensubstanz und Axencylinder sind zerstört. Man sieht so sehr deutlich, wie die Schwan'sche Scheide sich ziemlich plötzlich verengert, eine kurze Strecke weit so verengt mit fast parallelen Wänden weiter verläuft und dann wieder ganz in derselben Weise sich erweitert. An den beiden Stellen, an denen der verengte Theil des Schlauches an den weiteren anstösst, sind auch die Oberflächenconturen eingezeichnet, die deutlich eine gleichmässige ringförmige Einbiegung erkennen lassen. Einige feine Faltungslinien laufen über die Oberfläche des Schlauches nach dieser Umbiegungsstelle hin. Die Dicke der Schwan'schen Scheide ist in dem ganzen Verlaufe dieselbe, eine Verdickung derselben an der Schnürstelle, wie sie mehrfach angegeben wird, existirt nicht. An jungen Nervenfasern, bei denen eine Einschnürung noch nicht oder fast nicht entwickelt ist, kann man leicht an Stellen, an denen sich die geschrumpfte Markscheide von der Schnürstelle beiderseits zurückgezogen hat, auch ohne Anwendung von Alkalien dasselbe constatiren. Die beste Methode scheint mir indessen die zu sein, die Nervenfasern in Ammonium chromic. oder bichromicum 1:1000—5000 für einen oder mehrere Tage zu legen. Man erhält durch Auflösung des Markes in kleine Körnchen an einer grossen Anzahl von Fasern die, Schwan'sche Scheide und den in ihr nun freiliegenden Axencylinder isolirt und kann so beliebig das Verhalten beider studiren, auch hier zeigte sich nun immer, dass die Schwan'sche Scheide ohne jede Verdickung als ein zusammenhängender Schlauch über die Schnürstelle hinzieht.

Ganz ebenso beschaffen ist die Schwan'sche Scheide an den peripheren Fasern des Neunauges. Da bei diesen das Mark fehlt, so liegt die Scheide unmittelbar und zwar sehr dicht dem platten, bandartigen Axencylinder an. An Stellen, an denen dieser durch die Zerrung bei der Zerzupfung etwas aus der Lage gekommen ist, oder durch die Einwirkung des Härtungsmittels, in
Beiträge zur Kenntniss des Baus der Nervenfasern. 455

diesem Falle Müllersche Flüssigkeit, seine Form etwas verändert und sich von der Scheide zurückgezogen hat, erkennt man deutlich die Scheide für sich. Da bei diesen Fasern, wie schon erwähnt, die Einschnürungen fehlen, so bildet die Scheide einen durchaus gleichmäßigen der Grösse des Axencylinders angepassten Schlund ohne bemerkbare Unterbrechungen. Fig. 9 stellt ein Stück einer solchen Faser aus dem Trigeminus des Neunagiges dar. Man sieht leicht zu äusserst die Fibrillenscheide mit ihren Kernen, dann die zarte, aber scharf begrenzte Schwann'sche Scheide, endlich den mächtigen Axencylinder, der sich an mehreren Stellen von der Scheide entfernt hat.

ad 3. Es ist seit langer Zeit bekannt, dass der Innenseite der Schwann'schen Scheide Kerne anliegen, die sich nach ihrer Dicke mehr oder weniger tief in das Mark hinein vorbuckeln. Es sind im Allgemeinen lange schmale Kerne von geringer Dicke, die indess eben doch hinreicht, um eine bemerkbare Aushöhlung im Mark hervorzubringen. Diese Kerne liegen der Schwann'schen Scheide so fest an, dass man die Contur derselben nicht an ihnen vorbeigehen sieht und sind öfters von mehr oder weniger Protoplasm umgeben, besonders an jungen Fasern. Sie kommen zwischen zwei Einkerbungen sehr häufig nur in der Einzahl, mitunter aber auch in verschieden grosser Mehrzahl vor, und sind in Bezug hierauf wie in Bezug auf ihr ganzes Verhalten Gegenstand eingehenden Studiums einer Anzahl von Forschern, so namentlich von Ranvier (6), Key und Retzius, Kuhnt und anderen gewesen. Diese Kerne gewannen ihre Bedeutung und ihr Interesse durch die Hypothese von Ranvier, dass jedes Stück der Markscheide und Schwann'schen Scheide, das zwischen zwei Einschnürungen gelegen war, einer Zelle entspräche, welche röhrenförmig den Axencylinder umgäbe. Boveri führt diese Ranvier'sche Hypothese noch weiter, indem er die von einer Membran umgebene Markzelle sich um den Axencylinder herumlegen lässt, allerdings zu einer Zeit, wo sie noch membranlos ist, so dass eine Naht vermieden gedacht werden kann. Dass die Schwann'sche Scheide nicht eine solche Zellmembran sein konnte, bewies schon der Umstand, dass sie an den Ranvier'schen Einschnürungen nicht unterbrochen war. Es konnte nun indessen ja immerhin das Stück Markscheide plus Kern einer Zelle entsprechen. War das der Fall, so mussten dieselben Kerne, welche die periphere Faser
so deutlich zeigte, auch an der centralen zu finden sein. Nun habe ich daraufhin genauer nach ihnen im Rückenmark gesucht, habe sie dort aber nicht auffinden können, auch ist mir nicht bekannt, dass sie hier von anderen gesehen worden sind. Fehlen die Kerne den centralen Fasern, dann können dieselben aber nicht der Markscheide, sondern müssen der Schwan'schen Scheide angehören, an der sie ja auch so dicht anliegen. Dann sind sie also nichts weiter als die Kerne von bindegewebigen Zellen, aus denen diese später structurlos erscheinende Membran sich aufbaut, und verlieren jeden Werth für die wichtigeren Theile der Nervenfaser. Key und Retzius fassen sie übrigens in ihrem grossen Werke auch durchaus als Kerne der Schwan'schen Scheide auf. Dass dieselben nun in der That nichts weiter sind, das zeigen sehr beweisend wieder die Fasern des Neunanges. An den peripheren Fasern dieses Thieres sieht man sehr lange, in der That ganz überraschend lange schmale Kerne in ziemlich grosser Menge der Innenseite der Schwan'schen Scheide anliegen, also zwischen Scheide und Axencylinder genau entsprechend den Kernen der höheren Thiere. Diese auch von Key und Retzius genau beschriebenen und abgebildeten Kerne unterscheiden sich durch ihre Form so sehr von allen übrigen dem die Fasern umgebenden Gewebe angehörenden Kernen, dass es eine Kleinigkeit ist, sie überall, wo sie vorkommen, zu sehen und heraus zu finden. Wenn nun das Neunauge auch keine Markscheide in seinen Nervenfasern besitzt, so konnten doch die Zellen, aus denen diese bei den höheren Thieren entsteht, vorhanden sein, die Fasern konnten gewissermaassen eine protoplasmatische Markscheide besitzen. War das der Fall, dann mussten die centralen Fasern aber auch von diesen Kernen begleitet sein, obgleich ihnen die Schwan'sche Scheide fehlte, das ist nun aber nicht so. Im Rückenmark zeigt sich von diesen so charakteristischen Kernen nicht die Spur. Daraus folgt dann mit Nothwendigkeit, dass dieselben der Schwan'schen Scheide angehören. Und daraus wiederum, dass auch die bei den höheren Thieren vorkommenden homologen Kerne in der Schwan'schen Scheide sich befinden. Es steht dieser Befund endlich in völliger Uebereinstimmung mit dem vorher erwähnten, dass bei Thieren mit Markscheide die Kerne nicht im Rückenmarke nachzuweisen waren. Andere Kerne als diese werden von den Forschern an der Nervenfaser nicht erwähnt, und auch ich

Dafür, dass jene von Kuhnt als Markkerne bezeichneten Gebilde in der That zu der Schwann'schen Scheide gehören, spricht auch der Umstand, den Key und Retzius besonders hervorheben, dass diese Kerne nämlich eigentlich mehr in der Scheide als an der Scheide liegen, da man weder aussen noch innen die Contur der Scheide an ihnen vorüber gehen sieht, und dass man sie mit der Scheide zusammen isoliren kann, wie die von Nervenfasern des Hechts gegebenen Abbildungen zeigen, und wie man es an Fasern anderer Thiere nach der oben angegebenen Behandlung mit Ammon. bichrom. oder chrom. jederzeit auch sehen kann.

Hervorheben möchte ich endlich noch, dass jenes eigenthümliche charakteristische Aussehen der Kerne beim Neunauge nicht so vereinzelt dasteht. Hellt man die Markscheiden an den Nervenfasern des Frosches auf, indem man sie längere Zeit mit Chloroform behandelt, und färbt man dann mit Dahlia, so treten an den hellen Fasern die Kerne, sowohl die der Schwann'schen Scheide, wie die der Fibrillenscheiden sehr scharf hervor. Hier fällt dann, wenn man die Neunaugefasern schon kennt und in Folge dessen die Aufmerksamkeit auf diesen Punkt richtet, leicht ins Auge, dass auch beim Frosch die Kerne der Schwann'schen Scheide eine wesentlich andere Gestalt besitzen als die der Fibrillenscheiden, ebenso wie beim Neunauge viel länger und schmäler sind als die letzteren und dass man daher auch hier beide Kernarten leicht auseinander halten kann. Ich habe diesen Punkt noch nicht weiter verfolgt, vielleicht geht dieser charakteristische Unterschied in der Form aber weiter durch in der Thierreihe.
3) Der Axencylinder.

Bei dem Axencylinder handelt es sich um folgende Fragen:

1) Welche Gestalt hat der Axencylinder als Ganzes betrachtet und wie verhält sich diese Gestalt an den Stellen der Lantermann'schen Einkerbungen und der Ranvier'schen Schnürringe?

2) Welches ist die nähere Beschaffenheit des Axencylinders? Besteht derselbe aus Fibrillen oder ist er ein solider Strang?

3) Besitzt der Axencylinder eine Scheide, die „Axencylinderscheide“?

ad 1. Es ist eine sehr merkwürdige Thatsache, dass es ausserordentlich schwer ist über die Gestalt des Axencylinders in's Klare zu kommen. Und in der That giebt es auch in der Literatur eine Menge verschiedener Angaben, nach denen die Form schwankt von der eines platten Bandes bis zu einem Cylinder oder einem Cylinder mit vorspringenden Kanten, der also auf dem Querschnitte sternförmig erscheinen würde. Giebt es nun vielleicht in der That so verschiedene Formen des Axencylinders oder ist derselbe ein Gebilde, welches in seiner Form nur leicht veränderlich ist und in Folge dessen so verschiedene Formen zeigt je nach der Einwirkung des Reagens? Nach meinen Erfahrungen möchte ich das Letztere für das Richtige halten. Zunächst liegt es nahe, die Form des Axencylinders an Isolationspräparaten zu studiren, an denen man denselben auf grössere Strecken von der Markscheide isolirt betrachten kann. Ich habe zu diesem Zwecke verschiedene Concentrationen der Osmiumsäure angewendet, am leichtesten erlauben die stärker verdünnten Lösungen ($\frac{1}{10}-\frac{1}{100}$ pCt.) die Isolirung, ferner meine Methylmistur, welche ich für die Isolirung der Retinacelemente mit so gutem Erfolge angewandt hatte (Wasser 20 Vol. Th., Glycerin 10 Vol. Th., Methylalcohol 1 Vol. Th.), dann die von Hans Schultze empfohlene 0,1 procentige Lösung von Ammon. bichrom., Lösungen desselben Salzes von 1:2000—5000, Ammon. chrom. 1:1000—5000, Müller'sche Flüssigkeit, 0,75 procentige Kochsalzlösung, Chloroform, 1 $\frac{1}{4}$ procentige Silberlösung, und in allen diesen Flüssigkeiten zeigten sich die oft wunderschön und auf lange Strecken isolirten Axencylinder in der grössten Mannigfaltigkeit der Formen, sehr häufig als platte Bänder. Je dicker die Axencylinder dabei waren, um so deutlicher zeigten sie ferner leichte Ungleichheiten in
Beiträge zur Kenntniss des Baus der Nervenfasern. 459
der Art, dass eine Faser mitunter ziemlich plötzlich breiter und dünner wurde, oder dass auf der Fläche noch ein längerer oder kürzerer leicht unregelmässiger Aufsatz aufsass, wodurch beim Querschnitt eine un-
regelmässige Sternform entstanden sein würde. Im Ganzen waren die
Conturen der Axencylinder indessen sehr glatt, die Breite derselben
eine sehr gleichmässige. Am besten isolirten sie sich natürlich bei den centralen Fasern. Sah man die bandförmigen Fasern ge-
nauer an, so zeigten namentlich die breiteren häufig sehr deutlich
die Form einer Rinne. Die marklosen Fasern des Neunages ver-
hielten sich nach Behandlung mit Müller'scher Flüssigkeit genau
so. Namentlich wieder an den dicksten, an den gewaltigen Axen-
cyldern der Müller'sehen Fasern, oder auch an den peripheren Trigeminusfasern sah man sehr deutliche Bandformen und Hohl-
rinnen. An dem Querschnitte eines Rückenmarks, wo man ja die
beste Gelegenheit, dicke und dünne Fasern nebeneinander zu
sehen und die verschiedenen Formen zu vergleichen, findet man
gleichfalls sehr verschiedene Bilder in den einzelnen Faserquer-
schnitten. Sehr charakteristische Bilder lieferte hier das Rücken-
mark des Neunages. Dasselbe zeigte nach Chomsäurehärtung
Bilder, wie sie Fig. 13 darstellt. Die Lücken für die Fasern, welche in der Stützsubstanz auftreten, sind glattrandig, kreisförmig
oder oval. Die Axencylinder füllen diese Lücken zum grösssten
Theile bei Weitem nicht aus. Manche erscheinen platt bandförmig,
dabei vielfach so gekrümmt, dass sie eine Rinne darstellen, andere
bandförmig mit einem mehr oder weniger spitzen Fortsatz in der
Mitte, so dass mitunter eigen tümliche Dreiecke mit concaven
Flächen, also Sternformen oder sonstige ganz unregelmässige For-
men entstehen, einige mehr rundlich aber kleiner als die Lücke,
endlich nur sehr wenige von der Form und Grösse der Lücke oder
einer annähernden Form und Grösse, im letzten Falle häufig mit
feinen Spitzen nach der Wand der Lücke hinstrebend und die-
selbe eventuell berührend. Die Querschnitte solcher ausgedehnter
Axencylinder sind immer viel zarter und durchsichtiger als die
jener, welche die Lücken nicht ausfüllen, diese erscheinen dicker
und undurchsichtiger. Ganz ähnliche Bilder ergiebt ein Querschnitt
des Rückenmarks vom Stör nach Behandlung mit Müller'scher
Flüssigkeit, doch sind die Formen hier nicht so stark ausgesprochen
und das Bild nähert sich schon bedeutend dem der höhern Thiere.
Selbstverständlich liegt der Axencylinder in diesem Falle in der
Markhülle, welche einen ebensolchen runden oder ovalen Raum herstellt, wie die Stützsubstanz bei dem Neunauge. Härtet man endlich Nervenstämmle, z. B. den Ischiadicus des Frosches in Chomsäure von $\frac{1}{2}$—$\frac{1}{6}$ pCt., legt dieselben dann in 70—80 pro-
centigen Alcohol, isolirt die Fasern einigermaassen, und wendet
dann die Weigert'sche Hämatoxylin-Blutlauge-salz-Färbung an,
so findet man das Mark entweder ganz oder fast ganz ungefärbt,
der Axencylinder dagegen erscheint tiefblau. Man sieht leicht,
dass diese blande Färbung einer Schicht angehört, welche den Axen-
cylinder umgiebt, und zwar trikotartig eng anschliessend umgiebt
und diese Schicht zeichnet so die Form des Axencylinders in der
Faser sehr schön ab. Bei solchen Fasern glaubt man häufig deut-
lich zu sehen, dass der Axencylinder ein plattes Band darstellt,
welches sich häufiger dreht. Behandelt man endlich Nervenfasern
mit Silber, so sieht man an ihnen, besonders gut nach weiterer
Behandlung mit Chloroform, die bekannten Frommann'schen
Linien. Besonders gut eignen sich auch hierfür die centralen
Fasern, da bei diesen das Silber weit besser den Axencylinder er-
reichet und die Markscheide leichter zu entfernen ist. Auch hier
tritt nun auf das Klarste hervor, dass der Axencylinder häufig ein
plattes mehr oder minder breites Band darstellt, auf dessen Ober-
fläche jene eigenthümlichen Querstreifen hinlaufen. Auch hier
sieht man in solchen Fällen wieder, dass der Axencylinder sich
dreht. Die Querstreifen ziehen sehr deutlich über die breite Ober-
fläche des Bandes, biegen am scharfen Rande kurz um, um auf
der anderen Seite weiter zu verlaufen. Nun fragt es sich, welche
von diesen verschiedenen Formen sind der Natur entsprechend
oder am meisten entsprechend und wie entsteht die grosse Ver-
schiedenheit der Formen?

Es scheint mir zweifellos, dass die Querschnittsbilder dafür
ersprechen, dass eine Schrumpfung des Axencylinders bei Einwirkung
der Härtungsflüssigkeit stattfindet. Die von der Stützsubstanz ge-
bildeten Lücken, welche man beispielsweise auf dem Rückenmarks-
querschnitte des Neunauges in Fig. 13 findet, werden aller Wahr-
scheinlichkeit nach ihre natürliche Grösse ziemlich bewahrt haben.
Einmal ist es an sich nicht wahrscheinlich, dass das feste aus so
vielen Elementen gebildete Stützgewebe stark schrumpft, und dann
zeigen auch jene Lücken, welche von den wenig geschrumpften
Axencylindern nahezu oder ganz ausgefüllt werden, dass dieses ihre
ursprüngliche Grösse sein muss. Dafür spricht auch der Umstand, dass die Conturen der Lücken durchweg glatt sind. Es sind gerade die Präparate vom Neunauge hier sehr beweisend und entscheidend, da wir es hier nur mit Axencylinder und Stützsubstanz zu thun haben, die Markscheide fortfällt. Diese würde eine Fehlerquelle darstellen können, da ihr Verhalten gegen verschiedene Reagentien durchaus von dem der anderen Theile verschieden sein kann, und so ein vorhandener Spaltraum durch ihre Schrumpfung entstanden oder durch ihre Quellung verdeckt sein kann. Indessen haben wir oben schon gesehen, dass auch das markhaltige Stör-ückenmark ganz ähnliche Schrumpfformen des Axencylinders in der Markscheide erkennen lässt, die Übereinstimmung also eine vollkommen ist.

Beide Arten der Einwirkung sind bei dem Axencylinder sicher zu beobachten, doch glaube ich, dass die Gerinnung mit Ausstossung von Flüssigkeit die Hauptrolle bei unseren Härtingen spielt. Eine Osmiumlösung von \(\frac{1}{10} \) pCt. und Lösungen von Ammon, bichrom. oder chomic. von 1:1000—5000 oder Chromsäure von \(\frac{1}{6} \) pCt. sind sicher keine concentrirten Lösungen und doch ist der Effekt eine Schrumpfung, und Ammon. bichrom. von 1:1000 wirkt gerade so wie das von 1:5000 und diese Wirkung stimmt wieder überein mit der von Chromsäure von 1:200—600, es ist also das coagulirende Reagens, welches wirkt, ohne dass die Menge Wasser, welche mit diesem Reagens verbunden ist, einen wesentlichen Unterschied macht. Sehr auffallend ist es mir immer gewesen, dass ich in allen oben angeführten Flüssigkeiten, auch in diesen verdünnten Lösungen keine Quellung des Axencylinders beobachten konnte. Ich habe allerdings in wenigen Fällen gesehen (in Ammon. bichrom.) wie deutlich geschrumpfte Axencylinder ganz plötzlich sich trichterartig erweiterten, um in einen viel dickeren Cylinder überzugehen, der auf dem Querschnitte eine deutliche Contur am Rande und einen hellen Inhalt zeigte, in dem wenige Körnchen zu liegen schienen. Waren dieses nun Quellungsformen oder war hier
Dr. P. Schiefferdecker:

zufällig ein Theil des Axencylinders in seiner normalen Dicke und Beschaffenheit erhalten? Denn auch das letztere war durchaus möglich, der Durchmesser dieser dicken Partien übertraf nicht das Maass des möglichen normalen. Warum nun freilich diese wenigen Stücke normal geblieben oder gequollen waren, während alle anderen Partien geschrumpft waren, das war auch schwer zu erklären.

Leider habe ich an Petromyzon nicht derartige Untersuchungen anstellen können, ebenso wenig wie ich die lebenden Axencylinder dieses Thieres untersuchen konnte, da im Sommer keine lebenden Exemplare zu haben waren. Ich hoffe diesen Mangel noch im Herbst ergänzen zu können.

schaumig aussehendes Mark enthaltend, ziehen in der Markscheide zwischen dieser und dem Axencylinder hin. Sie drängen den Axencylinder an der Stelle, wo sie sich gerade befinden, zur Seite, sind sie vorüber, so erhält der Axencylinder wieder seine vorige Breite und wird an einer nächsten Stelle eingedrückt. Der Axencylinder verhält sich also diesen Tropfen gegenüber ganz so, wie ein mit Flüssigkeit gefüllter Schlauch. Er verhält sich nicht etwa wie eine Flüssigkeitssäule, die ja auch ausweichen würde, sondern wie ein Schlauch, denn hinter und vor dem Tropfen bleiben deutliche dreieckige Spalträume, eine Flüssigkeit würde hier um den Tropfen zusammenfließen. Aber er verhält sich ganz wie ein Schlauch, der eine ziemlich dünne Flüssigkeit enthält und eine sehr zarte Membran besitzt, denn das Ausweichen geht sehr schnell von Statten und ebenso das elastische Zurückreiben in die alte Form und Lage. Ausserdem können diese vorbeischwimmenden Tropfen von schaumigem Mark selbst nur eine sehr geringe Festigkeit besitzen, im besten Falle die eines weitemschigen mit Flüssigkeit erfüllten Schwammwerks und doch genügen sie schon den Axencylinder so stark auszubUCHTEN, dass sie schnell an ihm vorüberziehen können. Hierbei möchte ich gleich auf einen Irrthum aufmerksam machen, der bei der Beobachtung dieser Tropfen passieren kann. Da diese Tropfen etwa sphärisch oder eiförmig sind, und ihre Substanz ein anderes Lichtbrechungsvermögen besitzt als die umgebende Flüssigkeit, so werden sie, wenn sie ganz oder theilweise über dem Axencylinder hinschwimmen, ein verzerrtes Bild von diesem entstehen lassen, und so bisweilen die Erscheinung von einem Ausweichen des Randes vortäuschen können durch die durch ihre Substanz bewirkte Strahlenbrechung. Man muss also nur solche Tropfen zur Beobachtung wählen, von denen man sicher ist, dass sie den Axencylinder nicht decken, sondern seitlich an ihm hinziehen. Nimmt man nun statt der peripherischen Nerven einen centralen, z. B. ein Stück Froschrückenmark, und zerupft es in 0,75 procentiger Kochsalzlösung, so erhält man in seltenen Fällen starke Fasern auf grössere Strecken so weit isolirt, dass man an ihnen Stellen findet, die markfrei geworden sind, und den Axencylinder frei erkennen lassen. Dass diese Fasern auf längere Strecken frei liegen, weiter entfernt von grösseren Rückenmarksstücken, ist deshalb nothwendig, damit bei der späteren Wasserwirkung, bei der ein gewaltiges Quellen und Ausfließen
des Markes statthat, diese ausfließenden Markmassen nicht die zur Beobachtung gewählte Faser verdecken. Hat man also eine solche günstige Faser, deren Axencylinder auf eine größere Strecke frei liegt, so sieht man Folgendes. An den Stellen, an denen die Markscheide noch vorhanden ist, bemerkt man wieder die verschieden gestalteten mit Flüssigkeit erfüllten Räume zwischen Mark und Axencylinder, der freie Theil des Axencylinders erscheint ganz gleichmäßig conturirt, wahrscheinlich cylindrisch. An einer solchen freien Stelle sah ich den Axencylinder sich allmählich verschmälernd, um dann wieder in gleicher Weise zuzunehmen, ob diese Verdünnung durch Zerrung bei der Präparation bewirkt, ob sie natürlich war, kann ich nicht sagen. Man sieht eine deutliche glatte Randcontur von grosser Feinheit. So bleibt der Axencylinder lange Zeit unverändert. Setzt man nun Wasser hinzu, so treten deutliche Quellungerscheinungen ein. Das Mark zeigt Aufblätterung und wird bedeutend breiter, der Axencylinder bekommt etwas mehr verwascene Randconturen und es treten in ihm helle Bläschen, Vacuolen auf, die durch die Randcontur ohne Schwierigkeit hindurchtreten können und so halb oder dreiviertel über dieselbe hervorragen. Die Randcontur ist so sehr fein, dass es durchaus nicht zu sehen ist, ob sie hierbei durchbrochen wird, die Contur der Vacuole sieht ganz ähnlich aus wie die Randcontur. Lässt man jetzt wieder Kochsalzlösung zutreten, so können diese Quellungerscheinungen sowohl an Mark wie an Axencylinder zum grossen Theil zurückgehen. Setzt man von Neuem Wasser hinzu und führt damit fort, so werden die Quellungerscheinungen immer heftiger, immer neue Vacuolen treten auf, der Axencylinder wird dadurch ganz dick und unregelmässig, aber er hält noch zusammen. Setzt man nun aber ein klein wenig Essigsäure hinzu, so wird die Quellung äussert stürmisch, es tritt jetzt sicher direkt Substanz durch die Randcontur aus, denn die in Menge entstehenden und durch die Randcontur tretenden Vacuolen platzten ausser und verschwinden, so dass nach dieser stürmischen Scene der Axencylinder schmäler geworden ist, einen ganz hellen Inhalt besitzt, der sich von der äusseren Flüssigkeit in seinem Lichtbrechungsvermögen kaum unterscheidet, während vorher der Axencylinder immer etwas glänzend und leicht grau gefärbt erscheint. Der schmale helle Axencylinder ist von einer nun deutlicher als vorher vortretenden feinen Conturlinie begrenzt, die gegen den hellen Inhalt dunkel
Beiträge zur Kenntniss des Baus der Nervenfasern. 465

erscheint. Er besitzt noch eine gewisse Festigkeit, denn straff gespannt hält er noch Stellen, an denen Stücke der Markscheide noch vorhanden sind, zusammen. Und diese Markstücke üben einen gewissen Zug auf ihn aus, da sie von der umgebenden strömenden Flüssigkeit bewegt werden. Da reißt plötzlich erst die eine Wand ein, wenn man die sehr zarte Contur so nennen darf, gleich darauf die zweite, der Axencylinder schlägt zurück und seine Contur, die in der gespannten Lage ganz glatt war, wird kraus; er kann nun auch allmählich an dem anderen Be festigungsende abreissen, obgleich der jetzt wirkende Zug ein minimaler sein muss, kurz jetzt wird er zerstört. Aus dieser That sache folgt wiederum, dass der Inhalt nicht direkt einem Serum ähnlich sein kann. Dass der Inhalt bei Zusatz von Essigsäure so stark quillt und so energisch durch die Hülle hindurchtritt, spricht ebenfalls gegen eine serumartige Flüssigkeit und für protoplasmähnlichen Stoff. Es würde also die Hülle einen Inhalt umschliessen, der wohl als ein sehr wasserhaltiges Protoplasma zu denken wäre. Ich würde hier nach im Wesentlichen zu einer Anschauung kommen, die schon B ßl (14, p. 311) vertreten hat. F l e i s c h l’s Ansicht, dass der Axencylinder eine Flüssigkeitssäule sei (15), steht unserer Deutung nahe, ist aber doch in wesentlichen Punkten von ihr verschieden. In dem Punkte stimme ich mit F l e i s c h l durchaus überein, dass die verschiedenen Formen, welche der Axencylinder bei den verschiedenen Präparationsmethoden darbietet, auf verschiedene Schrumpfungszustände zurückzuführen sind. Auch die Beobachtung kann ich durchaus bestätigen, dass die Markscheide häufig gevollten ist an derselben Fasern, an denen der Axencylinder ge schrumpft ist. Doch würde daraus noch nicht, wie F l e i s c h l annimmt, folgen, dass das von dem Axencylinder ausgestossene Serum sich mit der Markscheide verbindet. Markscheide und Axencylinder sind zwei so durchaus verschiedene Dinge, dass sie sich auch Reagentien gegenüber ganz verschieden verhalten können, ohne dass deshalb ein von dem einen ausgeschiedener Stoff von dem anderen aufgenommen werden müsste, um die Quellung dieses letztern Theils zu erklären. Das beste Beispiel dafür sind jene
Fasern, welche in ganz verdünnten Lösungen von doppelt- oder einfach-chromsaurem Ammoniak lagen, bei denen die Markscheide total aufgelöst sein konnte, während der Axencerinder zu einem dünnen festen Faden von verschiedenster Gestalt geronnen war. Und auch Platz für das aus dem Axencylinder austretende Serum ist vorhanden, ohne dass dieses die Markscheide zu durchtränken braucht, denn der schmale geronnene Axenfaden, wie man wohl sagen darf im Vergleich zum normalen Axencylinder, füllt durchaus nicht immer den Raum aus, den die auch gequollene Markscheide ihm lässt. In Müllerscher Flüssigkeit quillt die Markscheide zweifellos, und wie Figg. 7 und 10 zeigen, bleibt zwischen dem Axencylinder und den inneren Trichteröffnungen doch ein deutlicher Raum. Dieser Schrumpfungsraum wird es wohl auch sein, der jenen hellen Ring bildet, welcher den gefärbten Axencylinder umgibt und den verschiedenen Autoren und auch Ranvier erwähnen. Dieser Schrumpfungsraum kann aber, wie wir oben schon sahen, sehr verschieden gross sein, und auch an verschiedenen Stellen derselben Faser ganz verschieden gross sein, und ganz ähnliche unregelmässige Lücken bilden in markhaltigen Fasern wie bei den marklosen des Neunauges, wie ich solches schon oben von dem Rückenmark des Störs nach Müller’scher Flüssigkeit erwähnt habe. Ganz ähnliche Lücken zeigen nun auch Rückenmarksquerschnitte nach Osmiumhärtung, wie Fig. 14 darstellt nach einem Präparate vom Frosch, obgleich gewöhnlich von Osmiumpräparaten angegeben wird, dass der Axencylinder durchaus in seiner Form conservirt werde, was aber, wie ich oben schon von Zerzupfungspräparaten bemerkt, nicht der Fall ist. Hier ist allerdings eine grössere Anzahl von Axencylindern ganz gut erhalten, bei einigen zeigen sich indessen schmale Spalträume zwischen Axencylinder und Mark, welche ziemlich gleichmässig um jenen herumziehen und an anderen sieht man ganz ähnliche Schrumpfbilder wie an Präparaten aus Chromsäure oder deren Salzen, einen stärker geronnenen Theil, der manchmal schon ganz ähnlich aussieht wie ein Axencylinder an einem Chromsäurepräparat, an dem dann noch ein breiter, zarter, auf dem Querschnitte häutchenartig erscheinender Theil ansitzt: der weniger stark geschrumpfte Axencylinderabschnitt. Da hier das Mark wahrscheinlich nicht verbreitet, eher etwas geschrumpft ist (es war 1/2 procentige Osmium-
säure zur Härung benutzt worden), so treten auch geringe Schrumpfungen schon deutlich hervor.

Dr. P. Schiefferdecker:

Absterben veränderten Stellen des Markes in das Innere der Nervenfaser gelangt. Doch enthalten diese deutliche Formbestandtheile, haben ein schaumiges, blasiges Gefüge, während jene ganz homogen erscheinen und nichts geformtes erkennen lassen. Es wäre also wohl möglich, dass ausser der Gerinnung des Axencylinders, welche an sich schon im Stande ist, alle möglichen Formen herbeizuführen, auch noch eine formbedingende Einwirkung von bestimmten durch die einwirkende Flüssigkeit mitgeführten Markbestandtheilen vorkommt, indessen doch nicht ohne Weiteres als Kugelformationen der Markscheide im Sinne Ranvier's aufzufassen wären und zumal bei Chromäureeinwirkung wohl wenig auf den Axencylinder von Einfluss sein würden. Dass in der That auch ohne Markeinwirkung alle jene wunderbar wechselnden Formen des Axencylinders durch einfache Gerinnung zu Stande kommen können, beweisen ja am besten die Fasern des Neunauges, die genau dieselben Formen wie die der anderen Thiere darbieten. Ist der Axencylinder in normalem Zustande ein weicher, dem Innenraume der Markscheide entsprechender, daher gewöhnlich ungefähr cylindrisch geformter Körper, so können auch die Drehungen und Schlingelungen desselben, die häufig beschrieben und beobachtet worden sind, nur auf Gerinnungerscheinungen zurückgeführt werden. Es hängt diese Erscheinung jedenfalls mit dem Umstande zusammen, dass der Axencylinder an verschiedenen Punkten seiner Länge ganz verschiedene Gerinnungsformen zeigen kann, und diese Eigenthümlichkeit kann ja wiederum nur so erklärt werden, dass die härrende Flüssigkeit auf diese verschiedenen Punkte verschieden einwirkt. Sie dringt bald an dieser, bald an jener Seite zuerst zum Axencylinder vor und so wird dieser verschieden ausweichen. Daher kommt es jedenfalls auch, dass auf dem Querschnitt der Axencylinder so sehr gewöhnlich excentrisch in dem durch seine Schrumpfung entstandenen Ramme gelegen ist.

Ob der Axencylinder der frischen Faser nun in seiner ganzen Länge den gleichen Durchmesser besitzt, oder ob er z. B. an den Ranvier'schen Einschnürungen eine Verengerung zeigt, das ist sehr schwer zu entscheiden bei einem so leicht veränderlichen Körper, und wie mir scheint auch von sehr geringer Bedeutung. Ich möchte nach dem, was ich gesehen habe, annehmen, dass die Breite die gleiche bleibe auch an den Schnürstellen. Auch diejenigen Nervenfasern, welche nach Zerstörung der Markscheide in

Diese letztere Art von Präparaten ist auch sehr beweisend dafür, dass keine Art von Continuitätstrennung im Axencylinder vorhanden ist, wie es Engelmann (10) behauptet. Man sieht die Axencylinder auf das Klarste durch die Einschnürungsstellen der Schwann'schen Scheide hindurchziehen, ohne dass auch nur die leiseste Andeutung einer Trennungslinie zu erblicken wäre. Die gleiche Erfahrung kann man machen an Fasern, welche in Chromsäure gehärtet waren und nach Weigert gefärbt wurden. An diesen sieht man den, wie schon erwähnt, blau conturirten Axencylinder durch die Schnürstellen hindurchziehen (wenigstens an günstigen Stellen blau, an anderen auch hellbräunlich), ferner an Osmiumfasern, bei denen das Mark sich etwas von der Schnürstelle retrahirt hat, oder die mit Kali leicht aufgehellt sind.

ad 2. Ob der Axencylinder aus Fibrillen zusammengesetzt ist, oder ob er ein sonstwie beschaffener Strang ist, darüber besteht schon seit langer Zeit ein Streit. Mir lag diese Frage zunächst fern, doch zwang die Untersuchung über die Beschaffenheit des Axencylinders im Allgemeinen auch hierauf kurz einzugehen. Ich habe oben schon das Verhalten des frischen Axencylinders besprochen und den Schluss, den man daraus auf seine allgemeine Beschaffenheit machen kann, mitgetheilt. Es wäre ja nun möglich, dass innerhalb jener zarten Hülle eine Flüssigkeit sich befände, welche Fibrillen einschloss, und dass Fibrillen und Flüssigkeit sich so ähnlich wären im Lichtbrechungsvermögen, dass man sie nicht unterscheiden könnte. Es wäre schliesslich auch denkbar, dass jene eigenthümlichen Quellungserscheinungen bei einer solchen Beschaffenheit auftreten könnten, obgleich es schon ziemlich schwierig wäre, sich dieselben zurecht zu construiren, und eigent-lich nur die Annahme bliebe, dass die Fibrillen ausserordentlich leicht zerstört werden könnten. Ich habe auch, wie so viele Beobachter, Andeutungen einer feinen Streifung an isolirten Axencylindern gesehen und zwar namentlich schön an solchen, welche
Dr. P. Schiefferdecker:

Betrachtet man den Querschnitt eines Axencylinders (vergl. Figg. 13, 14), so sieht man denselben bei guter Conservirung, möglichst geringer Schrumpfung, granulirt, und zwar so, dass die einzelnen Granula relativ gross sind und in deutlichen Abständen von einander sich befinden. Hin und wieder treten auch einzelne stärker lichtbrechende Pünktchen zwischen den anderen auf (Fig. 14 b). Dass diese Granulirung der Ausdruck quer durchschnittener Fibrillen sei, davon habe ich mich nicht überzeugen können, da-
Beiträge zur Kenntniss des Baus der Nervenfasern.

gegen ist es wohl möglich, dass jene kurzen Körnchenreihen durch sie wiedergegeben werden. Ist der Axencylinder von solchen Körnchen durchsetzt, so ist es nicht schwierig zu verstehen, warum bei den Längsansichten die Körnchen in der Mitte dicker zusammenliegend erscheinen als am Rande, zumal wenn, wie das bei den grossen Axencylindern des Neunauges sehr leicht geschicht, der Axencylinder die Form eines Halbrohrs (concav-convex auf dem Querschnitte) annimmt. Die Querschnitte solcher Axencylinder erscheinen allerdings, wie Fig. 13 wiedergeibt, ziemlich homogen und dunkel, es liegen hier die Körnchen vielleicht in zu grosser Menge dicht aneinander, um sie deutlicher unterscheiden zu können.

Archiv f. mikrosk. Anatomie. Bd. 30. 31
trennbar verbunden zu sein. Ich kann diese festere Umbüllung jenes mehr flüssigen Inhaltes daher von diesem nicht gut als eine Membran trennen und will ihr den Namen der „Rinde“ des Axencylinders geben, im Gegensatz zu dem flüssigen Inneren. Nach den Beschreibungen zu schliessen, welche diejenigen Autoren, die bisher eine Axencylinderscheide annahmen, gegeben haben, bin ich der Meinung, dass diese eben von mir beschriebene Rinde noch von keinem gesehen worden ist, jedenfalls in ihren Eigenschaften nicht richtig erkannt worden ist. Ich werde später noch darauf einzugehen haben, was die bisher beschriebenen Scheiden sein können.

Untersucht man nun diese meine Axencylinderrinde an Fasern, die mit verschiedenen Reagentien behandelt worden sind, so zeigt sich Folgendes. Sowohl Fasern, die mit stärker verdünnter Os-miumsäure (1/5—1/10 %), wie solche, die mit Ammonium bichromicum oder chronicum, wie solche, die mit Methylmixture-pikrocarminsaurem Natron behandelt worden sind, kurz alle Fasern, die mit Reagentien untersucht werden, welche den Axencylinder auf weite Strecken zu isoliren erlanben und dabei nicht zu starke Schrumpfung bewirken, zeigen der Länge nach gesehen die Rinde als eine glatte, homogene, äusserst zarte Contur am optischen Durchschnitt. Der Fläche nach ist die Rinde nicht zu erkennen, da sie zu durchsichtig ist. Isolirt, von der Faser auch nur eine Kleinigkeit abgehoben, habe ich sie nie gesehen, sie folgt genau allen unregelmässigen Conturen der geschrumpften Faser, haftet dem Inhalte also angenscheinlich sehr fest an, und da wo die geschrumpfte Faser mitunter eine häutchenförmige Bildung zeigt, ist die Rindencontur so undeutlich geworden, dass man sie nicht verfolgen kann, ohne dass indessen es andererseits möglich ist, eine Lücke in der glatten Contur zu constatiren. Bei der Federseelenform, welche der Axencylinder oft nur vorübergehend annimmt auf kurze Strecken, während der Einwirkung von physiologischer oder etwas mehr verdünnter Kochsalzlösung, zeigt er, wie bekannt, oft sehr zarte weit vorspringende Spitzen, auch diese müssen von der Rinde umhüllt sein, denn sie können sich wieder völlig zurückziehen, und die Contur kann glatt werden, auch ist durchaus kein Vortreten des Inhalts zu constatiren. Mit ganz ähnlichen Spitzen, die allerdings auch der Ausdruck scharfer Kanten sein können, reicht oft auf dem Querschnitte der Axencylinderquerschnitt an die Um-
gebung heran. Diese Thatsachen sprechen alle sehr deutlich dafür, dass die Rinde sehr enge mit der Innensubstanz verbunden ist und auch wesentliche Veränderungen bei der Schrumpfung erleidet. Sie ist also jedenfalls keine einfach umhüllende Membran, sondern eine festere Aussenschicht, welche an jeder Veränderung des Axencylinders mit Theil nimmt. An einem durch Methylmixture isolirten, mit pikrocarminsäuren Natron gefärbten Axencylinder zeigte sich das Rissende etwa so, wie es in Fig. 12 dargestellt worden ist. Es erschien das Ende heller roth und eine dünne Hülle, welche diesem Ende fehlte, schien die übrige Faser dunkler roth erscheinen zu lassen. Auf der oberen Seite, welche hier wiedergegeben ist, war die Grenzeontur ziemlich gleichmässig, auf der unteren hier nicht wiedergegebenen durchscheinenden Seite war er stark zackig. Wenn in diesem Falle die Axencylinderrinde den Unterschied in der Färbung bedingte, und das Bild machte durchaus den Eindruck, als ob nur jene feine Rinde an dem hellen Ende fehlte, so würde daraus folgen, dass die Rinde bei der angegebenen Behandlung sich färbt oder dass sie den rothen Ton des gefärbten Inhaltes dunkler erscheinen lässt. Dieses letztere ist mir wahrscheinlicher, denn an den Rissenden mancher anderer Axencylinder war die deutlicher als sonst im Verlaufe vortretende Contur der Rinde im optischen Durchschnitt nicht gefärbt. An solchen Enden schien mitunter auch die Rinde sich ein wenig von dem Inhalt entfernt zu haben, so dass ein schmaler Spalt zwischen beiden existirte. Da sich die Rinde niemals im Verlaufe der Faser abgehoben von dem Inhalte zeigte, so war natürlich auch keine Faltung derselben, keine Runzelung möglich, und diese Rinde kann daher unmöglich durch derartige Veränderungen eine Längsstreifung des Axencylinders bewirken und so einen fibrillären Bau vor allen, nur Falten, die die Axencylindersubstanz im Ganzen bei ihrer Gerinnung erhält, können so wirken. Auch an Querschnitten des Axencylinders sieht man die Scheide als eine ähnliche feine Contur, die hier um so auffallender ist, als die Granulirung des Inhalts scharf von dieser Rindenschicht absticht. Am klarsten tritt dieselbe hier an jenen Axencylindern in Ammonium bichromicum hervor, von denen ich oben angab, dass man zweifelhaft sein könne, ob sie ihren ursprünglichen Durchmesser bewahrt hätten oder gequollen wären. Hier hebt sich die dunkle Randcontur scharf gegen das wenige Pünktchen enthaltende Innere ab.
So können wir also sagen: der sehr weiche, wohl tropfbarflüssige, wahrscheinlich einem sehr wasserreichen Protoplasma entsprechende Inhalt des Axencylinders wird von einer sehr zarten Hülle umgeben, die mit diesem Inhalte so enge verbunden ist, dass sie sich kaum von ihm trennen lässt, so weich ist, dass sie allen Formen, die dieser Inhalt annimmt, so es durch Druck oder in Folge von Gerinnung, folgt, durchlässig ist für den Durchtritt von Flüssigkeiten und den gequollenen Inhalt, dabei selbst in Wasser etwas quillt (und dadurch vielleicht noch durchlässiger wird), so weit elastisch ist, dass bedeutende Formänderungen des frischen Axencylinders sich wieder ausgleichen, sich mit Farbstoffen kaum färbt (denn auch Anilinfarbstoffe färben sie nicht), und gegen schärfer einwirkende Reagentien so wenig widerstandsfähig ist, dass ganz schwache Essigsäure sie zerstört; welche jedenfalls mit zur Axencylindersubstanz zu rechnen ist, und als Rinde bezeichnet werden mag. Dass sie leicht zerstörbar ist, geht auch daraus schon hervor, dass bei Fasern, die nach Här tung in Osmium mit verdünntem Ammoniak behandelt wurden (nach der Vorschrift von Kuhn), niemals etwas von dem Axencylinder oder einer Scheide übrig war, während die Schwann'sche Scheide dabei auf das Beste erhalten zu finden war. Daraus geht zugleich hervor, dass auch die Här tung durch Osmiumsäure die Rinde wenigstens nicht gegen verdünnte Alkalien widerstandsfähig zu machen im Stande ist. Wenn nun diese Rindenschicht mit der von den Autoren beschriebenen Scheide nicht übereinzustimmen scheint, so müssen noch andere Scheiden oder scheidenähnliche Gebilde um sie herumliegen. Dieses ist nun in der That der Fall.

Zunächst findet man auf dem Axencylinder, besonders bei Fasern, die mit Osmium behandelt worden sind, eine Art von Scheide liegen, die mir im Anfange meiner Untersuchungen viel Schwierigkeit bereitet hat, da ich nicht recht über sie klar werden konnte. Es zeigt sich dem Axencylinder unmittelbar anliegend eine zarte Schicht, welche ganz ähnlich einer zusammenhängenden Scheide ist, indessen bei genauerem Zusehen sich doch von einer solchen unterscheidet. Um gleich für die Beschreibung einen Namen für sie zu haben, will ich sie von jetzt an die „Ge-
rinnelscheide" nennen. Dieselbe liegt dem Axencylinder, wie schon erwähnt, dicht an, und folgt auch seinen eventuellen Buchten, sie ist so dünn, dass sie der Fläche nach aussern kaum als Scheide zu erkennen ist, nur hin und wieder meint man sie an einigen Pünktchen oder Körnchen, die in ihr liegen könnten, zu erkennen. Ihre Randcontur ist stärker als die der Axencylinderinde. Sie schlägt niemals Falten, weder der Quere noch der Länge nach. Folgende Gründe bestimmen mich nun, diese Gerinnelscheide nicht für eine wahre membranöse Scheide zu halten.

Erstens zeigt diese Scheide vielfach ganz kleine Unterbrechungen. Bei einer wirklich Scheide wäre es wohl möglich anzunehmen, dass hin und wieder ein Loch hiererisse wäre, dann würde man einen Riss sehen, und ein Stück des Häutchens würde in der Flüssigkeitschicht flottiren, oder es könnte auch ein Stück aus dem Häutchen ganz herausgerisse sein, dann würde man die Begrenzungsrande der Öffnung sehen müssen, oder, wenn diese zu fein wären, so würde doch wenigstens das Loch eine relativ bedeutende Grösse haben und es würden nicht Stellen vorkommen, an denen ganz kleine Unterbrechungen der Randcontur vielfach auf einander folgen. Das ist aber mitunter der Fall und die Randcontur mit diesen feinen Unterbrechungen macht direkt den Eindruck, als wenn eine etwas bröcklige Masse den Axencylinder umgebe.

Drittens findet man häufig diese Scheidencontur streckenweise auf der einen Seite des Axencylinders verschwunden, während sie auf der anderen Seite noch weiter läuft, oder die Scheide hort auf beiden Seiten auf, dann kommt wieder ein Stückchen, vielleicht nur einseitig, dann fängt die Scheide vielleicht wieder an. An den Stellen, an denen diese Gerinnelscheide fehlt, besitzt der Axencylinder durchaus glatte Conturen und die Axencylinderinde kann mehr oder weniger deutlich erkennbar sein.

Alle diese Gründe sprechen dagegen, dass wir es hier mit einer membranösen Scheide zu thun haben und dafür, dass eine den Axencylinder umgebende geronnene Masse eine Scheide vor-
Beiträge zur Kenntniss des Baus der Nervenfasern.

477

Nehmen wir nun an, dass die Deutung richtig ist, so fragt es sich zunächst, wo kommt diese Scheide her, denn im Leben besteht sie naturgemäß nicht.

Behandeln wir eine frische Faser mit Kochsalzlösung oder setzen wir noch Wasser hinzu, so sehen wir, wie schon öfter beschrieben worden ist, den Axencylinder sich von der glatten Innenwand der Markscheide an manchen Punkten abheben. Die glatte Aussenwand des Axencylinders, gebildet durch seine Rinde, liegt also der glatten Innenwand der Markscheide an ohne mit ihr verbunden zu sein. Es ist das ja eigentlich selbstverständlich nach allem vorhergehenden, aber man stellt sich die reellen Verhältnisse oft nicht so naturgetreu vor Augen, wenn man nicht eine Veränderung eintreten sieht, die das Normale stört und dadurch gerade es hervorhebt. So hier bei dem Axencylinder, der ohne einen Spalt erkennen zu lassen, der Markscheide dicht anliegt, so den Gedanken kaum aufkommen lässt, dass ein Spaltraum zwischen ihm und der Markscheide sich befindet, und diesen Gedanken sofort entstehen lässt, sowie die von aussen einwirkende Flüssigkeit ihn von der Wand abdrängt. Es folgt daraus also, dass zwischen Axencylinder und Markscheide ein Spaltraum existirt, etwa vergleichbar dem, der zwischen den beiden Blättern einer serösen Membran z. B. der Plenra vorhanden ist. Es ist ein Spaltraum von so geringen Dimensionen, dass er für gewöhnlich unsichtbar ist und doch muss er theoretisch vorhanden sein und mit einer minimalen Flüssigkeitsmenge wahrscheinlich erfüllt sein, denn wo ein solches Aneinanderliegen von Membranen, Körpern besteht und Flüssigkeit daneben existirt, da muss auch durch die Gewalt der
Dr. P. Schiefferdecker:

Capillarattraction eine, wenn auch noch so dünne Flüssigkeits-
schicht sich zwischen den Körpern oder Membranen befinden, es
sei denn, dass die Körper derartig beschaffen sind, dass sie direkt
an einander festhaften, festkleben, wovon hier nach Allem nicht
gut die Rede sein kann. Flüssigkeit ist nun aber in Gestalt von
Lymph genug da, und von dieser wird sich so viel einschieben,
alsgemäss der Compressibilität oder Ausdehnungsfähigkeit des
Axencylinders und der Markscheide dazwischen kommen kann. Das
scheint nun eben sehr wenig zu sein. Wir haben also in der That
 einen „periaxialen Raum“ und eine ‚periaxiale Flüssigkeit‘, wenn
ich zwei alte Namen hier anwenden darf, welche sehr gut für das
tzu bezeichnende passen, aber in der That ursprünglich in einem
theilweise wenigstens anderen Sinne gebraucht worden sind.
Klebs (13), welcher sie anwendet, sagt Folgendes (13, p. 179,
180): „Der Raum zwischen Axencylinder und Markscheide wird
von einer Flüssigkeit eingenommen, die ich ihrer Lage wegen
„periaxiale Flüssigkeit“ zu nennen vorschlage."

„Die Markscheide ist ein Hohlcylinder, dessen Form nur
durch die eigenthümlichen Spannungsverhältnisse seiner Theilchen
aufrecht erhalten wird. Wenn die Substanz derselben aus dem
durchschnittenen Ende der Nervenfaser heraufliesst, bildet sie be-
kanntlich um die Tropfen der periaxialen Flüssigkeit Kugelschalen,
die im mikroskopischen Bilde als glänzende Einfassungsbänder ers-
cheinen. Die Form der Marksubstanz hängt also stets von der
Gestalt der eingeschlossenen Flüssigkeitsmasse ab, mit der sie sich
nicht zu vermischen im Stande ist."

Klebs scheint danach damals eine ziemlich grosse Menge
Flüssigkeit angenommen zu haben und hat die eigenthümlichen
Myelinformen des anstretenden Markes, die auch ohne jene peria-
Axiale Flüssigkeit sich bilden, nicht gekannt. Dass aus dem von
mir angenommenen feinen Spaltraum Flüssigkeit nicht hervortreten
cann, wenigstens so lange die normalen Verhältnisse einigermassen
bestehen, liegt in der Natur eines solchen capillären Spaltraums
begründet. Wird nun der Axencylinder durch ein Reagens zum
Schrumpfen gebracht, ohne dass gleichzeitig eine entsprechende Aus-
dehnung der Markscheide eintritt, so wird sich dieser Raum er-
weitern. In demselben wird dann Flüssigkeit enthalten sein, welche
tzu einem grossen Theile wohl dieselbe sein wird, die als Reagens
einwirkt, und ferner werden Gerinnungsprodukte darin vorhanden
Beiträge zur Kenntniss des Baus der Nervenfasern. 479

Der hier angenommene „periaxiale Spaltraum“, wie ich ihn zum Unterschiede von dem Klebs'schen nennen will, muss für die Ernährung des Axencylinders von grosser Bedeutung sein. An den Stellen der Zwischenscheiben und vielleicht auch der Zwischentrichter tritt die ernährende Flüssigkeit zu, wirkt auf die „periaxiale Lymph“e, wie man die hier befindliche Flüssigkeit wohl mit Recht nennen kann und durch diese gleichmässig auf den Axencylinder. Dass dieses in der That der Fall ist, sieht man, wenn man ein relativ grobes Beispiel nicht verwerfen will, an der Einwirkung der Silberlösung auf den aus dem Körper entfernten Nerven. Von den Stellen der Zwischenscheiben aus nach beiden Seiten hin mehr oder weniger weit erscheint der Axencylinder gefärbt. Der Axencylinder ist nicht gefärbt, sondern die in dem periaxialen Spaltraume entstandenen Gerinnels. Man kann leicht constatiren, dass an solchen Silberpräparaten der, wie oben schon hervorgehoben wurde, geschrumpfte und oft bandförmig aussehende Axencylinder von einer braun gefärbten, körnig-geronnen erscheinenden Scheide umgeben ist, die ihn durch die Zwischenscheibe hindurch begleitet (vergl. Fig. 1) und in der unmittelbaren Nähe dieser häufig mehr oder weniger bedeutende, mehr oder
Dr. P. Schiefferdecker:

weniger auf beiden Seiten gleichmässige Verdickungen zeigt, die vielleicht den „renfléments biconiques“ von Ranvier entsprechen und nur daher rühren können, dass hier bei der ersten Berührung der Silberlösung mit der Lymph fehltendere Niederschläge sich zeigen. Zu dieser seltenen Art der Färbung gehören auch die bekannten Frommann'schen Linien. Wie Fig. 15 es etwas unvollkommen wiedergiebt, stehen die braunen Querstreifen am Rande des Axencylinders immer über diesen etwas über, sie müssen daher auf dem Axencylinder aufliegen. Es können also nur regelmässige gefärbte Gerinnselbildungen sein. Warum dabei gerade eine solche Querstreifung entsteht ist freilich schwer zu sagen, und vielleicht ist da die Hypothese von Boveri zur Erklärung noch die beste. Die Ausdehnung der Frommann'schen Linien auf dem Axencylinder wird davon abhängen, wie weit die Silberlösung rasch vordringen kann, und dafür scheinen die Verhältnisse beim centralen Nervensystem günstiger zu liegen als beim peripheren. Bekanntlich hören die Querstreifen auch oft nach einer Strecke auf, und weiterhin findet man nur unregelmässig gelagerte kleine Silberkörnchen, welche den Axencylinder begleiten. Der Umstand, dass zunächst den Zwischenscheiben, also den Stellen der schnellsten Einwirkung immer, wenn überhaupt, die Frommann'schen Linien auftreten, lässt die Annahme wahrscheinlich erscheinen, dass so lange die Lymphen noch nicht geronnen ist, die schon genannten mehr oder weniger regelmässigen gefärbten Gerinnungsproducte um den Axencylinder: renfléments biconiques und Frommann'sche Linien sich ablagern. Kommt die Silberlösung an Stellen, an denen schon eine Gerinnung eingetreten ist, so färben sich die Gerinnsel, die nicht mehr Silber mitreissen können, nicht, und in der Flüssigkeit bildet sich dann der körnige Niederschlag. Es ist nach allem diesem freilich immer noch nicht völlig verständlich, warum sich an den marklosen Nerven nichts derartiges findet, und man könnte hier nur das eine als Verschiedenheit hervorheben, dass eben bei den marklosen der Austausch der Stoffe zwischen der äusseren und inneren Lymph viel schneller und ausgedehnter von Statthen geht als bei den markhaltigen und demgemäss das Silber sehr viel gleichmässiger und schneller auf den ganzen Axencylinder einwirken wird. So kommt denn wohl jene gleichmässige Braunfärbung zu Stande, die man gewöhnlich wahrnimmt, und die auch an jenen Stellen der markhaltigen Fasern oft sich zeigt, an
Beiträge zur Kenntniss des Baus der Nervenfasern. 481
denen das Silber ungehindert den Axencylinder erreichen kann, wie an den Schnittenden der Fasern.

Eine Protoplasmenschicht, welche nach Ranvier zwischen der eigentlichen Markscheide und dem Axencylinder vorhanden sein soll, habe ich niemals bemerken können, und Ranvier selbst wird dieselbe wohl auch mehr seiner bekannten Theorie zu Liebe angenommen als sie wirklich gesehen haben.

Endlich liegt nun um diese Scheide noch oft eine weitere herum, welche indessen nichts weiter ist als die innerste Lage der Markscheide und die ich mit dem Namen der „Aufblätterungsscheide“ bezeichnen will. Es klingt vielleicht sonderbar, dass ich dieser Erwähnung thue, indessen bin ich der Ueberzeugung, dass sie zu wesentlichen Irrthümern Veranlassung gegeben hat. Wie bekannt zerfällt die Markscheide bei der Einwirkung von bestimmten, besonders von mehr verdünnten Reagentien in Blätter und diese Aufblätterung geht so weit, dass eine ganz dünne zarte Lage wie eine Art Scheide auf dem Axencylinder im Verlaufe einer längeren Strecke zurückbleiben kann, während die übrige Markscheide verschwunden ist. Die Scheide ist leicht daran erkennbar, dass sie einmal sich an günstigen Stellen in die Markscheide direkt verfolgen lässt, dass sie zweitens häufig ein Ende von dem geschrumpften Axencylinder absteht, dass sie drittens vielfach Faltung, Runzelung und die Abtheilung durch die Lantermann'schen Einkerbungen zeigt, und dass sie viertens gerade so resistent gegen Säuren und Alcalien ist wie die Markscheide selbst.

Vergleicht man mit der eben gegebenen Beschreibung die von Kuhn für seine Axencylinderscheide gegebene und noch besser die ganz charakteristischen Abbildungen (4, p. 451—53 u. Taf. XVII), so wird man die frappante Ähnlichkeit der beiden Scheiden bemerken. Ich bin in der That der Ansicht, dass die Kuhn'sche Axencylinderscheide nichts weiter ist als die durch Abblätterung entstandene sehr feine innerste Markschichte, die bei dieser Feinheit auch die Osmiumfärbung nur noch in minimalem Grade zeigt, so dass sie oft für das Auge verschwindet. Nur die Fig. 15 der Kuhn'schen Tafel zeigt ein ganz anderes Bild als alle übrigen. Hier ist nach Behandlung mit Alcoh. dilut. die Markscheide völlig verschwunden, und es ist möglich, dass Kuhn hier die wirkliche Axencylinderrinde durch die feine Contur dargestellt hat. Jedenfalls hat er aber den Unterschied nicht erkannt, und seine Be-
Schreibung bezieht sich nur auf die falsche Axencylinderscheide, deren von ihm angegebene Eigenschaften natürlich mit denen der Rinde nicht im Geringsten übereinstimmen. Auch Ranvier hat schon die Ansicht ausgesprochen, dass Kuhnt die innerste Marklage als Axencylinderscheide beschreibe. Er sagt (6, I, p. 88): „Cette gaine est admise aujourd'hui par quelques auteurs, Todaro et Kuhnt, par exemple. Mais je vois, qu'il s'introduit à ce sujet dans la science une confusion, à laquelle je crois nécessaire, de vous rendre attentifs. Sur le cylindre-axe isolé et examiné dans sa longueur, vous vous en souvenez une portion externe, plus ou moins irrégulière ou dentelée. Cette sorte de membrane, sur laquelle Kuhnt a attiré l'attention et qu'il considère comme la gaine du cylindre-axe, est simplement formée par le prolongement aigu des segments cylindro-coniques. L'extrémité de ces cônes est, en effet, comme on peut le voir sur les préparations par dissociation dans l'acide chromique, extrêmement effilée, et elle se prolonge sur une grande longueur du cylindre-axe. L'ensemble de ces prolongements y restant adhérents lorsqu'il s'isole, constitue la gaine cassottée et fragmentée que montrent les figures du mémoire de Kuhnt."

Ich bin nun allerdings nicht der Ansicht, dass gerade die Feinheit der Spitzen, in welche die Lantermann'schen Segmente auslaufen, die Bildung dieser Scheide bedingt oder erleichtert, wie das Ranvier zu meinen scheint. Da die Lantermann'schen Einkerbungen das Mark ganz durchsetzen, so muss natürlich die innerste Lage genau dieselben Unterbrechungen zeigen wie jede andere, und die Aufblätterung des Marks selbst ist ebenso eine von jenen Enden unabhängige Erscheinung, und so könnten die Lantermann'schen Einkerbungen sich viel weniger weit ausziehen und die Erscheinung der Entstehung der Scheide würde genau dieselbe bleiben, darin stimme ich aber Ranvier bei, dass die Kuhnt'sche Scheide der Markscheide zuzurechnen ist.

Ob die von Lavdowsky gefundene Scheide (8) mit der Kuhnt'schen identisch ist, ist schwer zu sagen, da seine Beschreibung nur sehr kurz ist und Abbildungen fehlen, indessen ist das, was in dieser kurzen Beschreibung gesagt wird, so übereinstimmend mit der Kuhnt'schen Beschreibung und den Befunden der innersten Markscheidenlage und die Methode so geeignet diese darzustellen, dass ich nicht zweifle, dass auch Lavdowsky in jenen Irrthum gerathen ist. Lavdowsky wendet allerdings zu-
nächst 1 procentige Osmiumsäure zur Härtung der Nervenfasern an, liegt dieselben aber, nachdem die Osmiumsäure durchgewirkt hat, also jedenfalls nach relativ kurzer Zeit auf 7—10 Tage in Wasser. Dann erhält man aber genau dieselben Bilder, als wenn man 1/5—1/10 pCt. Lösungen etwas längere Zeit hat einwirken lassen, d. h. es erfolgt auch jene Aufblätterung des Markes.

H. Schultze (12) beschreibt dann eine Axencylinderscheide und bildet dieselbe ab, die er an Präparaten aus Ammon. bichrom., verdünnter Osmiumsäure (0,2 pCt.), 36 pCt. Salpetersäure und anderen darstellen konnte. Sie erscheint auf seinen sehr klaren Abbildungen als ein sehr feines Häutchen, das ein kurzes Ende aus der Markscheide hervorragt und dann mit scharfer Randcontur endigt, während der Axencylinder noch weiter hervorragt. Eine doppelte Contur besitzt die Scheide den Abbildungen nach nicht, ebenso wenig Runzeln (nur an der einen Faser zeigt sich am Rissende eine leichte Faltung), und liegt dem Axencylinder dicht an. Ob dieselbe quere den Lantemann'schen Einkerbungen entsprechen und für die Identität auch dieser Scheide mit der innersten Markscheidenlage sprechend ist ja allerdings der Umstand, dass die Scheide nur an Fasern dargestellt ist, welche ihre Markscheide besitzen, im Zusammenhange mit dieser und nur auf sehr kurze Strecken isolirt. Auch ist es auffallend, dass H. Schultze, der hervorhebt, dass die Axencylinder an den Kuhntschen Präparaten ihrer Scheide gegenüber stark geschrumpft seien, die Scheide nicht ausfüllten, nicht näher auf die doch so eigenartige Beschaffenheit der Kuhntschen Scheide einging, wenn er eine andere als sie fand. Auch spricht er von der eventuellen Identität dieser seiner Scheide mit der inneren Hornscheide des Myelins von Ewald und Kühne. Genauer geht er aber überhaupt auf die Frage nicht ein. Danach ist es am wahrscheinlichsten, dass auch diese Scheide der Markscheide zuzurechnen ist, und dass sie also eine Pseudoscheide ist.

Es bleibt dann endlich noch die Mauthner'sche Scheide
übrig. Mauthner selbst (11, p. 52, 53) braucht übrigens die Bezeichnung „Axencylinderscheide“ nicht, und seine Beschreibung stimmt auch durchaus nicht mit dem überein, was man sonst irgendwo als Axencylinderscheide beschrieben hat. Er nimmt an, „dass der Axencylinder aus zwei in einander steckenden Cylindern besteht. Der Querschnitt des inneren, soliden Cylinders ist (mit Carmin) dunkler roth gefärbt als der des äusseren Hohleyinders und ist von diesem durch eine dunkle Contur ebenso scharf abgegrenzt, wie letzterer durch eine scharfe Contur gegen das Nervenmark hin sich abhebt.‘‘ Er bildet dann auf Fig. 18 einen Querschnitt einer Nervenfaser aus den Vordersträngen des Hechrückenmarkes ab, bei welcher sowohl der äussere als der innere Cylinder deutlich roth gefärbt sind, der innere nur intensiver. Der äussere Cylinder ist dabei recht dick, so dick in der That, dass die Wandungsstärke etwa die Hälfte des Durchmessers des soliden Cylinders ausmacht, der Hohleyinder also an Masse bedeutend den soliden überwiegen würde. Schon hieraus geht hervor, dass der Mauthnersche Hohleyinder mit einer Axencylinderscheide der späteren Autoren nichts zu thun hat. Nun hat ferner Mauthner diese Structur des Axencylinders augenscheinlich nur bei Hecht und Forelle gesehen, denn er führt weiter keine Thiere an, und auch bei jenen nicht immer, denn er bildet einen Längsschnitt einer Nervenfaser aus dem Hechrückenmark, und einen Querschnitt „einer kolossalen Faser aus dem Hirnstamm der Forelle‘‘ ab (l. c. 19, 20), an denen die beiden Hohleyinder nicht zu erkennen sind, bei der letzteren Figur steht auch ausdrücklich angegeben, „Der Axencylinder zeigt keine centrale Schicht.‘‘ Mir stand von Fischrückenmark nur das in Müller’scher Flüssigkeit gehärtete vom Stör zu Gebot. An diesem habe ich indessen niemals etwas sehen können, was der Mauthner’schen Beschreibung genauer entsprach, ebenso wenig wie an dem Rückenmark anderer Thiere. Ranvier bespricht die Mauthner’sche Scheide, deutet indessen als solche, wie mir scheint, etwas anderes als Mauthner beschrieb. Er sagt (6, I, p. 87) bei der Beschreibung eines Nervenquerschnitts nach Härtung in Ammon. bichrom.: „Ce cylindre-axe cependant n’est pas coloré dans toute son épaisseur, il est entouré d’un anneau incolore qui le sépare de la myéline. Cela nous conduit à admettre, qu’il est composé de deux substances: l’une centrale, qui se colore par le carmin, l’autre périphérique qui demeure
Beiträge zur Kenntniss des Baus der Nervenfasern.

Beiträge zur Konntnisa des Baus der Nervenfasern. 485

incolore. Ce fait a été signalé d'abord par Mauthner et se trouve aujourd'hui, indiqué dans les traités classiques. Von dieser schmalen ungefärbten Zone spricht Mauthner gar nicht. Ranvier deutet später diese Zone als seine innere Protoplasmaschicht, er sagt (6, I, p. 120): „On comprend dès lors facilement pour quoi le cylindre-axe, étudié sur les coupes transversales colorées au carmin, possède une partie périphérique incolore. Cette couronne, sur laquelle, ainsi que nous l'avons vu, Mauthner a attiré l'attention, correspond évidemment à la partie réfléchie de la lame protoplasmique, reste du protoplasma originaire de la cellule."

Ich habe schon oben bemerkt, dass diese ungefärbte Zone, wo sie deutlich auftritt, wohl in dem Vorhandensein eines durch Schrumpfung des Axenzyinders bedingten Raumes begründet sein dürfte. An Nervenfasern, deren Axenzyinder der Markscheide anlag, habe ich nichts von einer solchen Zone erkennen können. Ranvier scheint mir also einmal mit dem Namen „gaine de Mauthner“ etwas anderes zu bezeichnen, als was Mauthner selbst beschrieben hatte, und zweitens scheint mir die Erklärung der Erscheinung, welche Ranvier giebt, nicht richtig zu sein. Denn, wie ich oben schon hervorhob, giebt es eine solche innere Protoplasmalage an der Markscheide nicht. Mir ist es, wie ich schon erwähnt habe, nicht gelungen genau solche Bilder zu sehen, wie Mauthner sie giebt. Indessen möchte ich annehmen, dass seine Beobachtung vielleicht darauf zurückzuführen ist, dass mitunter die mittlere Partie namentlich dicker Axenzyinder dunkler aussieht als die Randpartie und so einigermaassen dem Mauthner'schen Bilde ähnlich wird, wenn auch die von ihm besonders hervorgehobene scharfe Grenze der beiden Zonen fehlt. Es entsteht diese dunklere Mitte, welche ich z. B. beim Stör auch constatiren konnte, und welche auch beim Nennange mitunter hervortritt (aneh von Reissner angeführt, Müller's Arch. 1860) vielleicht durch die intensive Granulirung, welche die betreffende Stelle besitzt, während die Randzone fast gar keine Granula enthalten kann. Derartige Fasern sehen so aus, als ob die sämmutlichen Granula sich zu einem mittleren Strange vereinigt hätten, während rings herum ein ziemlich breiter (die Breite entspricht etwa den Mauthner'schen Angaben) homogener Theil sich befindet. Mag dieses nun sein, wie es will, jedenfalls geht aus dem Gesagten hervor, dass der Mauthner'sche Hohleyinder keine Scheide in unserem Sinne darstellt, sondern
höchstens durch eine weitergehende Differenzierung der eigentlichen Axencylindersubstanz gebildet werden kann.

Ich habe nun bereits mehrfach erwähnt, dass man mit der Weigert’schen Hämatoxylin-Blutlaugensalz-Methode eine ganz eigenthümliche Axencylinderverschleierung erzielen kann, wenn man die Nervenfasern zunächst nicht in Müller’scher Flüssigkeit, sondern in Chlorsäure von $\frac{1}{2}$–$\frac{1}{6}$ pCt. härzt. Man sieht hierbei den Axencylinder gleich einem blauen Faden das helle Nervenmark durchziehen, jede Schrumpfungsform ist genau ausgeprägt, jede scheinbare Drehung des eventuell platten Fadens. Man erkennt, wenn man den optischen Durchschnitt an einer mehr cylindrischen Stelle einstellt, auf dem Längsschnitte, dass das Innere des Axencylinders hellbräunlich ausseht, dass nur eine sehr feine äussere Contur blau gefärbt ist, man sieht ebenso an Stellen, die ungefärbt geblieben sind, an der Grenze der ungefärbten und der gefärbten Partie, wie ein Gebilde, das so zart wie ein blauer Hauch erscheint, den Axencylinder umgibt, ohne seine Dicke zu vermehren, und man sieht endlich an Querschnitten solcher Fasern den hellbraunen Inhalt deutlich von einer sehr feinen blauen Linie eingefasst. Diese blane Contur geht an günstigen Präparaten auch durch die Zwischenscheiben unverändert hindurch. An Rissenden von Fasern steht mitunter der blaugefärbte Axencylinder ein kleines Ende aus der Markscheide hervor, und zeigt so deutlich, dass die blauene Farbtheilung ihm selbst eigenthümlich ist. Auf längere Strecken solch blane Axencylinder aus Rückenmarkspräparaten z. B. zu isoliren, gelingt deshalb nicht gut, weil die Differenzirungsfähigkeit, wenn sie so direkt auf den nackten Axencylinder einwirken kann, sehr schnell jenen blauen Hauch zerstört. Sie ist es ja auch, welche an den Zwischenscheiben so intensiv einwirkt, dass diese Stellen des Axencylinders sich früher entfärben als alle übrigen. Uebrigens erhält man diese Färbung des Axencylinders auch mitunter an Präparaten aus Müller’scher Flüssigkeit, und sogar aus Alkohol, wenn man die von letzterem Präparat gewonnenen Schnitte in Chlorsäure legt und dann färbt, doch sind die Bilder lange nicht so schön wie die nach reiner Chromsäurehärtung gewonnenen. Bei dieser letzteren bleibt das Mark in günstigen Fällen ganz ungefärbt oder färbt sich nur hin und wieder etwas, so dass man direkt eine Axencylinderverschleierung sieht, und an einem Froschrückenmark habe ich Längsschnitte durch die Wurzeln und die Innentheile des
Markes erhalten, welche überall diese Färbung zeigten, und um

Fassen wir nun die Resultate dieser Untersuchung zusammen, so sind dieselben folgende:

1) Die bisherige Eintheilung der Nerven in markhaltige und marklose ist den Befunden entsprechend.

2) Ueberall, wo sich eine Markscheide findet, an peripheren wie centralen Fasern, zeigt sich diese auf doppelte Weise unterbrochen: durch die Lantermann'schen Einkerbungen, welche die entsprechenden Segmente trennen, und durch die Ranvier'schen

Archiv f. mikrosk. Anatomie. Bd. 30. 32
Schnürringe, welche grössere, Segmente führende Abtheilungen scheiden. Beide Arten der Unterbrechung gehen stets durch die ganze Dicke der Markscheide, beide sind an der lebenden Faser vorhanden.

4) An den Stellen der Zwischenscheiben und Zwischentrichtern werden von aussen auf die Faser wirkende Flüssigkeiten den Axencylinder am schnellsten erreichen. An den Zwischenscheiben wird dieses weit schneller und leichter gesehehen als an den Zwischentrichtern, da die Substanzmengen jener grösser, daher die Lücke zwischen den Markenden weit grösser ist, und die Entfernung bis zum Axencylinder weit geringer ist als bei diesen. Demzufolge werden beide Zwischensubstanzen, namentlich aber die Zwischenscheiben für die Ernährung des Axencylinders von der grössten Bedeutung sein.

5) Die Markscheide besitzt keine ihr eigenthümlichen Kerne.

6) Während alle centralen Fasern nackt in der Stützsubstanz liegen, haben alle peripheren eine bindegewebige Scheide: die
Beiträge zur Kenntniss des Baus der Nervenfasern.

Schwann'sche Scheide, welche beim Austritt der Wurzeln aus dem Centralorgan beginnt.

7) Diese liegt bei den marklosen dem Axencylinder, bei den markhaltigen Fasern der Markscheide dicht an, bei den letzteren so dicht, dass ihre Contur für gewöhnlich nicht sichtbar ist.

8) Die Schwann'sche Scheide besitzt in bestimmten Abständen Kerne, welche noch von mehr oder weniger Protoplasma umgeben sein können, auf der Innenseite der Faser stärker vorspringen und sich daher bei den markhaltigen Fasern in die Markscheide hinein vorbuckeln. Isolirt man die Schwann'sche Scheide, so bleiben diese Kerne natürlich in festem Zusammenhange mit derselben. Diese Kerne haben sicher bei manchen Thieren, vielleicht bei allen eine sehr charakteristische Form, welche ihre Unterscheidung von den Kernen des endoneuralen Bindegewebes oder des Stützgewebes im Centralorgan leicht macht.

9) Die Schwann'sche Scheide stellt einen der Form und Grösse der Nervenfaser entsprechenden, homogenen, in seiner ganzen Länge geschlossenen Schlauch dar, der keine nennenswerten Unterschiede in der Wanddicke während dieses Verlaufes erkennen lässt, also auch keine Verdickungen oder Verdünnungen an den Stellen der Ranvier'schen Einschnürungen.

10) Da die Schwann'sche Scheide sich genau nach der Form der Faser richtet (und bei den marklosen Fasern sich daher genau an den Axencylinder anschmiegt), so macht sie auch die Verengerung an der Stelle der Zwischenscheibe mit. Bei Fasern, die wenig Mark besitzen (daher auch bei jugendlichen) sind die Stellen der Zwischenscheiben kaum schmäler als die anderen, und demgemäss zeigt auch die Schwann'sche Scheide kaum eine schwache Einkerbung an der betreffenden Stelle. Je mehr das Mark an Masse zunimmt, um so mehr wächst auch der Schlauch der Schwann'schen Scheide, welcher nur an der Stelle der Zwischenscheibe weniger zunimmt, da hier kein Mark liegt, der Schnüring übt also keine schnürende Wirkung aus, der Name ist daher unrichtig.

11) Der Axencylinder hat die Form eines mehr oder weniger regelmässigen Cylinders. Sein Durchmesser bleibt wahrscheinlich im wesentlichen derselbe an den verschiedenen Stellen der Faser, so dass regelmässige Verkleinerungen desselben z. B. an den Stellen
der Zwischenscheiben nicht vorkommen. Unterbrechungen der Continuität des Axencylinders sind nicht vorhanden.

12) Die nähere Beschaffenheit des Axencylinders ist die folgende: derselbe besitzt einen äusseren festeren Theil, welcher selbst sehr dünn, einen inneren weicheren Theil umgibt.

15) Bei der Berührung mit coagulirenden Flüssigkeiten schrumpft der Axencylinder mehr oder weniger stark, mitunter sehr stark. Er kann daher alle möglichen Formen annehmen. Sehr häufig ist die Form die eines mehr oder weniger regelmässigen Bandes, einer Rinne, eines mehr oder weniger regelmässigen auf dem Querschnitt oft sternförmigen Cylinders. Der geschrumpfte Axencylinder liegt gewöhnlich excentrisch. Die Lage desselben wird wohl bedingt durch den Ort, an dem die auf ihn wirkende Flüssigkeit zunächst eindringt, daher auch häufiger Lagewechsel im Verlauf des Axencylinders, der Drehungen desselben vortäuschen kann.

16) Zwischen dem geschrumpften Axencylinder und der Mark scheide, oder bei marklosen Fasern zwischen ihm und der Schwann’schen Scheide, resp. der Stützsubstanz des Centralorgans bleibt ein mehr oder weniger breiter mitunter sehr bedeutender Raum, in dem vielfach Gerinnsel zu sehen sind. Dieser Raum enthält jedenfalls auch die bei der Gerinnung des Axencylinders aus diesem ausgetriebenen Substanzen. Dieser Raum stellt eine künstliche Erweiterung eines normalerweise wohl vorhandenen, wenn auch unsichtbaren minimalen Spaltraumes dar, des „peri axialen Spaltraumes“, der von einer wahrscheinlich der Lymphhe

20) Die Weigert'sche Hämatoxylin-Blutlaugensalz-Methode färbt die markhaltigen Fasern ganz verschieden je nach dem chromsauren Salze, das zur Härting gebräucht wurde. Eine bestimmte charakteristische Substanz, welche gefärbt wird, scheint nicht vorhanden zu sein, die Färbung ist an derselben Faser wechselnd und nicht ganz sicher.

Nach Härting der Fasern in Chromsäure färbt sich das Mark wenig oder gar nicht, dagegen, wie es scheint, spezifisch die Rinde des Axencylinders, doch ist auch diese Färbung nicht ganz regelmässig.

Die Unregelmässigkeiten der ersten wie der zweiten Färbung hängen wahrscheinlich von dem verschieden starken Einwirken
der Differenzierungsfüssigkeit an verschiedenen Stellen ab, einem Umstande, den man absolut nicht beherrscht, die Färungsresultate sind daher mit Vorsicht aufzunehmen.

Literatur.

13) Klebs, Die Nerven der organischen Muskelfasern. Taf. IV, Fig. 1, 2, Taf. VI. Virch. Arch. 32. Bd. 1865, p. 168—198.
Erklärung der Abbildungen auf Tafel XXVI.

Alle Figuren habe ich selbst gezeichnet mit Hülfe eines Winkel'schen Zeichenapparates, mit Winkel'schen Objectiven. Figg. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15 mit Obj. VIII, Fig. 12 mit homogener Immersion 1\(\frac{1}{2}\), Fig. 13 mit Obj. VI.

Fig. 1. Ein Stück eines Axencylinders aus dem Rückenmark des Rindes mit der Zwischenscheibe im optischen Durchschnitt gezeichnet. Silber-Chloroform.

Fig. 2. Ein Stück eines Axencylinders aus dem Rückenmarke des Rindes mit der Zwischenscheibe, schräg auf die Fläche der letzteren gesehen. Silber-Chloroform.

Fig. 3. Stück einer Nervenfaser aus dem Ischiadicus des Frosches mit Zwischenscheibe. Osmium-Silber, verdünnte Kalilauge, Glycerin. Zeichnung der Zwischenscheibe im optischen Durchschnitt.

Figg. 4 u. 5. Fasern aus dem ischiadicus einer dreiwöchentlichen Ratte. Osmium-Silber. Zwischenscheiben und Zwischentrichter durch Silber gefärbt. ZS = Zwischenscheibe. FS = Fibrillenscheide.

Fig. 6. Faser aus dem Ischiadicus des Frosches. Osmium-Silber. Verdünnte Kalilauge. Die Zwischentrichter gequollen, theilweise zerstört, dadurch die Segmente frei geworden. SchwS = Schwann’sche Scheide.

Fig. 7. Faser aus dem Ischiadicus des Hundes. Müller’sche Flüssigkeit, Weigert’s Hämatoxylin-Blutlaugensalz-Färbung, fast ganz ausgezogen in der Differenzirungsfüssigkeit. AxC = Axencylinder, ZT = Zwischentrichter, sonst wie oben.

Fig. 8. Faser aus dem Ischiadicus des Frosches. Osmium, verdünntes Ammoniak, wie oben.

Fig. 9. Faser aus dem Trigeminus des Neunagles. Müller’sche Flüssigkeit. Lithion-Carmin. SchwK = Kern der Schwann’schen Scheide, FK = Kern der Fibrillen-Scheide.

Fig. 10. Faser aus einem Längsschnitte des Rückenmarks des Rindes. Müller’sche Flüssigkeit. Alkohol. M = Mark.

Fig. 11. Querschnitte von Fasern aus dem Rückenmarke des Rindes. Müller’sche Flüssigkeit. Alkohol.
Dr. P. Schiefferdecker: Beiträge zur Kenntniss des Baus etc.

Fig. 13. Stück eines Querschnittes von dem Rückenmarke des Neunauges. Chromsäure. Alkohol.

Fig. 14. Querschnitte von Nervenfasern aus dem Rückenmarke des Frosches. Osmium $\frac{1}{2}^0\%$.

Fig. 15. Stück eines Axencylinders aus dem Rückenmarke des Rindes. Silber-Chloroform. Frommann'sche Linien.
Die Hautdecke des Menschen versieht ebenso wie die der anderen Wirbeltiere einen mehrfachen Zweck. Schutzmittel gegen klimatische und mechanische Einflüsse seitens der Außenwelt, Regulator der Körperwärme und vielleicht auch des Stickstoffgleichgewichts, stellt sie zugleich den Endapparat der Tastnerven, der temperatur- und schmerzempfindenden Nerven dar. Und in dieser letzteren Eigenschaft — als Tastorgan im weiteren Sinne — besitzt die Haut, insbesondere ihre oberflächlichste Schicht, die Oberhaut, dieselbe Regelmasseigkeit im Aufbau, dieselbe architektonische Gliederung und Anordnung der einzelnen Endorgane zu Gruppen, wie wir sie an den Endapparaten der anderen sensiblen Nerven beobachten. Diese eigenthümliche Gruppierung fällt freilich bei den niederen Wirbeltieren mehr in das Auge: die regelmässig beschuppte Hautdecke der Selachier, der quadratisch und rhombisch gefelderte Panzer der Reptilien sind ja wohlbekannte und gut studirte Erscheinungen; an der Haut des Menschen sind es eigentlich nur zwei Stellen, an denen eine solche typische Anordnung sich schon auf den ersten Blick bemerkbar macht, d. h. die bekannten Riffe und Furchen an der Volarfläche von Hand und Fuss und die von Eschricht (5) und Voigt (10) am menschlichen Embryo gefundenen Haarwirbel und Haarströme. Im Übrigen hat man bisher ein regelloses Nebeneinanderliegen der verschiedenen Oberhauttheile, eine rein zufällige, nur durch die Muskelnwirkung und die dadurch bedingte Richtung der Bindegewebsfasersätze (O. Simon 16) etwas modificirte Anordnung als das normale Verhalten betrachtet. Und doch lässt sich zeigen, dass diese Vorstellung
nicht richtig ist, dass vielmehr die gesammtte Hautoberfläche des Menschen ebenso wie alle übrigen Sinnesflächen — wie die Retina, die Corti'schen Bögen, die Geschmacksleisten — eine wohl charakterisirte, für die verschiedenen Hautbezirke verschiedene Gliederung besitzt. Wenn diese Thatsache bislang nicht erkannt worden ist, so liegt dies, wie ich glaube, im Wesentlichen daran, dass man ausgehend von der alten Vorstellung, dass der bindegewebige Bestandtheil der Haut, die Cutis, das eigentlich formgebende Element sei, über welches die Epidermis — ohne jede ihr selbst innewohnende Activität — als ein blosser epithelialer Ueberzug hinwegziehe, sich allen Erhabenheiten und Vertiefungen der Cutis genau anpassend — dass man, von dieser Vorstellung ausgehend, sich fast ausschliesslich dem Studium der Cutis und ihres Aufbaues gewidmet, die Papillen derselben, ihre Grösse, Gestalt und (selten zwar) ihre Anordnung untersucht hat. Auf diesem Wege war freilich nicht viel zu erreichen. Flächenansichten der Cutis, welche allein im Stande wären, ein exaktes Bild von der Anordnung der Papillen zu gewähren, sind bekanntlich nicht leicht, an vielen Stellen der Haut gar nicht zu erhalten. Man war also im Wesentlichen auf Durchschnitte — Flach- und Querschnitte — angewiesen. Wie schwer es ist, selbst durch regelmässige Schnittserien, die in zwei auf einander senkrechten Ebenen angelegt werden, eine richtige Vorstellung von den stereometrischen Verhältnissen eines complicirt aufgebauten körperlichen Gebildes zu erhalten, weiss jeder, der sich einmal einer solchen Aufgabe unterzogen hat; man hat denn auch diesen Weg gar nicht eingeschlagen, sondern einfach Querschnitte der Haut in ganz willkürlich gewählter Schnittrichtung gemacht, Höhe und Gestalt der so getroffenen „Papillen“ verzeichnet, während man über die gegen seitige Anordnung derselben nur spärliche Aufschlüsse erhielt. Auf diese Weise sind die Angaben von Kölliker (7), Meissner (8) und Krause (18) über die Höhe der Papillen und die von denselben Autoren gegebenen Maasse für die Dieke der Epidermis gewonnen. Aber auch diese wenigen Resultate waren nicht ganz fehlerfrei: Schon bei der blossen Excision eines Hautstücks retrahirt sich dasselbe bekanntlich nach allen Richtungen hin (Langer 14), wodurch die Grenzecontour zwischen Cutis und Epidermis verändert wird, und zwar erfolgt diese Retraction nicht einmal nach allen Richtungen hin gleichmässig. Bei der nun nachfolgenden Härting,
Beiträge zur Anatomie der Oberhaut.

497

Bei Durchmusterung der Literatur finden wir nur sehr vereinzelt Beschreibungen und Abbildungen der unteren, der Cutis zugekehrten Fläche der Epidermis (Köl l i k e r 7, W i l s o n 12, S a p p e y 17, H e n l e 18), und diese beschränken sich fast alle auch nur auf die Haut der Handfläche und Fusssohle. Nun sprechen aber gerade für eine solche Betrachtungsweise ausser ihrer Zweckmässigkeit noch eine Reihe anderer Gründe. Zunächst ist hervorzuheben, dass es doch nicht angängig ist, die Epidermis als einen blossen Abklatsch der obersten Cutisschicht ohne jegliche ihr selbst inne-
wohnende formbildende Eigenschaft zu betrachten; und wenn auch die Auspitz'sche Auffassung (15), nach welcher der Epidermis allein die aktive Rolle zufällt, wohl als zu weit gehend verworfen werden muss, so lässt sich doch zeigen, dass bei dem Aufbau der Papillarformation die epithelialen Gebilde zum mindesten in gleicher Weise aktiv beteiligt sind wie die bindegewebigen Elemente. — Und noch ein Grund muss uns veranlassen, der Epidermis, insbesondere dem Rete Malpighi eine grössere Aufmerksamkeit zuzuwenden. Wie bei den anderen Sinnesorganen, so wird auch höchst wahrscheinlich in der Haut die eigentliche Endigung der Sinnesserien innerhalb der epithelialen Gebilde zu suchen sein, eine Anschauung, die wir geradezu als ein physiologisches Postulat betrachten müssten, wenn auch der Beweis für dieselbe bisher immer noch nicht in einwandfreier Weise erbracht ist.

In der folgenden Darstellung, welche sich im Wesentlichen mit der Configuratio der so complicirt gebauten Grenzfläche zwischen Cutis und Epidermis beschäftigt, werde ich daher vorzugsweise die untere, der Cutis zugekehrte Fläche der Oberhaut betrachten, während ich das Negativ dieses Bildes, die Aufsicht der obersten Catisschicht mit den Papillen nur da zur Beschreibung heranziehen werde, wo dies zum Vergleich mit älteren Angaben und zur Erkenntniss verwickelter Formverhältnisse erforderlich sein wird.

1) Das Material hierzu verdanke ich der Liebenswürdigkeit meines verehrten Lehrers Herrn Prof. H. Munk.

Am übrigen Körper schrumpft entweder trotz aller Vorsichtsmaassregeln die Haut so stark bei der Härtung, dass man Kunstprodukte erhält, oder die Epidermis ist so dünn, dass es nicht gelingt, übersichtliche Flachsnitte zu erzielen.

II. Flächenansichten der durch Kochen oder Fäulnis von der Oberhaut befreiten Cutis. Diese Methode fand Anwendung bei den Lippen und Nägeln.

III. Flächenansichten der Epidermis von unten. Solche Präparate erhält man

1) durch Kochen (Nägel),

Beiträge zur Anatomie der Oberhaut. 499
gelöst hat, an den meisten Hautpartien (eine Ausnahme machen die Lippen und der behaarte Kopf) äußerst leicht; manchmal bedarf es hierzu eines leichten Gegendrucks auf die Cutis. Der abgezogene Lappen wird dann mit der Schleimschicht nach oben auf einem grossen Objektträger ausgebretet und im halbtrockenen Zustande — das überschüssige Wasser wird mit Fliesspapier abgesaugt — mit einer concentrirten Lösung Böhmer'schen Hämatoxylins übergossen. Hierbei färben sich vorwiegend die aus dem Niveau hervorspringenden, durch stärkere Ansammlungen von Retezellen gebildeten Epithelleisten, während die zwischen ihnen in dünnerer Schicht liegenden Retezellen sich nur schwach, die verhornten Zellen des Stratum corneum, welche bekanntlich geringe Verwandtschaft für Hämatoxylin haben, sich gar nicht färben. Nach 3—5 Minuten Einwirkung wird das Präparat abgespült und nun

1) entweder in Glycerin oder
2) nach vorausgegangener Behandlung mit Alkohol und Nelkenöl in Canadabalsam eingebettet oder
Beiträge zur Anatomie der Oberhaut. 501

sie beim Ausbreiten und Antrocknen entstehen; doch sind dieselben durch ihre unregelmäßige Configuration von den Epithelleisten, deren für jede Körperregion charakteristische Anordnung man bald kennen lernt, leicht zu unterscheiden; auch nehmen die Falten, da sie nicht der Ausdruck einer stärkeren Ansammlung von Retezellen sind, niemals eine so gesättigte Färbung an wie die Epithelleisten. Diejenigen Einfaltungen der Epidermis, welche der sogenannten Oberhautfelderung entsprechen, wirken um so weniger störend, als sie bei faultodten Früchten, zumal da, wo die Oberhaut sich schon spontan von der Cutis gelöst hat, kaum noch wahrnehmbar sind, im Übrigen aber während des Antrocknens verstreichen. Auch sie nehmen eine intensivere Färbung nur da an, wo ihnen zu gleicher Zeit eine stärkere Ansammlung von Retezellen in Form von Leisten entspricht.

Die gesamte Hautoberfläche des Menschen zerfällt in einen behaarten und unbehaarten Theil, ein Unterschied, welchen, wie ich an anderer Stelle (29) gezeigt habe, auch eine tiefgreifende physiologische Differenz entspricht, dieselbe nämlich, welche für das Sehorgan zwischen dem gelben Fleck und der übrigen Netzhaut besteht. Die unbehaarte Haut vermittelt die direkte, die behaarte, deren Haupttastorgan die Haare selbst sind, die indirekte Tastempfindung; erstere kann man also auch als die direkte, letztere als indirekte Tastfläche bezeichnen.

Zur unbehaarten Haut gehören:
1) die Volarfläche der Hände, Füße, Finger und Zehen,
2) die Nägel,
3) die Mundlippen,
4) die Brustwarzen,
5) die unbehaarten Theile der äusseren Genitalien,
6) der innerste, dem Trommelfell zunächst liegende Theil des äusseren Gehörgangs.

Direkte Tastflächen sind noch die Mundschleimhaut, insbesondere Zunge und Gaumen; da dieselben jedoch nicht zur äusseren Hautbedeckung gehören, so werde ich dieselbe nicht in den Kreis meiner Betrachtungen ziehen.

Behaart sind alle übrigen nicht genannten Hautflächen.
1. Unbehaarte Haut.

1. Volarflächen der Hände, Füsse, Finger und Zehen.

Legt man einen Schnitt senkrecht auf die Riffe und Furchen der Fusssohlen eines jugendlichen Affen (Macacüs), so erhält man folgendes Bild (Fig. 1): An der unteren, der Cutis zugekehrten Fläche zeigt die Epidermis doppelt soviel Vorsprünge als nach oben, insofern nämlich sowohl den Riffen wie den Furchen je eine Hervorwölbung gegen die Cutis entspricht. Diese scheinbar zapfenförmigen Gebilde („Retezapfen“, „Epithelzapfen“ der Autoren s. o.) sind in Wirklichkeit Querschnitte von längsverlaufenden Leisten. Solcher Längsleisten finden sich 2 verschiedene Arten, die eine, in ihrem Verlauf den Riffen entsprechende, in welche die Schweissdrüsensäume münden — ich nenne sie die Drüseneiste (d) — und zwischen je 2 Drüseneisten eine andere, unter den Furchen einherziehende, welche dadurch zu Stande kommt, dass

1) Sappey hat diese Verhältnisse an Epidermislappen, welche durch Fäulnis von ihrer Unterlage losgelöst wurden, studirt.
die Oberhaut mit allen Schichten eingefaltet erscheint: die Falte (f). Zwischen den durchschnittenen Längsleisten finden sich Verniefungen, in welche die Lederhaut ihre Fortsätze hineinsendet; doch sind solche Verniefungen nicht überall zu sehen, hier und da sind Drüsenleiste und Falte durch eine Wand von Epithelzellen (q) verbunden. Was diese Zellenwand zu bedeuten hat, erkennt man am deutlichsten an Flachschnitten parallel zur Oberhaut (Fig. 2). Man sieht wiederum die Drüsenleisten (d), in denen die durchschnittenen Drüsenkanäle (s), die Falten (f) und zwischen diesen in regelmäßigen Abständen mehr oder minder senkrecht ausgespannte Querleisten (q). Letztere sind hin und wieder noch durch kurze Querstücke, secundäre Querleisten, verbunden (im abgebildeten Präparat nicht vorhanden). Der Schnitt, welcher etwas schräg zur Hautoberfläche gefallen ist, geht in seiner unteren Hälfte durch die Cutis und zeigt die Anordnung der Bindegewebsfasern, welche unterhalb und seitlich von der Falte dem Verlauf derselben parallele Züge bilden, während sich unter der Drüsenleiste kurze, theils quere, theils in cirkulären Touren um die Schweisskanäle ziehende Fasern finden. Im unteren Theile des Schnittes sieht man Falte und Drüsenleiste noch ohne Querleisten verlaufen, die erstere glatt contourirt, die letztere an den Stellen, wo die Schweisskanäle durchziehen, etwas aufgetrieben. Weiter oben präsentiren sich die Durchschnitte der Cutispapillen als die viereckigen Räume, gebildet von je 2 Längs- und 2 Querleisten.

Auf dem Längsschnitte (Fig. 3), welcher bei dem spiraligen Verlauf der Riffe und Furchen diese naturgemäß etwas schräg treffen muss, zeigen sich wieder die 3 beschriebenen Arten von Leisten. Die untere Contour der Drüsenleiste und der Falte sind ganz eben, und eine gezackte Contour ist nur dort zu sehen, wo der Schnitt durch die Querleisten geht. — Nur geringe Abweichungen zeigen die Bilder von der Handfläche (Fig. 4) und dem Finger (Fig. 5) des Affen. Wir sehen namentlich an dem letzteren Präparat eine verhältnismäßig starke Entwicklung der Drüsenleisten, während die Falte wesentlich gegen dieselbe zurücktritt.

Beim Menschen sind die Verhältnisse im Wesentlichen dieselben. Präparate aus den letzten beiden Schwangerschaftsmonaten und den ersten Lebensjahren lassen die regelmäßige Anordnung der Längs- und Querleisten deutlich erkennen (Fig. 6). Mit zunehmendem Alter aber und durch den Reiz mechanischer Einflüsse erlan-
Beiträge zur Anatomie der Oberhaut. 505
gen die Epithelialgebilde eine reichlichere Entwicklung (eine Er-
sehinnung, der wir weiterhin mehrfach begegnet werden); es
bildet sich zahlreiche sekundäre und tertiäre, meist nicht bis zur
Tiefe der primären herabreichende Querleisten, welche auch nicht
mehr genau senkrecht auf den Längsleisten stehen. Die Falte
ist beim Menschen — namentlich an der Hand — von vorn-
herein etwas schwächer entwickelt; die Drüsenleiste erlangt eine
ungleichmässige Entwicklung, indem sie sich an einzelnen Stellen
verdünnt, während sie an anderen Stellen, namentlich da, wo die
Schweisscanäle hindurchziehen, meist eine beträchtliche Anschwel-
lung erfährt. So nimmt sie denn einen stark gezackten Verlauf
an, und es ist leicht erklärlich, wenn dieselbe auf Längschnitten,
welche bald rechts, bald links seitwärts in die Cutis gerathen, an-
scheinend eine wellige untere Contour aufweist (Henle 18, Bd. II,
Fig. 4, p. 11). Dann bekommt man auch Flächenansichten des
Rete Malpighi, wie sie Kollmann und Kölliker abbilden, wäh-
rend man bei Neugeborenen mittelst der oben beschriebenen Me-
thode ganz regelmässige Bilder erhält (Fig. 8 und 9). Auch hier
sehen wir wieder wie beim Affen Drüsenleiste und Falte, parallel
neben einander herlaufend, die gleichen Curven beschreiben wie
die oberflächlichen Riffe, und zwischen ihnen ausgespannt nur un-
deutlich sichtbar, weil offenbar nicht soweit in die Tiefe reichend
die Querleisten, welche im grossen Ganzen eine beinahe senkrechte
Stellung zu den Längsleisten zeigen. Diese senkrechte Stellung
geht an den Stellen, wo die Längsleisten eine starke Krümmung
ihres spiraligen Verlaufs zeigen, in eine spitzwinklige über.

Den bindegewebigen Ausguss dieser bienenwabenähn-
lichen Platte stellt die oberste Cutisschicht mit ihren Papillen
dar, welche, wie man sieht, nicht immer die von den Autoren be-
schriebenen kegelförmigen Gebilde sind, sondern oft — beim Affen
noch ausgeprägter wie beim Menschen — abgestumpfte Pyramiden
mit 3—5, in der Regel 4 Kanten darstellen. Dass die primären
Querleisten nicht so stark hervorspringen wie die Längsleisten,
heisst mit anderen Worten, die Papillen stehen auf Cutisleisten,
welche zwischen und parallel den Längsleisten verlaufen. Den
sekundären und tertiären Querleisten entsprechen in der Cutis die
zusammengesetzten Papillen.

Auf die Entwicklung der genannten Gebilde, welche ich an
anderer Stelle (28) schon kurz skizzirt habe, will ich hier nur mit

und bildet ab einen proximal von der Lunula gelegenen linsenförmigen Raum, in welchem die Leisten des Nagelbetts verstreichen oder doch sich sehr abflachen, um erst wieder distal von der halbmondförmigen Linie um so deutlicher hervorzutreten. Diese letzteren Leisten tragen nach H. nur wenige oder gar keine Papillen, während die Leisten an der Matrix (proximal von seinem linsenförmigen Raum) mit reichlichen Papillen besetzt sind. Alle Untersucher betonen die grossen Abweichungen der verschiedenen Präparate; nach Kölliker weist das Bett des kleinen Zehennagels oft gar keine Leisten auf.

Die Nägel faulzotder Früchte lassen sich leicht von ihrer Unterlage abziehen, doch bedarf es einiger Vorsicht, um nicht ganze Fetzen des Rete Malpighi hängen zu lassen. Für die Nägel Erwachsender hat sich mir die auch von Hebra und Sappey angewandte Kochmethode als ganz vorzüglich bewährt. Nach dem Kochen lassen sich die Nägel meist ziemlich gut ablösen; man übergiesst dann ihre concave Fläche mit einer starken Böhmer'schen Lämmatoxylinlösung, lässt diese 3—4 Minuten einwirken, um sie dann wieder mit Wasser fortzuspülen; um die Nägel durchsichtiger zu machen, kann man an der convexen Seite einen Theil der Hornschicht abschaben oder abschneiden und die Nägel dann in Glycerin legen. Dieselben werden dann in Glycerin oder trocken aufbewahrt und mit der Loupe oder unter dem Mikroskop untersucht. Präparate, die in Canadabalsam übergeführt sind, müssen mit einem zweiten Objektglase bedeckt und bis zur Erhärtung des Balsams — was Wochen bis Monate dauert — von schweren Compressoren flach gedrückt werden. Man erhält nun aus den verschiedenen Altersperioden ganz verschiedene Bilder. An Nägeln von Neugebornen und Kindern aus dem 1. Lebensjahre lassen sich deutlich nur 2 Regionen unterscheiden, eine vordere (distale), in welcher das Rete Malpighi eine Reihe parallel zu einander gestellter Längsleisten aufweist, von denen jedoch 2—4 oder auch 5 an vorderen Nagelrand unter einem spitzen Winkel zusammenstossen, um in eine grössere Leiste überzugehen — und eine hintere Region, in welcher die Längsleisten, welche nach hinten zu sich allmählich verschmälerat und hin und wieder sich noch einmal getheilt haben, aufhören und spindelförmigen Gebilden, die ebenfalls in der Längsrichtung orientirt und nur selten durch Querfortsätze mit einander verbunden sind, Platz machen.
Ganz andere und äusserst charakteristische Bilder erhält man an den Nägeln Erwachener (Fig. 13). Man kann deutlich 3 verschiedene Zonen wahrnehmen: 1) eine distale mit stark entwickelten hohen Leisten, die nach hinten zu sich mehrfach theilen, an Zahl daher zunehmen, an Mächtigkeit aber einbüßen. An der halbmondförmigen Linie zerfallen die Leisten plötzlich in zahlreiche feinere, oft mit einander communicirende Leistchen und es entsteht so 2) central von der halbmond-förmigen Linie ein linsenförmiger Raum (welcher Übrigens seitlich nicht bis an den Rand des Nagels reicht) charakterisirt durch ein äusserst feines, nicht überall geschlossenes Netz dieser durch fortgesetzte Theilung der stärkeren entstandenen feinsten Leistchen. 3) Proximale Zone. Die Leistchen vereinigen sich wieder und bilden von Neuem hohe mächtige Leisten, von denen zahlreiche, in regelmässigen Abständen stehende und zu meist senkrecht gestellte Querleisten abgehen (Fig 14). An den Seitenrändern des Nagels findet sich diese Formation in der Regel auch in der mittleren Nagelhälfte und geht direkt in die Formation der distalen Zone (Längsleisten ohne Querleisten) über. Ganz nach hinten zu, in der Mitte der Nagelwurzel verwischt sich der Unterschied von Längs- und Querleisten und wir sehen nur ein unregelmässiges netzförmiges Gefüge. Dem entsprechend finden wir (Fig. 13 links) auf dem Nagelbett (dasselbe wird mit dem Rasirmesser in feiner Schicht abgetragen und ebenso wie die Unterfläche des Nagels an seiner Oberfläche gefärbt, in Glycerin oder trocken untersucht): In der distalen Zone die hohen Cutisleisten, die zum Theil schon vor dem vorderen Rand des Nagelbetts aufhören (den Bifurcationsleisten der Epidermisleisten entsprechend); in der centralen Zone Zerfall der Leisten in feine spindelförmige, zum Theil netzförmig mit einander verflochtene flache Leistchen. Da wo das Netz der Epidermisleisten geschlossen ist, enden die Cutisleisten natürlich frei und umgekehrt. In der Proximalzone wiederum hohe mit kammarartigen Vorsprüngen besetzte Leisten, die am hintersten Ende des Nagelbetts in erst reihenförmig, dann unregelmässig aufgepflanzte Papillen übergehen. In der seitlichen Partie von hinten nach vorn direktes Übergreifen der kammarartigen Leisten in die glatten vorderen, ohne Dazwischen treten der Netzformation. Dass Hebra die netzförmig angeordneten feinen Leisten der Centralzone entgangen sind, ist leicht
erklärlich, da die vorspringenden Cutisleisten eine nur sehr schwache und von den dazwischenliegenden Partien nur wenig不同的 Färbung annahmen; hier eben zeigt sich wieder, welche Vorteile die Untersuchung der Retiformation vor der der Cutisgehilbe gewährt. Hat man einmal die erstere richtig erkannt, so ist es nachträglich auch leichter, sich über die entsprechende Figuration der bindegewebigen Theile zu informiren.

— Der geschilderte Typus findet sich am reinsten an den Daumen- nägeln jugendlicher und weiblicher Individuen; von denselben kommen zahlreiche Abweichungen vor. So kann die regelmässige Anordnung von Quer- und Längsleisten in der Proximalzone fehlen und das sonst nur am hintersten Ende der Nagelwurzel befindliche unregelmässige Leistennetzwerk sich über die ganze Proximalzone und die Seitenränder der centralen erstrecken; das Netzwerk der centralen Zone, welches in der Regel deutlich längs orientirt ist und seinen Ursprung aus den longitudinalen Leisten noch klar erkennen lässt, ist nicht selten ganz unregelmässig gestaltet, manchmal reicht dasselbe bis an die Seitenränder des Nagels, in sehr wenigen Fällen fehlt es ganz und die proximale Zone geht direkt in die distale über. In der distalen Zone, deren Leisten direkt in die Längs- und Querleisten der benachbarten Epidermis übergehen, finden sich die wenigsten Abweichungen; hin und wieder habe ich Verbindungsbrücken (Querleisten) gesehen (dann ist auch die vordere Nagelhälfte mit Papillen versehen). Auf andere seltner vorkommende Abweichungen, welche mir pathologischer Natur zu sein schienen, will ich hier nicht eingehen; auch muss ich es mir ver-
sagen, die Beziehungen, welche das von mir beschriebene Netz der centralen Zone zu der Nagelmatrix hat, hier zu erörtern, da eine solche ja sehr nahe liegende Betrachtung über den Rahmen dieser rein descriptiven Darstellung hinausgehen würde.

Klein (13) und nach ihm Wertheimer (23) theilen die Lippe von vorn nach hinten in drei Theile: Haut, Uebergangszone und Schleimhaut. Die Uebergangszone, etwa dem freien Lippenrand entsprechend, ist nach Wertheimer charakterisirt durch das Verschwinden der Haarbälge, dicker und transparenter werden der Epitheldecke und das dichte Herantreten der Orbicielaris an die Oberfläche. „Die Cutis ist an ihrer Oberfläche mit Papillen besetzt, welche bald weiter, bald dicht an einander gedrängt stehen und um so länger werden, je mehr man sich der Schleimhaut nähert. Auch Sappey (17, Bd. IV, p. 36) erwähnt das allmähliche Zunehmen der Papillen des freien Lippenrandes an Grösse, wenn man sie von vorn nach hinten verfolgt.

Ich unterscheide mit Luschka an dem freien Lippenraum deutlich eine vordere und eine hintere Zone. Beim Neugeborenen und noch schärfer beim Embryo grenzen sich beide schon von aussen scharf von einander ab, insofern die vordere Hälfte eine glatte, die hintere eine stark höckrige Oberfläche hat (pars glabra und villosa Luschka). Im Laufe des ersten Lebensjahres verschwindet das höckrige Aussehen der hinteren Lippenpartie; doch bleiben noch wesentliche anatomische Differenzen zwischen beiden Gegenden zurück.
Auf Sagittalschnitten durch den freien Lippenrand des Erwachsenen (sehr übersichtlich sind auch alle diese Verhältnisse beim Affen) unterscheidet man leicht eine vordere Partie, in der die Epidermisdecke noch dünn, etwa doppelt so stark wie die Epidermis der behaarten Lippe ist, mit fast gradliniger Contur gegen die Cutis abgesetzt, und eine hintere mit etwa 4—5 mal dickerer Epidermis, in welche langgestreckte fadenförmige Papillen von der Cutis her einstrahlen. Ein frontaler Querschnitt durch die vordere Region zeigt eine mit zahlreichen kleinen, in regelmässigen Abständen stehenden Einsenkungen versehene Oberhaut, während wir auf Querschnitten durch die hintere Lippenregion wieder die langen fadenförmigen Papillen und zwischen ihnen bald mehr, bald weniger in die Tiefe reichend die entsprechenden, zum Theil äusserst mächtigen Epitheleinsenkungen finden. Flächenschnitte parallel der Oberfläche, welche natürlich nicht Bilder von der gesamten Lippe auf einmal geben, sondern nur entweder die vordere oder hintere Region treffen können, zeigen vorn längsgestreckte, von vorn nach hinten parallel verlaufende, mehrfach mit einander communicirende schmale Epithelleisten, in der hinteren Partie als Fortsetzung dieser Leisten breite raupen- und spindelförmig gestaltete Epithelwülste. — Die klarste Einsicht in den Bau der Lippen gewinnt man auch hier durch Flächenansichten. Leider ist es an faultodten Früchten oder Neugeborenen schwer, grosse zusammenhängende Stücke der Oberhaut zu erhalten, und ich habe daher nur wenige Präparate derart gewonnen; mehrfach aber liess sich bei Kinderköpfen, welche längere Zeit in 70procentigem Alkohol gelegen hatten (ich verdanke dieselben der Liebenswürdigkeit des Herrn Dr. Schwa- bach), die Epidermis in grösseren Fetzen von der Cutis loslösen. Auch von der letzteren lassen sich hier leicht Flächenansichten folgendermassen gewinnen. Die von der Oberhaut befreite Lippe wurde oberflächlich getrocknet, kurze Zeit (1/2—1 Minute) in starke Hämostylingenlösung getaucht, abgewaschen und wieder in dünner Alkohol gebracht. Auf diese Weise färben sich nur die vorspringenden Cutisleisten und Papillen, während die Thäler ungefärbt bleiben. Mit starker Loupe lassen sich dann alle Details der Configuration erkennen. (An der übrigen Haut, wo die papillären Gebilde viel weniger stark aus dem allgemeinen Niveau hervortreten, ist diese Methode leider nicht zu verwenden.) Die Epidermis wird einer
gewöhnlichen Hämatoxylinfärbung unterzogen und in Glycerin oder Balsam untersucht. — Auf diese Weise sind die in Fig. 15 abgebildeten Präparate, welche von der Unterlippe eines zweijährigen Kindes stammen, gewonnen. Man sieht in der vorderen Zone das langgezogene, nicht geschlossene Netz der Bindegewebs- und Epithelleisten, und mit scharfer Grenze hervorgehend in der hinteren Zone die dicken Epithelwülste, welche sich tief in die rhomboidalen Maschen des Bindegewebslagers einsenken. Auf den vorspringenden Kanten dieser Maschen sieht man zahlreiche isolierte fadenförmige Papillen sitzen, welche nach hinten an Zahl und Höhe beträchtlich zunehmen. Hin und wieder habe ich auch in der vorderen Zone echte Papillen gefunden, dann bildeten die oben beschriebenen feinen Cutisleistchen korallenförmige Schnüre, deren einzelne Segmente aus kleinsten buckelförmigen Erhebungen bestanden. — Die vordere Lippenzone grenzt sich scharf gegen die behaarte Lippe ab, die hintere geht unmerklich in die Mundschleimhaut über.

4. Brustwarze. Die Brustwarze und ihr Hof unterscheiden sich von der umgebenden Brusthaut ausser durch ihre stärkere Pigmentation noch durch das Fehlen der Wollhaare und die Entwicklungsgeiger, schon äusserlich stark hervortretender Papillen. Dem entsprechend finden wir auch an der Unterfläche der Epidermis (Fig. 18) in einer gewissen Entfernung von der Mündung der Milchdrüse die in einer fast kreisförmig gekrümmten Spirale eingepflanzten Haarwurzeln plötzlich aufhören und gewissermassen als eine Fortsetzung derselben stärkere und feinere Epithelleisten in circulären und spiraligen Touren die Drüsenmündung umkreisen — einander spitzwinklig schneidend und so rhomboidale Maschen zwischen sich lassend, deren Ausgüsse die Cutispapillen bilden. Verfolgt man das von diesen Leisten gebildete Netz nach aussen, so bemerkt man, dass an der Grenze der behaarten Haut die starken Leisten plötzlich aufhören und zwischen den Haaren nur noch ein Netz äusserst feiner Leisten überbleibt.

5. Außere Genitalien. In der Literatur finden sich nur wenige Angaben, welche meist den Penis, die Glans und das Präputium betreffen.

Nach Kölliker (7) beträgt die Basis der Papillen am übrigen Körper ungefähr ebenso viel oder etwas weniger als die Länge „an einigen, wie an denen des scrotum, des Präputium, der Penis-
wurzel übertrifft sie selbst die Länge um 1/3 und mehr, weshalb auch diese Papillen exquisit warzenförmig, ja selbst in Gestalt kurzer Leistchen erscheinen. Krause (19, p. 299) gibt an: An einigen Stellen, namentlich an der Glans penis (und der Brustwarze) sind die Papillen zu einzelnen Häufchen gruppiert, die durch netzartig zusammenfließende Zwischenräume von einander gesondert werden. Nach Henle (18, Bd. II, p. 16) kommen ähnliche Papillenbüschel wie in der Hand und dem Fuss, deren aber jede von einem besonderen Epidermisüberzug bekleidet ist, wodurch die Hautoberfläche ein hockeriges Aussehen erhält, an der (Brustwarze und der) Glans penis, besonders der Corona Glandis vor; sie sind mit ihrem Ueberzug 0,3 bis 0,6 mm breit, halbkugelig oder kolbig und selbst umgekehrt kegelförmig, an der Oberfläche glatt oder auch grubenförmig vertieft, durch schmale Einschnitte von einander abgesetzt. — Noch weniger studirt sind die weiblichen Genitalien. Ueber diese finde ich bei Sappey (17, Bd. IV, p. 788) folgende Angaben: „Unter dem Epithel der kleinen Labien bemerkt man voluminöse Papillen, welche auf der Aussenseite unregelmässig zerstreut, auf der Innenseite gewöhnlich in linearen Reihen aufgepflanzt stehen. Letztere sind entwickelter als erstere, welche nicht grösser sind als die Papillen an der Innenseite der grossen Labien. Je mehr sich die Papillen dem Introitus vaginae nähern, um so mehr nehmen sie an Volumen zu; vor dem Orificium sind sie so gross wie die Papillen der Glans und können ihnen auch wegen ihres grossen Gefässreichthums an die Seite gestellt werden.“

Mein Untersuchungsmaterial stammte fast ausschliesslich von faultodten (reifen und unreifen) Früchten; die Schnittmethode habe ich nur beim Penis des Affen angewandt; am meisten instruktiv haben sich hierbei die Flachschnitte parallel zur Oberhaut gezeigt. Ein deutliches Bild von der Anordnung der „Papillen“ und Epithelleisten geben Fig. 16 und 17, von denen die erstere einer Partie aus dem dorsum penis mehr nach der Peniswurzel zu, die zweite der Corona glandis entnommen ist. Die Epithelleisten bilden auf dem Penis ein langgestrecktes, nur unvollkommen geschlossenes Netz, dessen Lücken von entsprechend geformten Cutisleisten eingenommen werden. Je weiter nach vorn, desto mächtiger und höher werden die Leisten. Die Verbindungsstücke zwischen den Längsleisten nehmen eine mehr senkrechte Stellung und einen bogenför-
migen Verlauf an und man kann kurz vor der Corona glandis deutlich Längs- und Querleisten unterscheiden. Von einem anderen Präparat stammt Fig. 17; hier sehen wir die schmalen Epithelleisten dicht aneinander gedrängt bis an die Corona glandis heranlaufen und hier plötzlich in ein mächtiges Netz circulär und radiär verlaufender Fasern übergehen. Weiter vorn an das Urificio urethrae heran (nicht mehr abgebildet) nehmen namentlich die radiären Leisten an Stärke zu, während die mehr circulär verlaufenden meist nur kurze Verbindungsstücke zwischen ihnen darstellen. Es scheint, als ob die Radiärleisten nicht alle genau nach dem Orificio urethrae convergiren, sondern in einer leichten spiraligen Krümmung um dieselbe herumlaufen; doch bin ich bei der geringen Zahl von guten Präparaten, welche ich gerade von dieser vordersten Partie erhielt, nicht im Stande, diese Art des Verlaufs als einen allgemein gültigen Typus aufzustellen.

Die grössten Schwierigkeiten bereitete mir die Untersuchung der weiblichen Genitalien. Schnitte durch die Labien geben von der Anordnung des Rete keine klare Vorstellung, und die sonst so dankbare Bearbeitung des faultodten Materials gibt bei den grossen hier angesammelten Mengen harter Fruchtschmiere nur wenig genügende Präparate. Soviel kann ich sagen, dass in der Falte zwischen beiden Labien und auf der äusseren Fläche der kleinen Labien eine regelmässige Anordnung von Epithelleisten nicht zu erkennen war; hingegen habe ich mehrfach (und das würde der Beschreibung Sappey's sehr wohl entsprechen) an der Innenseite der kleinen Labien fächerförmig nach dem introitus vaginae zu ausstrahlende lange Leisten, welche nur durch kurze Querstücke mit einander verbunden waren, gefunden.

richtig wieder. Die von K. gefundenen Leisten existieren in der That, aber ihre Anordnung ist eine ganz andere und zwar äußerst charakteristische. Die seiner Arbeit beigegebenen Abbildungen von Schnitten durch die äussere Wand des Gehörganges entsprechen ganz den Präparaten, welche man mittelst der gewöhnlichen Schnittmethoden erhält und wie sie mir schon seit langer Zeit aus Präparaten des Herrn B. Baginski bekannt sind; aber es ist auch nicht möglich, aus diesen Bildern eine richtige Vorstellung von der Flächenanordnung der nur in einer Ebene durchschnittenen Gebilde zu machen. K. hat nun aber versucht, sich eine Flächenansicht seiner Cutisleisten zu verschaffen und zu diesem Zwecke die Haut des äusseren Gehörganges herauspräparirt, aufgeschnitten und durch Einlegen in Kalilauge die Epidermis zerstört, wodurch die Cutisleisten frei zu Tage traten. Dass auch dieser Weg nicht zum Ziele führt, geht aus der Thatsache hervor, dass die wirkliche Anordnung der Leisten, wie sie in Fig. 19 abgebildet und an jedem Präparat auf's leichteste wiederzufinden ist, Kauffmann ganz entgangen ist.

An faulzudten Früchten lässt sich die Epidermis vom innersten Theil des äusseren Gehörgangs mitsamt der Oberhautbedeckung des Trommelfells als ein auf einer Seite völlig geschlossener Sack leicht abpräpariren; man braucht zu diesem Behufe nur die Ohrmuschel quer abzutrennen, den äusseren Gehörgang ringsherum freizupräpariren und dann den zu Tage tretenden, meist mit einer wässerigen Flüssigkeit gefüllten Sack möglichst weit nach aussen zu durchschneiden. Derselbe wird dann an einer Längsseite und an dem convexen Rande (entsprechend der unteren Circumferenz des Trommelfells) aufgetrennt, die obere Wand wird zurückgeklappt, und es liegt nunmehr auf der einen Seite die untere Hälfte der Epidermis des Gehörgangs, auf der anderen die der oberen Hälfte + Epidermis des Trommelfells mit ihrer der Höhlung des meatus zugekehrten Fläche zu Tage. Nun werden — und das ist das einzige Schwierige an der ganzen Prozedur — die obersten verhornten und stark fettigen Epidermisschichten mit einem feinen Pinsel sorgfältig abgelöst, das Präparat wird umgedreht und an der der Cutis zugekehrten Fläche mit Hämatoxylinlösung übergossen — mit Wasser abgespült und dann trocken in Balsam oder in Glycerin aufbewahrt. Die Epidermoidalgewinde des äusseren Gehörgangs präsen-
hier aufmerksam machen: Wir sehen die Epithelleisten an der Stelle beginnen, wo die Haare aufhören, und wir sehen ferner die Leisten in derselben Spirallinie weiterziehen, in welcher die Haare aufgepflanzt stehen — eine Erscheinung, welche die Vermuthung nahelegt, dass man die Leisten als anatomicisches Äquivalent der Haare aufzufassen habe.

Welche physiologische Bedeutung den beschriebenen Leisten zukommt, darüber möchte ich bei dem Mangel einschlägiger Erfahrungen mich jedes Urtheils enthalten; vielleicht dass wir es auch hier mit einem eigenartig functionirenden Tastorgan zu thun haben.

II. Behaarte Haut.

Für die behaarte Haut existiren in der Literatur nur sehr spärliche und unvollkommene, zum Theil sogar, wie wir gleich sehen werden, falsche Angaben. Im Allgemeinen hat man hier, den Bildern entsprechend, welche man auf Querschnitten erhielt, angenommen, dass an der behaarten Haut ebenfalls kegelförmige Papillen, nur von bedeutend geringerer Höhe als an den Fingern etc. vorhanden seien. Einige speziellere Angaben führe ich in folgendem an.

Nach Krause (19, Bd. II, p. 299) haben die Papillen die Gestalt von höheren oder niedrigeren Kegeln mit kreisförmiger oder wenigstens der Kreisform sich nähernder Basis, ihre Spitze ist immer abgerundet die Basis und die Höhe messen bei den meisten 0,07 mm; zuweilen berühren sie einander unmittelbar oder sie stehen um die Breite der Basis von einander entfernt.

Henle (18, Bd. II, p. 17): „Auf den übrigen Theilen der Hautoberfläche sind die Papillen, wenn auch hie und da in Gruppen, doch durch grössere Zwischenräume getrennt; sie sind niedriger, liegend, an der Spitze abgestutzt, und indem sie sich zugleich an der Basis ausbreiten, gehen sie in flache unregelmässige Hügel über. Die reichlichsten und anschaulichsten, meist noch deutlich fadenförmigen Papillen finden sich auf der Haut des Rückens und Gesässes; im Gesicht und an den Extremitäten, besonders an den Streckseiten gibt es ausgedehnte Gebiete, die, abgesehen von den Einbuchtungen der Haarbälge und Drüsen, eine völlig ebene Oberfläche darbieten.“

Nach Sappey (17 Bd. III, p. 581) zeigen die einfachen Papillen (s. o.) keine regelmässige Anordnung, sie finden sich überall
A. Blaschko:

ohne Ordnung zerstreut; wenn man mit dem Mikroskop die Innenfläche der Epidermis untersucht, so ist man über die Ungleichheit und Unregelmäßigkeit der Gruben erstaunt, welche die Eindrücke der Papillen vorstellen. Alle Papillen stehen übrigens so nahe aneinander, dass sie sich mindestens berühren und an ihrer Basis oft zum Theil in einander übergehen.6

Nur O. Simon (16, p. 8) findet, dass „auch am übrigen Körper die Papillen eine gewisse regelmässige Anordnung in Felder, zumeist längliche Felder mit bestimmter Richtung der Längsachse einnehmen und meint, dass diese Anordnung auf die Längsrichtung der Bindegewebsbündel zurückzuführen sei. Nun gibt aber leider Simon gar keine Beweise für diese Anschauung, noch macht er irgend welche näheren Angaben über die Anordnung der Papillen in den verschiedenen Hautbezirken, vielmehr beschreibt er nur seine Methode, welche aus oben angegebenen Gründen zahlreiche Fehlerquellen in sich schliesst, und gibt auf Tafel 4 seiner Arbeit zwei Abbildungen von Flächenschnitten durch die Haut einer beliebigen (nicht näher bezeichneten) Körperstelle, welche wenig geeignet sind, seine Ausführungen zu unterstützen.

Außerdem habe ich noch gelegentliche Angaben über die Papillen einzelner Körperregionen gefunden, von denen ich erwähne die Kölliker’s (7, p. 80), dass die kürzesten Papillen sich im Gesicht, namentlich an Augenlidern, Stirn, Nase, Wange und Kinn finden, wo sie selbst gänzlich fehlen oder durch ein Netzwerk niedriger Leistchen ersetzt werden können, und die Henle’s (18, Bd. 2, p. 16), dass auf der Kopfhaut (ebenso wie auf den Mund- und grossen Schamlippen) Papillenbüschel von etwas geingerer Höhe und etwas grösserem Umfange als die der Finger stehen, deren Existenz sich aber äusserlich durch nichts verrath. — Die Epidermis geht glatt über dieselben hinweg und nimmt sie in Vertiefungen ihrer angewachsenen Fläche auf.“

Das eigentliche Analogon der Leistensysteme der unbehaarten Haut sind auf der behaarten die Haare selbst. Gleichzeitig mit der ersten Entwicklung der Drüsenleiste (s. s.) beginnen an verschiedenen Körperregionen die ersten Haaranslagen hervorzusprossen, und am Ende des fünften Embryonalmonats etwa, wenn die Entwicklung der Leisten auf der unbehaarten Haut ihren Abschluss
gefunden hat, ist auch die ganze behaarte Hautdecke mit Haar-
anlagen versehen. Ausser dieser Gleichzeitigkeit der Entwicklung
sprechen nun aber für die Äquivalenz der Haare und Leisten noch
andere Gründe. Beide Arten von Gebilden sind in regelmässigen
spiraligen Curven angeordnet, welche an gewissen Knotenpunkten
Wirbel bilden. Bei den Haaren unterscheidet man bekanntlich
drei Arten von Wirbeln, divergirende und convergirende, ein
Unterschied, der bei der flächenhaften Anordnung der Leisten und
Leistenwirbel natürlich fortfallen muss. Die Haarspiralen gehen
ferner an manchen Stellen direkt in die Leistenspiralen über, was
wir sehr deutlich z. B. im äusseren Gehörgang gesehen haben.
Auch die Art der Entwicklung scheint bei beiden Gebilden die
gleiche zu sein. Die Bildung der Haaranlagen geht nicht, wie
Voigt (10) annahm, von dem divergirenden Wirbel aus und
schreitet die Spirallinie entlang bis zum convergirenden, sondern
wie bei den Leisten des Fingers sehen wir auch hier das Auf-
sprossen der Haare von einer Stelle aus gleichmässig flächenhaft
vorrücken. — Übrigens stehen die ersten Haaranlagen nicht, wie
Voigt angibt, ursprünglich senkrecht zur Oberfläche und neigen
sich erst „beim weiteren Wachsthum mit ihren Spitzen in der-
jenigen Richtung, in der die Haut, dem eignen Wachsthum und
dem Wachsthum der unterliegenden Theile folgend, stark gedehnt
wird“, vielmehr sind schon die allerersten, kaum erst aus
dem Niveau des Rete in die Cutis hervorragende Haar-
keime schief zur Oberfläche eingepflanzt, und zwar ist ihr Nei-
gungswinkel, soweit sich das beurtheilen lässt, schon von Beginn an
derselbe wie späterhin (s. a. Kölliker). — Bei der eingehenden Schild-
erung, welche Eschricht, Voigt und neuerdings Fischer (31) von
der Anordnung der Haarspiralen und Haarwirbel gegeben, kann ich
e unterlassen, diesen Gegenstand hier weiter zu verfolgen, zumal ich
mir im Wesentlichen die Aufgabe gestellt habe, den architektoni-
schen Aufbau des Rete Malpighi der Betrachtung zu unterziehen
— immerhin wird man im Auge behalten müssen, dass die Haare,
welche, wie ich (29) gezeigt habe, in physiologischer Hinsicht als
das Haupttastorgan der behaarten Haut gewissermassen das Cor-
relat der Leisten auf der unbehaarten darstellen, auch anatomisch
und entwicklungsgeschichtlich eine grosse Übereinstimmung mit
diesen aufweisen.

Natürgemäss fällt den Leisten (und somit auch den Pa-

Die Präparate von der behaarten Haut sind sämtlich auf die p. 499 u. 500 angegebene Art und Weise hergestellt. Die Rücksicht auf den mir zu Gebote stehenden Raum ermöglicht es mir nur eine Auswahl der am meisten charakteristischen Formen zu geben, welche, wie ein Blick auf die Fig. 9 unten, 18, 20—31 lehrt, von ganz ausserordentlicher Mannigfaltigkeit sind. Im Text werde ich mich nur darauf beschränken, die wesentlichsten Grundformen hervorzuheben und nur kurz die Bilder zu erläutern, welche selbst am besten die Verhältnisse veranschaulichen.

Ich unterscheide folgende, übrigens nicht streng von einander getrennte Grundtypen:

I. Typos. Die Epidermis zeigt gar keine Leistenbildung (die Cutis also keine Papillen); die Haare stehen in regelmässigen Reihen nebeneinander aufgepflanzt, zwischen ihnen verläuft das Rete Malpighi mit glatter Grenzcontour gegen die Cutis. Hauptrepräsentant dieser Gruppe ist die Haut an der Stirn (Fig. 20) und an der Raphe Perinei (Fig. 25 r.). Ferner sind frei von Leisten die Epidermis der Ohrmuschel, einzelne Theile der Scrotalhaut (auch ausser der Raphe), die Haut an einigen Stellen der Achselhöhle (namentlich da, wo die verzweigten Schweissdrüsen stark entwickelt sind). Die Epidermis des Gesichts zeigt zwischen den
zahlreichen Haarwurzeln und Talgdrüsen an ihrer Innenfläche eine Unzahl kleiner gebuckelter und welliger Erhabenheiten (Fig. 21), ohne jedoch eigentliche Leisten zu bilden. Hiermit würde die Angabe Kölliker's (s. o.) von den Cutisleisten der Gesichtshaut sehr gut übereinstimmen.

2. Typus. Die Oberhaut trägt an der Innenseite streifenförmige flache Leisten. Diese Leisten haben meist einen etwas welligen Verlauf und sind einander im grossen Ganzen parallel, doch gabeln sie sich häufig; zwischen den Gabelungen liegen dann oft den beiden Gabelarmen parallel verlaufende spindelförmige Leisten. Dieser Typus ist am deutlichsten stets an der Haut des Halses, namentlich an den seitlichen Partien (Fig. 22 von der Haut über dem Sternocleidomastoideus) zu sehen. Diese Leisten sind ähnlich den, freilich höheren, des Dorsum penis. Fig. 23 zeigt eigentümliche kurze, in ziemlich grossen Abständen stehende, wellig geschlängelte Leisten vom Mons veneris, deren Verlauf, wie man deutlich sieht, parallel den Haarströmen ist.

3. Typus. Die Leisten bilden ein halbgeschlossenes Netz mit länglichen Maschen, gebildet aus zarten, meist den Haarströmen parallel verlaufenden Längsleisten und kurzen Querstücken, welche sehr oft die benachbarten Längsleisten nicht erreichen (Fig. 24), sodass das Netz daselbst zahlreiche Lücken aufweist. Präparate von der Rückenhaut (Fig. 27) geben von diesem Typus sehr schöne Bilder; dort ist aber das Netz in der Regel mehr geschlossen als das der Banchhaut und nähert sich schon mehr dem nächstfolgenden Typus 4. — An Hautstellen, wo wir die letzten beiden Typen finden, kann es offenbar Papillen der Lederhaut in dem gebräuchlichen Sinne nur an den wenigen Stellen geben, wo das Netz der Epithelleisten ganz geschlossen ist; sonst bildet die Cutis hier mehr oder weniger breite unregelmässig contonirte Leisten, die meist parallel verlaufen, oft auch mit benachbarten Leisten ganz oder theilweise zusammenhängen.

4. Typus. Die Epidermisleisten bilden ein völlig geschlossenes Netz. Dieser Typus findet sich auf dem behaarten Kopf und an den Extremitäten (namentlich der Beugeseite), während die Haut des Rückens (Fig. 27), des Gesäßes (Fig. 25) und der Streckseiten der Extremitäten gewissermassen einen Uebergang zwischen Typus 3 und 4 darstellen. Präparate von der Kopfhaut habe ich leider auf die an den übrigen Körperstellen so gut verwendbare Herstellungsweise nicht erhalten, weil beim Abziehen der Epidermis die Leisten
derselben in der Regel sich nicht mitlösen, sondern in der Lederhaut stecken bleiben. Ich war somit auf die Schnittmethode angewiesen, welche aber bei der ziemlich mächtigen Entwicklung der Epidermis hier unter den nöthigen Cauteln ganz gute Resultate gibt. Flachschnitte zeigen zwischen den durchschnittenen Haarwurzeln kurze Längsleisten, deren Richtung parallel der der Haarströme ist, und zwischen diesen meist quer-, öfter auch etwas schräg verlaufende, bogenförmig gekrümmte Verbindungsstücke. Die Papillendurchschnitte sind demnach oval oder halbmondförmig, mit dem längeren Durchmesser der Richtung der Haarströme parallel. Querschnitte senkrecht zu dieser Richtung und in der Neigungsebene des Haars geführt (Fig. 30) zeigen zahlreiche senkrecht zur Hautoberfläche stehende Einsenkungen der Epidermis, welche die durchschnittenen Längsleisten darstellen, während auf Schnitten parallel den Haarströmen (Fig. 31) die Grenzkontur zwischen Cutis und Epidermis auf weite Strecken (da wo die Längsleisten getroffen sind) völlig glatt verläuft. Die viel spärlicher sichtbaren Einsenkungen haben denselben Neigungswinkel zur Oberfläche wie die benachbarten Haare, woraus hervorgeht, dass die Längsleisten nicht nur in ihrer Richtung mit der der Haarströme übereinstimmen, sondern auch eben so schief zur Oberfläche geneigt sind wie die Haare; demnach haben auch die Papillen, welche zwischen den Leisten liegen, den gleichen Neigungswinkel zur Hautoberfläche, wie die Haare, zwischen denen sie liegen.

An den Extremitäten findet man meist ein überall gleichmässig geschlossenes Netz feinerer und stärkerer Epithelleisten, ohne dass sich in der Anordnung derselben das Vorwiegens einer bestimmten Richtung immer genau erkennen liese.

An vielen Stellen freilich zeigt das Netz eine Dehnung in der Richtung der Haarströme (s. Fig. 27); aber das ist nicht allgemein; andere Male haben wir ein nach allen Richtungen hin gleichmässiges Netzwerk vor uns, und wir lernen an Präparaten dieser Art begreifen, wie Malpighi dazu kommen konnte, den Ausdruck Ret e für die Schleimschicht der Oberhaut zu wählen. Eine gesetzmässige Übereinstimmung in der Anordnung dieses Netzes mit der Richtung der Bindegewebsfasern und der Spaltbarkeitsrichtung der Haut, wie sie O. Simon vermutet, habe ich nicht constatiren können, wenn auch bei der grossen Menge der unter-
suchten Präparate hin und wieder auch mir eine solche Übereinstimmung vorgekommen ist (namentlich da, wo Spaltrichtung und Richtung der Haare sich decken). An der Kopfhaut scheint eher das entgegengesetzte Verhalten, d. h. eine senkrechte Kreuzung der Längsleisten mit den Bindegewebsfasern vorzuliegen, wie ein Blick auf Fig. 30 und 31 zeigt. Möglicherweise an den Extremitäten, wo die Bindegewebsfäserzüge ja erst nach der Geburt ihre definitive Anordnung erreichen (Langer), auch das Epithelnetz mit der Zeit eine etwas abweichende Konfiguration erhält; doch entbehrt eine solche Annahme einer anatomischen Unterlage. Es ist aber im Auge zu behalten, dass, wie bei jeder Muskelaktion sich die Bindegewebsfasern umlagern, um nachher wieder in die alte Richtung zurückzukehren (Langer), ebenso auch höchst wahrscheinlich das Maschenwerk der Epithelleisten in der Richtung des jeweiligen Muskelzuges gedehnt wird, also in beständiger Hin- und Herbewegung begriffen ist. Am besten wird man mit O. Simon (16, p. 30) die Art dieser Bewegung versinnbildlichen an einem quadratischen Stück Mull, welches man nach verschiedenen Richtungen hin dehnt und dessen einzelne Maschen hierbei jeder Zugrichtung folgen).

Die gewonnenen Resultate lassen sich kurz in folgende Sätze zusammenfassen:

1) Herr Lewinski hatte vor einigen Jahren die Freundlichkeit, mir diesbezügliche Präparate vorzulegen, welche die oben ausgesprochenen Ansichten zu stützen geeignet sind.
Die gesamte Hautoberfläche des Menschen zerfällt in einen behaarten und unbehaarten Theil.

Diesem Unterschied entspricht eine tiefgreifende physiologische Differenz, dieselbe, welche für das Sehorgan zwischen der macula lutea, der Stelle des direkten Sehens, und der übrigen Netzhaut, dem Organ des indirekten Sehens besteht. Die behaarte Haut dient der indirekten, die unbehaarte der direkten Tastempfindung.

An der unbehaarten Haut bildet das Rete Malpighi eine Platte mit nach innen vorspringenden Leisten, welche in regelmässigen, meist spiraligen Curven verlaufen.

Diese Leisten entstehen durch die Wucherung der Oberhaut nach innen vom 4. bis 7. Monat des Embryonallebens und zwar in jedem Tastorgan nicht auf einmal, sondern von bestimmten Punkten ausstrahlend in stets regelmässiger Aufeinanderfolge.

Auf der behaarten Haut sind das anatomische und physiologische Analogon der Leistensysteme die Haare, welche ebenfalls in spiraligen Curven angeordnet und in gleichmässigen kurzen Abständen aufgereiht, durch Wucherung der Oberhaut nach innen zu derselben Zeit des Embryonallebens und ebenfalls von gewissen Centren aus sich bilden wie die Leistensysteme der unbehaarten Haut.

Ausser den Haaren finden sich auf vielen Stellen der unbehaarten Tastfläche auch Leisten des Rete Malpighi; sie sind jedoch schwächer entwickelt und entstehen erst gegen Ende des Intrauterinlebens. Sie sind entweder ebenfalls in langgestreckten, dem Zuge der Haarströme folgenden Spiralen angeordnet, oder bilden ein Netzwerk, an dem eine bestimmte vorwiegende Richtung nicht immer zu erkennen ist.

Die spiralige Anordnung, welcher wir bei vielen der aufgeführten Epidermoidalgebilden begegnen, haben schon frühere Autoren theils auf mystische Weise durch Attraction und Appulsion (Eschricht), theils durch Hypothesen, welche den beobachteten Thatsachen gerade zuwiderlaufen (Voigt, s. o. p. 519), zu erklären versucht. Neuerdings hat Fischer (31) die spiralige Drehung wachsender Organe als ein weit verbreitetes Gesetz — nicht nur für Epithelialgebilde — aufgestellt und dieses Gesetz sogar dahin erweitert, dass er allen Zellen des Thierkörpers einen immanenten Trieb zur

Literatur.

2) G. Bidloo, Anatomia corporis humani. Amstelodami 1685.
3) B. S. Albini, Academicae annotationes. Leidae 1754—68.
4) J. E. Purkinje, Commentatio de examine physiologico organi visus et systematis cutanei. Vratisl. 1823.

8) G. Meissner, Beiträge zur Anatomie und Physiologie der Haut. Leipzig 1853.

11) H. Luschka, Die Leichenveränderung der Mundlippen bei neugeborenen Kindern. Zeitschr. f. rationelle Med. 1863, p. 188.

17) Sappey, Traité d'anatomie descriptive. éd. III. Paris 1873.

18) J. Henle, Handbuch der Anatomie.

32) S. Schwendener, Mechanische Theorie der Blattstellung.

Erklärung der Abbildungen auf Tafel XXVII—XXX.

Die Abbildungen sind, soweit nichts anderes bemerkt ist, mit Hartnack Obj. 2, Ocul. 3 gezeichnet.

Tafel XXVII.

Fig. 2. Schnitt aus derselben Stelle parallel zur Hautoberfläche. d, f, q wie oben, s. durchschnittene Schweisskanäle.

Fig. 3. Schnitt ebendahe in der Richtung der Riffe und Furchen (aus mehreren Präparaten zusammengestellt). Bezeichnungen wie oben.

Fig. 4. Schnitt durch die Handfläche des Affen, senkrecht auf die Richtung der Riffe und Furchen.

Fig. 5. Schnitt durch die letzte Phalanx des dritten Fingers vom Affen, in gleicher Richtung.

Fig. 6. Schnitt durch die Fusssohle eines zweijährigen Kindes, in gleicher Richtung. Arterien blau injicirt.

Fig. 7. Schnitt durch die Fersenhaut eines alten Mannes, in gleicher Richtung. s. q. secundäre Querleisten.

Tafel XXVIII.

Fig. 8. Flächenansicht des Rete Malpighi von der Fusssohle eines neugeborenen (faulototen) Kindes. Behandlung s. im Text. Bezeichnungen wie auf Tafel XXVII.

Fig. 9. Flächenansicht ebendahe von einem andern Kinde, nach unten Uebergang in den Fussrücken.

Fig. 11. Schnitt senkrecht zur Richtung der Riffe und Furchen von der Hand eines Embryos a. d. 5. Monat. f. erste Anlage der Falte.
A. Blaschko: Beiträge zur Anatomie der Oberhaut.

Fig. 12. Schnitt ebendaher in der Richtung der Riffe. Die getroffene Drüsenleiste zeigt eine glatte untere Contour.

Fig. 13. Links Nagelbett, rechts Nagel-Innenfläche, halbschematisch. Vergr. 4 fach. r. freier Nagelrand, f. Epidermis der Fingerkuppe, w. (punktierte) Linie des Nagelwalls, l. Luuula. Das Uebrige im Text.

Fig. 14. Innenfläche des Nagels, seitliche Proximalzone. l. Längs-, q. Querleisten.

Fig. 15. Links Cutisoberfläche, rechts Epidermis-Innenfläche von der Lippe eines zweijährigen Kindes. Starke Loupenvergr. (12 ×). a vordere, p. hintere Zone. pa. Papillen der Lederhaut, auf kammartigen Leisten sitzend.

Fig. 16. Epidermis vom dorsum penis des Neugeborenen. s. Schweissdrüsen.

Fig. 17. Epidermis von der corona glandis.

Tafel XXXIX.

Fig. 18. Epidermis-Innenfläche von der Mamilla eines Neugeborenen (Glycerin-Präparat). m. Mündung der Milchdrüsen, h. Haarwurzeln, R. Netz der starken Leisten, r. feines Netz zwischen den Haarwurzeln.

Fig. 19. Epidermis vom innern Ende des äusseren Gehörgangs. (Reife Frucht.) Glycerinpräparat. o. Epidermis der oberen, u. der unteren Gehörgangswand, t. des Trommelfells, a t. annulus tympanicus, h. Haarwurzeln, w. Leistenwirbel.

Fig. 19a. Uebergangsparthe von der oberen zur unteren Wand des Gehörgangs, Hartn. Obj. IV. Oc. 3.

Fig. 20. Stirnhaut vom Neugeborenen. h. Haarwurzeltümpfe.

Fig. 21. Gesichtshaut ebendaher. s. Schweissdrüsen.

Fig. 22. Haut über dem Sternocleidomastoideus.

Fig. 23. Haut vom mons veneris.

Fig. 24. Bauchhaut.

Fig. 25. Haut des Gesässes. R. Raphes Perinei, an. Analöffnung.

Fig. 26. Haut vom Oberschenkel in der Nähe des Kniegelenks.

Sämtliche Figuren zeigen die innere, der Cutis zugekehrte Fläche der Oberhaut.

Tafel XXX.

Fig. 27. Epidermis der Rückenhaut.

Fig. 28. Epidermis vom Handrücken.

Fig. 29. Epidermis vom äusseren Fussrand über d. calcaneus.

Fig. 30. Schnitt durch die Kopfhaut eines zweijährigen Kindes, senkrecht auf die Richtung des Haarstroms, h. Haarbälge, l. durchschnittene Längsleisten, b. längsdurchschnittene Bindegewebsfasern.

Fig. 31. Schnitt ebendaher in der Richtung der Haarströme. b. Querdurchschnittene Bindegewebsfasern.
Franz Tangl: Ueber das Verhältniss zwischen Zellkörper u. Kern etc. 529

(Aus dem anatomischen Institute in Kiel.)

Ueber das Verhältniss zwischen Zellkörper und Kern während der mitotischen Theilung.

Von

Franz Tangl,
cand. med. aus Budapest.

Hierzu Tafel XXXI.

Pfitzner’s Untersuchungen 2) wurden nach einer von ihm erdachten, sehr sinnreichen Methode angestellt, bei deren Feststellung ihn hauptsächlich die Idee führte den Kern so zu fixiren, dass bei gut erhaltenen chromatischen Figuren, gleichzeitig die ungeformte aehromatische Substanz des Kernes, der Kerntöpfchen (Flemming) oder Kerngrundsubstanz (Pfitzner) auch fixirt werde 3). Zu diesem Zwecke fixirte er das Object zuerst in schwacher 1/10 Proc. Osmiumsäure, dann legte er es in Müller’sche Flüssigkeit oder 1 Proc. Natriumsulfatlösung. Die Osmiumsäure fixirt die Chromatinfiguren, während das Natriumsulfat mit oder ohne Kali bichromi-

2) Pfitzner l. c.
3) Ich werde mich weiterhin nur der von Flemming gewählten Nomenclatur bedienen, um keine unnöthigen Verwirrungen zu verursachen und weil dieselbe doch allgemeiner gebraucht wird als die Pfitzner’sche. Ich gebrauche also die Termini in folgendem Sinne: Zellkörperfäden (Fl.) = Protoplasmafäden (Pf.); Interfilarmasse (Fl.) = Paraplasma (Pf.); aehromatische Kernmembran (Fl.) = innere Zellmembran (Pf.); Kerntöpfchen (Fl.) = Kerngrundsubstanz (Pf.); Chromatinfiguren = chromatinhaltige Fäden.
Ueber das Verhältniss zwischen Zellkörper und Kern etc.

...cum den Kernsaft, nach Pfitzner's Auffassung, undurchsichtig und dadurch sichtbar machte, gleichzeitig aber die Chromatinfiguren verdeckte, die jedoch durch nachfolgende Hämostoxylinfärbung ganz unverändert zum Vorschein kamen. Durch genaue Vergleichung der ungefärbten Osmium-Natriumsulfatpräparate mit den nachher gefärbten kam Pfitzner zu der Behauptung, dass die Chromatinfäden während der ganzen Mitose in die „Kerngrundsubstanz“ gewissermassen eingehüllt sind, welche sie vom Zellkörper trennt und sich selbst gegen denselben scharf abgrenzt.

Vor Allem muss ich über die Wirkung der Osmiumsäure auf die Kerntheilungsfiguren Einiges sagen. Pfitzner giebt an, dass die Osmiumsäure die Kernfiguren recht gut erhalte, was übrigens schon Flemming erwähnte 2). Ich kann diese Behauptung nicht bedingungslos bestätigen. Osmiumsäure, besonders in so verdünnter Lösung, wie sie Pfitzner verwendete, macht die Chromatinfäden in hohem Grade verblassen und quellen. Sie sehen nicht nur im Vergleiche mit den etwas geschrumpften Chromatinfäden...
Franz Tangl:

Am augenscheinlichsten ist die Wirkung der Osmiumsäure bei den ruhenden Kernen, die ungefärbt vom Chromatingerüst beinahe nichts zeigen, sehr blass und fast homogen mit scharf hervortretenden, glänzenden Nucleolen (wie es Flemming schon längst beschrie) erscheinen.

Ausserdem sind die mit Osmiumsäure fixirten Zellen resp. Kerne durchaus nicht so stark fixirt, also nicht so resistent, wie die in Chromsäure oder Osmiumgemischen fixirten, was sich bei einer vergleichenden Untersuchung leicht feststellen lässt. Man kann z. B. Chromsäurepräparate wochenlang in Wasser oder Osmiumsäure oder Bichromatlösung liegen lassen, ohne dass die Chromatinffiguren erkenntlich verändert sein würden. Hingegen erleiden die Osmiumpräparate in allen diesen Reagentien nicht unerhebliche Veränderungen 2).

Dagegen hat aber die Osmiumsäure eine sehr schätzenswerthe

1) Die Chromatinfäden sind manchmal in solchem Grade verblasst, dass man von denselben keine Spur und an der Stelle des Kerns nur einen, von der Zellsubstanz verschieden gefärbten Fleck ohne scharfe Contouren findet. Erst bei Behandlung mit Kernfärbungsmitteln treten die Chromatinfäden wieder scharf hervor.

2) Das ist auch der wahrscheinliche Grund, weshalb die Pfitzner'sche Methode nur an Osmiumpräparaten gelingt.
Eigenschaft, auf die schon Flemming aufmerksam gemacht hat und die ich vollkommen bestätigt gefunden habe: sie fixirt die Structur des Zellkörpers am naturnahsten, wenigstens sieht das scheinbare Maschenwerk desselben an Osminumpräparaten dem der lebenden Zellen sehr ähnlich, wenn es auch bei letzteren nicht so scharf ist, was ich sowohl von den Epidermiszellen des Schwanzes, als von dem Kiemenplattenepithel behaupten kann. Der Zellkörper zeigt an Osminumpräparaten in vielen Zellen die von Pfitzner beschriebene periphäre Zone mit „ausgesprochen radiär gestellten“ Stäbchen, die bis an die äussere Zellgrenze reichen und nach innen in das scheinbare Netzwerk übergehen (Fig. 1). Doch war diese radiäre Schichte nicht in allen Zellen so ausgesprochen und ich muss die Structur dieser letzteren Zellen, mit undeutlicher radiärer Zone, für die besser fixirten halten, weil ich auch in lebenden Zellen keine so deutlich radiäre Zone sehen konnte. (Etwa wie in Fig. 2) 1).

1) Die äussere Zone ist zu deutlich radiär gezeichnet.
2) Flemming l. c. p. 208.
merken, dass die Kerne ungemein blass geworden und gequollen sind, wobei sich ihr äusserer Contour in den meisten Fällen ziemlich deutlich und scharf als Begrenzung gegen den Zellkörper erhalten hat. Hat das Präparat nicht zu lange, ca. nicht über 14 Tage, in der Lösung gelegen, so fand ich fast in allen Zellen — wie es auch Pfitzner angiebt — den Kern eng an die innere Grenze des durch die Behandlung auch verblassten Zellkörpers anliegen. Von Mitosen ist in solchen stark veränderten Präparaten — ungefärbt — kaum etwas mehr zu sehen, die Kerne sehen alle beinahe homogen aus. Um den ganzen Vorgang der Veränderungen genau kennen zu lernen, habe ich viele von den in Natriumsulfat eingelegten Präparaten von Tag zu Tag untersucht. Schon nach der Fixirung in Osmiumsäure waren — wie schon erwähnt — die Mitosen blass und gequollen. Die weiteren Veränderungen in der Glaubersalzlösung gehen ziemlich langsam vor sich: die Chromatinfäden blassen immer weiter ab und scheinen weiter zu quellen (Fig. 3), wobei ihre Seitencontouren allmählich verschwommener werden und nur mehr als kaum merkliche Linien zu unterscheiden sind (Fig. 4a), was so weit gehen kann, bis der Kern homogen erscheint. Ich habe aber nicht gefunden, dass dieses scheinbare Homogenwerden der Mitosen so schnell eintreffen würde, wie es Pfitzner behauptet. So habe ich z. B. in einem Osmiumpräparat, das 7 Tage in 1 proc. Natriumsulfat und 23 Tage in Mülher'scher Flüssigkeit lag, in vielen Mitosen die einzelnen Chromatinfäden noch ziemlich deutlich unterscheiden können (Fig. 5). Jedenfalls ist das nicht bei allen Zellen gleich. Auch glaube ich behaupten zu können, dass die Chromatinfäden in 1 proc. Natriumsulfatlösung eher verblassen als in Mülher'scher Flüssigkeit. Je länger das Natriumsulfat einwirkt, desto grösser scheint die Zahl der homogen ausscheidenden Kerne zu werden. Dieses Unsichtbarwerden der Chromatinfiguren erklärt nun Pfitzner so, dass „nur die Grundsubstanz, in der die Chromatinfigur eingebettet lag, also das Chromatin, durch diese Behandlungsweise in einen mehr undurchsichtigen Zustand übergeführt wurde und dadurch die im Uebrigen wohl conservirten Chromatinstructuren verdeckte“.

Seine Behauptung gründet er wesentlich auf die nachfolgende Hämatoxylinfärbung solcher veränderter Kerne, wedurch die karyokinetischen Figuren sehr schön conservirt zum Vorschein kämen.

Ich kann Pfitzner's Beobachtung nicht vollkommen bestä-
tigen. In den erwähnten Präparaten, welche ungefärbt nur sehr undeutliche Mitosen und fast homogene Kerne zeigten, traten nach der Hämatoxylinbehandlung in vielen Zellen ganz scharf gefärbte und der Form nach wohl erhaltene Chromatinfiguren hervor. Hinzu setzen muss ich aber, dass die Chromatinfäden auch nach der Färbung oft, ob zwar bedeutend weniger als ungefärbt, mehr oder weniger gequollen erschienen, dabei aber doch noch die Längs- spaltung der Fäden zeigen können.

Wenn aber die Osmiumpräparate lang in Müllerscher Flüssigkeit lagen, findet man neben den eben erwähnten Mitosen auch im gefärbten Zustande solche, die ganz verquollen sind und kaum mehr die Spur der einzelnen Chromatinfäden zeigen, so dass man an diesen nach Färbung nicht mehr sehen kann als ohne solche. (Auch gelang mir an einigen mit Natriumsulfat behandelten Präparaten mit Alunokarmine eine reine Chromatinfärbung, trotzdem Pfizner das Gegenteil behauptet.) Die Erklärung, die Pfizner von den angeführten Erscheinungen gibt, kann ich nicht annehmen und zwar aus folgenden Gründen:

a) Erstens bleiben die Chromatinfäden — wie ich es schon beschrieben habe — in der Natriumsulfatlösung nicht unverändert, wie es Pfizner annimmt, sondern quellen und blassen ab, was eine tägliche Controlle beweist. Bei dieser Gelegenheit kann man auch genau verfolgen, welche Bestandtheile des Kernes seinen äusseren Contour, also seine Grenze gegen den Zellkörper bilden und die eventuellen Veränderungen dieses Contours. Ich habe an solchen mehr oder weniger gequollenen ungefärbten Mitosen (Fig. 3 und 4 a) gesehen und während des ganzen Processes der Abblasung und Quellung vom Einlegen an verfolgen können, dass die blassen Chromatinfäden bis an die innere Grenze des Zellkörpers reichten und sich an dieselbe eng anlegten und konnte nie wahrnehmen, dass ausserhalb der Chromatinfäden noch ein von Pfizner supponirter, durch die undurchsichtig werdende resp. gewordene „Grundsubstanz“ erzeugter Saum wäre. Wäre Pfizner's Auf- fassung richtig, müsste man doch in einem Stadium, wo die Chromatinfäden noch deutlicher zu erkennen sind — also wo die „Grundsubstanz“ noch nicht ganz undurchsichtig geworden wäre — um die Fäden herum eine Spur dieser Substanz wahrnehmen können, wenigstens zwischen innerer Zellgrenze und Chromatinfigur.
Dass die äussere Grenze der Mitose durch die unveränderten Chromatinfäden selbst gebildet ist, widerlegte durcheaus nicht die nachträgliche Färbung mit Hämatoxylin; im Gegentheil, ich fand durch sie meine eben ausgesprochene Ansicht nur bestätigt. Dazu musste ich aber die Färbung mit stärkerem Hämatoxylin unter dem Mikroskop vornehmen. Ich legte zu diesem Zwecke das Deckglas nicht unmittelbar auf die Kiemenplatte, sondern auf dünne Papierstreifen\(^1\), damit die Berührung des Präparates mit der durchgezogenen Hämatoxylinlösung eine promptere sei. Am besten ist es dann eine durch Chromatinfädenumrisse erkennbare Mitose am Rande der Platte zu suchen. Wenn nun die Farbe in das Präparat einzudringen beginnt, sieht man vor Allem, dass die ganze Zelle sich allmählich verkleinert, sie schrumpft gleichmässig zusammen, während sich der ganze Kern, zuerst blass, dann immer intensiver färbt, bis zuletzt die intensiv gefärbten und nun viel deutlicheren Chromatinfäden mit scharfen Contouren hervortreten — ohne jeden schwächer gefärbten Saum. Es wäre doch zu erwarten, da sich an Anfange der Farbwirkung der ganze Kern bis an die innere Zellgrenze färbt, dass man später um die intensiv gefärbten Chromatinfäden einen schwächer gefärbten Saum finde, wenn Pfitzner's Erklärung richtig ist, wenn also eine andere Substanz als das Chromatin die Kerngrenze bildet. Fig. 6 stellt eine Mitose dar aus einem Präparat, welches 26 Tage in 1 proc. Na\(_2\)SO\(_4\)-lösung lag; der Kern sah ungefärbt homogen aus, zeigte aber nach der Färbung trotzdem nur reine Chromatinfärbung. Der ganze, unter dem Mikroskope beobachtete Vorgang lässt sich dann aber nur so erklären, dass das, was durch Hämatoxylin am Anfange seiner Wirkung gefärbt wurde, gequollene Chromatinfäden waren, deren Quellung durch die Tinction rückgängig gemacht wurde und die zu gleicher Zeit durch intensive Färbung scharf hervortreten sind.

Von der schrumpfenmachenden Wirkung der Hämatoxylinlösung habe ich mich an Osmium-Natriumsulfatpräparaten vielfach überzeugen können. Diese Wirkung beschränkt sich, wie gesagt, durcheaus nicht nur auf den Kern, sondern betrifft auch den Zell-

1) Das Papier darf nicht zu dick und das Wasser, in dem das Präparat liegt, nicht zu viel sein, sonst wird das Präparat durch den Strom weggeschwemmt.
körper, in dem dadurch die Structuren viel schärfer hervortreten, die durch die lange Wirkung des Glauheralszes ziemlich undeutlich geworden sind. Wie bedeutend sich eine so präparierte Zelle durch das Hämatoxylin verkleinern kann, zeigen sehr anschaulich Fig. 4a und 4b, welche genau bei derselben Vergrösserung, mit dem Zeichenapparat, in gleicher Höhe gezeichnet wurden. Ebenso bestätigen mikrometrische Messungen vor und nach der Färbung die Verkleinerung der Zelle und des Kerns. Schliesslich kann man in diesen Präparaten auch eine grosse Anzahl stark geschrumpfter ruhender Kerne finden.

b) Zweitens konnte Pfitzner in Osmiumpräparaten, die lange Zeit — einen bestimmten Zeitraum gibt er nicht an — in Müller'scher Flüssigkeit oder Natriumulfat gelegen sind, mit der Hämatoxylinfärbung um die Mitosen herum einen schwächer gefärbten Saum darstellen, der die aehromatische Hülle bedeuten sollte. Ich konnte einen solchen Saum niemals um die Chromatinfäden finden, wenigstens nicht in solchen Mitosen, bei welchen man das Vorhandensein der aehromatischen Kernmembran ganz sicher ausschliessen konnte. Diese Bedingung halte ich deshalb für umgänglich, weil ein schwach gefärbter Saum um Chromatinfäden die noch oder schon von einer aehromatischen Membran umgeben sind, nicht zur Stützung der Pfitzner'schen Ansicht verwertet werden kann, da bei diesen doch diese Membran die Abgrenzung des Kerns bildet. Auch kann man diesen Saum an solchen Mitosen mit viel geringerer Mühe an Chromosmiumpräparaten mit Hämatoxylin und anderen Kernfärbungsmitteln zu Gesicht bekommen, wo also die Hüfte des Natriumsulfats ganz überflüssig ist (Fig. 7). Wenn also Pfitzner bei ruhenden Kernen, oder Mitosen im Stadium des dichten Knäuels, oder später der Tochterknäuel den schwach gefärbten Saum findet, so muss es doch wahr- scheinlich sein, dass derselbe schon innerhalb einer aehromatischen Kernmembran liegt und dass die Kernabgrenzung durch letztere gebildet ist. Für diese Annahme spräche auch der Umstand, dass Pfitzner mit Ausnahme einer einzigen Figur (Fig. 32 seiner Tafel) nur Dispireme mit solchen Säumen zeichnet. Auch ist die Möglichkeit nicht ausge schlossen, dass diese eine Figur, die der Grösse nach eine Mutterfigur zu sein scheint, — Pfitzner gibt es nicht näher an — doch schon eine Tochterfigur ist. Ich konnte selbst nach 26 tägiger
Einwirkung des Natriumsulfates keinen Saum sehen, nicht einmal an Spiremen, an welchen die Wirkung des Natriumsulfates auf das Achromatin eher auftreten soll als in den folgenden Phasen. Mitosen, die ihrer Form nach Dispireme sein konnten, waren nach so langem Liegen in der Salzlösung mit Hämatoxylin so intensiv gefärbt, dass man die Chromatinfäden nicht mehr deutlich unterscheiden konnte; doch können diese Mitosen, wie es oben gesagt wurde, nichts für Pfitzner's Ansicht beweisen.

1) Pfitzner giebt es auch so an.

2) Die zwei Wochen in Müller'scher Flüssigkeit waren.
Über das Verhältniss zwischen Zellkörper und Kern etc.

haben unstreitig grosse Ähnlichkeit mit denjenigen, die man in Präparaten findet, die in Mülle r'scher Flüssigkeit in frischem Zustande fixirt wurden. Diese Beobachtung beweist auch zugleich, dass die in Osmiumsäure fixirten Chromatinfiguren durch die Mülle r'sche Flüssigkeit bei längerer Einwirkung sehr bedeutend verändert werden können. Allerdings werden nicht alle Mitosen gleichzeitig und in gleichem Grade verändert, so dass man in demselben Präparate — nach der Färbung — noch ziemlich gut erhaltene neben ganz verquollenen findet, ebenso auch Übergangsformen zwischen diesen beiden.

c) Ich bin im Laufe meiner Untersuchungen auf einige Erscheinungen gestossen, aus welchen ich mit grosser Wahrscheinlichkeit schliessen kann, dass nach der Auflösung der achrmatischen Kernmembran nicht nur die scharfe Grenze zwischen Kern und Zellkörper schwindet, sondern dass dann die Wechselbeziehungen zwischen diesen beiden viel inniger werden.

Ich habe es schon weiter oben beschrieben, dass die Osmiumsäure von allen Reagentien die Zellkörperstructuren am treuesten erhält. An Osmiumpräparaten, besonders an gefärbten, sieht man nun, dass die Zellkörperfäden um die Mitosen gut erhalten bis an die Chromatinfäden reichen und sie zu berühren scheinen, so dass zwischen Chromatinfäden und Zellkörper kein Hohlraum oder Spalte wahrnehmbar ist. Werden dann diese Osmiumpräparate der Pfltznerrischen Behandlung mit Natriumsulfat unterworfen, so verändern sich Chromatinfigur und Zellkörper in der beschriebenen Weise. Färbt man nachher diese Zellen mit Hämatoxylin, so kann man die interessante Beobachtung machen, dass, während um die grösste Zahl der ruhenden Kerne — die durch das Hämatoxylin zusammen-schrumpften — Hohlräume entstehen, die den Kern von der inneren Grenze des Zellkörpers trennen, man nie einen solchen Hohlraum um Mitosen entstehen sieht, sondern es scheinen auch die gefärbten Chromatinfäden mit den Zellkörperfäden in Berührung zu stehen (vergl. Fig. 8 und 9 mit Fig. 4 b). Da nun das Hämatoxylin in diesen Präparaten sowohl Zellkörper als Kern schrumpfen macht, so scheint mir diese Erscheinung nur so zu erklären sein, dass durch die ungleichmässige Schrumpfung der durch eine Membran begrenzte Kern sich von der innersten Zellschichte leicht lösen kann, während nach der Auflösung der Membran der Kern mit der
Zellsubstanz viel inniger zusammenhängt, und so sich von ihr nicht so leicht trennen kann. Für diese Erklärung spricht der Umstand, dass man selbst nach langer Maceration der (osmirten) Zellen in Natriumsulfat, bei welcher die Zellkörperstruktur schon theilweise zerstört ist, um die gefärbten Mitosen gewöhnlich noch eine Schicht der Zellsubstanz, wie eine Art Hüle findet, die sich bei der Schrumpfung eher von der peripheren Schicht als von den Chromatinfadern loslöste (Fig. 10).

Aehnliches kann man übrigens bei anderer Behandlung auch sehen. So z. B. kommt es in Osmiumpräparaten, die lange in Wasser liegen oft vor, dass sich Flüssigkeit zwischen Zellkörper und Kern ansammelt und so ein heller Hof um den Kern entsteht (Fig. 11). Solche Höfe sind aber nur um ruhende Kerne, um Mitosen nie.

Dass nach der Auflösung der Kernmembran in der Zellsubstanz Veränderungen vorgehen, ist schon längst bekannt. Das bezeugt: 1) Der helle Schein, der um lebende Mitosen zu sehen ist, den zuerst Flemming beschrieben hat, und der jedenfalls auf der Veränderung des Lichtbrechungsvermögens der Zellsubstanz beruht (Flemming). 2) Die dunklere Färbung der mitosenhaltigen Zellen in Osmiumsäure und deren Gemischen (Flemming). Es ist in diesen Präparaten auch zu sehen, dass die Veränderungen besonders in der Nähe des Kerns vor sich gehen. Man findet nämlich in diesen Zellen drei Zonen: die innerste, unmittelbar um den Kern ist die hellste, dann folgt eine schmale dunkle, wie "verdichtete Zellkörperfäden" (Flemming) — ausserhalb dieser wieder eine hellere (Fig. 2).

Dass die Veränderungen der Zellsubstanz in der unmittelbaren Umgebung der Mitose am grössten sind, beweisen am besten die Chromsäurepräparate. Die Chromsäure erhält die Zellkörperstrukturen bekanntlich nicht sehr treu. Das Fadenwerk ist wohl gleichmässig vertheilt durch den ganzen Zellkörper, jedoch nur um ruhende Kerne. Um Mitosen sind jene, schon von Vielen beschriebene, grosse helle Höfe, in deren Bereich man noch einzelne Trümmer der Zellkörperstruktur finden kann) (Fig. 12). Auf Grund der Vergleichung dieser Präparate mit den in Osmiumsäure fixirten muss man folgerichtig annehmen, dass die Chromsäure in

1) Dass diese Höfe nicht etwa den Kernumfang bedeuten, sondern im Zellkörper liegen, hat Flemming bewiesen.
der nach dem Schwinden der achronischen Kernmembran ver-
änderten Zellsubstanz die Strukturen leichter zerstört als diejenige
um ruhende Kerne und dass die Veränderungen des Zellkörpers
hauptsächlich um den Kern herum stattfinden. Ich glaube aber
noch um einen Schritt weiter gehen zu können. Wenn man näm-
llich in Betracht zieht, dass die Zellkörperfäden bis an die Mitosen
heran erhalten bleiben (Osmiumpräparate) und anderseits sieht,
dass im Zellkörper um die Mitose herum grosse Veränderungen
vor sich gehen, liegt der Gedanke sehr nahe, dass die hauptsäch-
lichsten Veränderungen in der Interfilarmasse des Zell-
körpers stattfinden. Natürlich will ich damit nicht gesagt haben,
dass die Filarmasse gar keine Veränderungen erleidet. Jedenfalls
muss das noch genauer untersucht werden. (Ebenso wenig kann man
aus diesen Beobachtungen ersehen, ob die Veränderungen der In-
filarmasse nur physischer — also auf veränderter Durchtränkung
mit Flüssigkeit beruhend — oder auch chemischer Natur sind.)
An das Gesagte anschliessend halte ich es endlich auch für wahr-
scheinlich, dass die Veränderungen in der Interfilarmasse haupt-
sächlich durch Vermischung derselben mit dem Kernsaft bedingt sind: 1) weil es bis jetzt nicht gelungen ist eine Grenze zwischen beiden zu finden (die Pfitzner'schen Beobachtungen kann ich nach meinen Erfahrungen nicht als Gegen-
beweis betrachten) und 2) weil ich es bewiesen zu haben glaube,
dass die Mitosen mit dem Zellkörper inniger zusammenhängen als
die ruhenden.

d) Ausser den in den Punkten a)—e) angenährten Befunden,
die Pfitzner's Anschauung sehr unwahrscheinlich machen, muss
ich schliesslich noch einige schon bekannte Beobachtungen auf-
zählen, die sich mit der Grundidee der Pfitzner'schen Auffassung,
mit der vollständigen Abgeschlossenheit des sich theilenden Kernes
innerhalb der Zelle, nicht recht vereinbaren lassen.

Die erste betrifft das Verhalten der achronischen Kern-
spindel nach vollendet er Theilung. Man findet zur Zeit, wo sich
um die Tochterknäuel die achronatische Kernmembran zu bilden
anstellt, die Spindelfäden noch sehr zahlreich von einer Figur zur
andern durch den Zellkörper ziehen, die also ganz sicher nicht
innerhalb des Kernes liegen1). Diese Disposition der Spindelfäden

1) Das ist in Zellen des Salamanderhodens besser zu sehen als im
hat in letzter Zeit besonders Flemming genau untersucht und auf deren Wichtigkeit hingewiesen¹). Ich möchte deshalb die diesbezüglichen Stellen seiner Arbeit wörtlich citiren: „Diese Disposition ist nun auch noch erkennbar, wenn bereits die Kernmembranen der Tochterfiguren aufzutreten beginnen und darin liegt also eine Sicherheit dafür, dass diese aus der Spindel stammenden Fasern nicht ganz als geformte Dinge in den Aufbau der Tochterkerne wieder aufgenommen werden können, da sie noch draussen bestehen, wenn die letzteren durch die Hülle schon abgeschlossen sind, sondern dass sie in die Zellsubstanz eingehen“ (p. 424).

Weiter heisst es dann noch: „So viel lässt sich übrigens sicher sagen, dass die Substanz dieser Fasern nach der Kerntheilung zum grossen Theile der Zellsubstanz, nicht den Tochterkernen einverleibt wird“ (p. 435).

Es ist nun leicht zu durchblicken, dass diese einzige That-sache es beweist, dass wir in der Spindel eine Substanz haben, die bei der Theilung des Kernes theilweise in die Tochterkerne, theilweise in die Zellsubstanz „einverleibt wird“. So kann man aber dann nicht mehr von einer vollständigen Abgeschlossenheit des Kernes innerhalb der Zelle sprechen, gleichgiltig ob die Spindel aus Kernsubstanz oder Zellsubstanz oder aus beiden zugleich entstanden ist. Besonders gilt das aber, wenn, wie es auch Pfizner annimmt, die Spindel nur aus Kernsubstanz gebildet wird.

Von geringerer Wichtigkeit ist die zweite Beobachtung, die ich auch bei meinen Untersuchungen vielfach machen konnte. Es ist das die anomale Lage einer oder mehrerer Schleifen der achromatischen Figur in geringerer oder grösserer Distanz von der Mehrzahl der Fäden. In Fig. 12 habe ich eine solche Schleife gezeichnet; diese besonders deshalb, weil sie ausserordentlich entfernt von den anderen, in der Polarstrahlung, also ganz sicher im Zellkörper liegt. Man kann solche Schleifen nicht selten, sowohl in Chromsäure als in Osmiumpräparaten finden. Flemming hat sie übrigens auch am lebenden Objecte gesehen. Wäre die chromatische Figur noch in einen Mantel der Pfizner’schen „Kern-

Kiemenplattenepithel, weil dort die Spindel viel besser entwickelt ist (Flemming).

¹) Flemming, Neue Beiträge zur Kenntniss der Zelle. Arch. für mikr. Anatomie Bd. XXIX.
Ueber das Verhältniss zwischen Zellkörper und Kern etc. 543

grundsubstanz" gehüllt, so wäre es doch höchst unwahrscheinlich, dass einzelne Schleifen sich aus diesem Mantel herauslösten, also gewissermaassen die Hülle sprengten und in die Zellsubstanz gelangten, es sei denn, dass diese abliegenden Schleifen auch noch eine achromatische Hülle hätten. Doch konnte ich davon keine Spur wahrnehmen.

Damit wäre ich auch mit der Aufzählung meiner Beobachtungen so ziemlich an's Ende gelangt und glaube ich Folgendes als Endresultat meiner Untersuchungen hinstellen zu können:

1) Mit der Auflösung der achromatischen Kernmembran schwindet die scharfe Grenze zwischen Kern und Zellkörper bis zur Bildung einer neuen Membran um die Tochterfiguren.

2) Während der Mitose ist der Zusammenhang zwischen Zellkörper und Kern viel inniger als bei ruhenden Kernen, was wahrscheinlich auf Vermischung des Kernsafts mit der Interfiliarmassen beruht.

Bevor ich meine Arbeit schliesse sei es mir noch gestattet, einige Bemerkungen über die Müller'sche Flüssigkeit zu machen. Neues kann ich eigentlich nach dem was schon Flemming so ausführlich darüber mittheilte nicht sagen, doch halte ich es nicht für überflüssig wenigstens auf dasselbe nochmals eindringlich hinzuweisen1). Flemming giebt da an, dass die Müller'sche Flüssigkeit oder Kalibichromat "durch theilweise Zerstörung" des Kerngerüstes, durch Quellung oder Lösung und Wiedergewinnung die Kerne in einen unnatürlichen Zustand bringen. Die Mitosen sind in diesen Präparaten wohl durch charakteristische Umrisse erkennlich (Henle), doch sind sie stark verändert und verquollen. Mehr kann man überhaupt nicht sehen. Ich kann also durchaus keinen Grund für die Behauptung Pfitzner's finden, dass in der Müller'schen Flüssigkeit das Achromatin fixirt werde oder dass "der Gesammtkern gut fixirt und markirt" wäre. Dass man in solchen Präparaten "nie in einzelne Theilstücke zerlegte", sondern stets "ganze, geschlossene" Kerne findet, ist wohl kein hinreichen-

1) Flemming, Zellsubstanz etc. p. 108.
Franz Tangl: Ueber das Verhältniss zwischen Zellkörper u. Kern etc.

Dasselbe glaube ich auch von Pfitzner's Ansicht über die Vielkernigkeit der Leukocyten halten zu müssen, die er gewissermaassen als Kunstproduct erklärt. Denn, wie ich angegeben habe, werden die Osmiumpräparate durch die Müller'sche Flüssigkeit mit der Zeit stark verändert, und wenn man dann in solchen Präparaten nur einen einzigen grossen Kern findet, so ist es vollkommen möglich, dass derselbe durch Verquellung der einzelnen Kerne entstanden ist. Wenn dieses möglich ist, so können solche Bilder auch keinen Beweis gegen diejenigen geben, welche man mit den besten Kernfixierungsmitteln bekommt und welche bekanntlich dafür sprechen, dass es wirklich sehr zahlreiche vielkernige Leukocyten gibt.

Erklärung der Abbildungen auf Tafel XXXI.

Alle gezeichneten Zellen sind aus dem Kiemenplattenepithel der Salamanderlarve. Fast alle Figuren sind nach einer vorhergehenden Controlluntersuchung des Präparates mit Homog. Imm. 1/18“ Zeiss, mit Wasser-Imm. XI, Oc. 2 Reichert (Beleuchtungsapparat) gezeichnet. Fig. 4 a und 4 b mit Zeichenapparat.

Fig. 1. Mitose mit gequollenen Chromatinfäden. Zellkörperstructur. 1 Tag 1/10°/o Osmiumsäure.

Fig. 2. 24 Stunden 2°/o Osm. Alaunkarmin. Glycerin. Zellkörperstructur mit den 3 Zonen.

Fig. 3. 24 Std. 1/4°/o Osm. 1 Tag 1°/o Natriumsulfatlösung. Gequollene Chromatinfäden der Mitose.

Fig. 4 a und 4 b. Dieselbe Zelle. 24 Std. 1/4°/o Osm. 13 Tage 1°/o Natriumsulfatlösung. 4 a ungefärbt, 4 b mit Hämatoxylin gefärbt. Schrumpfung der Zelle und des Kernes im Hämatoxylin.
Beiträge zur Morphologie der Zelle.

Von

Prof. S. M. Lukjanow.

Zweite 1) Abhandlung:

Ueber die Kerne der glatten Muskelzellen bei Salamandra macul.

Hierzu, Tafel XXXII und XXXIII.

Angesichts der Dürftigkeit unserer Kenntnisse von den Kernen der glatten Muskeln 2), so wie auch in Anbetracht mancher speziellen Fragen in Bezug auf die Bedeutung verschiedener Struktur- elemente des Kernes, erlaube ich mir einige Thatsachen vorzu-

1) S. M. Lukjanow, Beitr. z. M. d. Zelle; I. Abh.: Ueber die epithelialen Gebilde der Magenschleimhaut bei Salam. m.; Arch. von Du Bois-Reymond, 1887; Sep.-Abdr.

legen, welche die Muscularis des Magens bei Salamandra macul. betreffen.

Die beigefügten Zeichnungen sind von mir selbst angefertigt worden und geben so naturnäher wie möglich diejenigen Bilder wieder, denen ich beim Studium der gefärbten und in Canada-balsam conservirten Schnitte begegnet bin.

Einige Worte über die Reihenfolge, in der ich über die Ergebnisse meiner Untersuchung berichten werde.

Zunächst will ich Alles mittheilen, was das Äussere der Kerne betrifft; dann werde ich die innere Structur derselben betrachten; schliesslich will ich versuchen das gegenseitige Verhalten der Kerne klar zu legen. Ueber mancherlei Abweichungen, die bei Individuen der erwähnten Thierspecies unter gewissen Variationen der Versuchsanordnung etwa vorkommen können, werde ich mich hierorts nicht weiter auslassen; Alles, was im Folgenden mitgetheilt wird, wurde unter verschiedenen Verhältnissen mehr oder weniger constant beobachtet.

I.

A. Man kann in Bezug auf die Form folgende Arten der Muskelkerne unterscheiden.

b) Die anderen sind S-förmig und besitzen eine, zwei oder drei Biegungen. Der Breitendurchmesser ist in allen Theilen ihres Leibes nahezu gleich.

1) l. e.

d) Die vierte Kategorie dieser Elemente zeichnet sich durch Spindelform aus. Die hierher gehörigen Kerne besitzen gewöhnlich keine Biegung.

e) Die Kerne der fünften Gruppe erinnern an diejenigen des Cylinderepithels und erscheinen im optischen Durchschnitt kreisförmig oder oval, indem sie mehr oder weniger regelmässige Figuren bilden.

Am öftesten werden die Elemente der ersten, zweiten und vierten Gruppe gefunden, am seltensten diejenigen der dritten und fünften. Es muss übrigens hinzugefügt werden, dass neben ganz charakteristischen Formen auch Übergangsformen vorkommen.

Beim Durchmustern einzelner Schnitte findet man die Vertreter aller angeführten Kategorien und zwar nicht selten dicht neben einander gelagert. Es folgt daraus, dass die Mannigfaltigkeit der Kernformen nicht allein durch Spannungsdifferenzen der Magenwand bedingt wird. Andererseits lässt sich die Einwirkung mechanischer Momente auf die Gestalt der Kerne nicht ausschliessen, denn man braucht nur z. B. den abgebundenen Darm beim Fixiren vorsichtig auszudehnen, um sich dann zu überzeugen, dass regelmässige resp. gradlinige Stäbchenformen vorherrschen. Ist der betreffende Darmabschnitt leer und wird er sich selbst überlassen, so erscheint die Muscularis viel mächtiger und ihre Kerne acquiriren die Gestalt breiter Spindeln, die eine Neigung zur Spiralenbildung offenbaren.

die Kerne derselben in allen Theilen ihres Körpers nahezu gleich breit sind, fällt das Maximum mit dem Minimum zusammen.

Tabelle I. Schnittpräparat α.

<table>
<thead>
<tr>
<th>Nr. des Kernes</th>
<th>Die Kerne der ersten Kategorie</th>
<th>Die Kerne der vierten Kategorie</th>
<th>Die Kerne der fünften Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34,0</td>
<td>1,7</td>
<td>24,7</td>
</tr>
<tr>
<td>2</td>
<td>47,1</td>
<td>2,2</td>
<td>24,7</td>
</tr>
<tr>
<td>3</td>
<td>49,3</td>
<td>2,1</td>
<td>28,9</td>
</tr>
<tr>
<td>4</td>
<td>55,6</td>
<td>3,1</td>
<td>31,4</td>
</tr>
<tr>
<td>5</td>
<td>64,6</td>
<td>4,2</td>
<td>34,0</td>
</tr>
<tr>
<td>6</td>
<td>64,6</td>
<td>2,0</td>
<td>34,0</td>
</tr>
<tr>
<td>7</td>
<td>69,7</td>
<td>1,7</td>
<td>37,4</td>
</tr>
<tr>
<td>8</td>
<td>71,4</td>
<td>2,2</td>
<td>37,4</td>
</tr>
<tr>
<td>9</td>
<td>71,4</td>
<td>2,6</td>
<td>42,5</td>
</tr>
<tr>
<td>10</td>
<td>74,0</td>
<td>2,6</td>
<td>51,0</td>
</tr>
</tbody>
</table>

Mittelzahl: 60,2 2,4 34,6 4,9 21,4 6,6

D. Verhältniss d. L. zur Br. im Durchschnitt: 25,0 : 1 7,0 : 1 3,2 : 1

Tabelle II. Schnittpräparat β.

<table>
<thead>
<tr>
<th>Nr. des Kernes</th>
<th>Die Kerne der ersten Kategorie</th>
<th>Die Kerne der vierten Kategorie</th>
<th>Die Kerne der fünften Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,9</td>
<td>3,4</td>
<td>23,8</td>
</tr>
<tr>
<td>2</td>
<td>45,9</td>
<td>2,6</td>
<td>30,9</td>
</tr>
<tr>
<td>3</td>
<td>45,9</td>
<td>3,4</td>
<td>35,7</td>
</tr>
<tr>
<td>4</td>
<td>51,0</td>
<td>4,3</td>
<td>33,7</td>
</tr>
<tr>
<td>5</td>
<td>52,7</td>
<td>2,6</td>
<td>37,4</td>
</tr>
<tr>
<td>6</td>
<td>54,4</td>
<td>3,7</td>
<td>32,1</td>
</tr>
<tr>
<td>7</td>
<td>56,1</td>
<td>3,4</td>
<td>40,8</td>
</tr>
<tr>
<td>8</td>
<td>59,5</td>
<td>3,4</td>
<td>43,3</td>
</tr>
<tr>
<td>9</td>
<td>62,9</td>
<td>3,4</td>
<td>45,9</td>
</tr>
<tr>
<td>10</td>
<td>66,3</td>
<td>3,8</td>
<td>45,9</td>
</tr>
<tr>
<td>11</td>
<td>67,2</td>
<td>3,4</td>
<td>47,6</td>
</tr>
<tr>
<td>12</td>
<td>67,2</td>
<td>4,9</td>
<td>49,3</td>
</tr>
<tr>
<td>13</td>
<td>70,6</td>
<td>4,8</td>
<td>52,7</td>
</tr>
<tr>
<td>14</td>
<td>71,4</td>
<td>3,7</td>
<td>52,7</td>
</tr>
<tr>
<td>15</td>
<td>71,4</td>
<td>4,8</td>
<td>54,4</td>
</tr>
<tr>
<td>16</td>
<td>74,8</td>
<td>4,3</td>
<td>54,4</td>
</tr>
</tbody>
</table>
Die in Tabelle I und II angeführten Zahlen lassen folgende Schlüsse zu:

1) die Kerne der ersten Kategorie sind im Mittel länger als diejenigen der vierten und fünften;

2) die Kerne der ersten Kategorie sind im Mittel breiter als diejenigen der übrigen Gruppen, welche zur Vergleichung kamen:

3) bei einer und derselben Länge können die Kerne verschieden breit sein;

4) bei einer und derselben Breite können die Kerne verschieden lang sein;

5) die Größe des Längendurchmessers schwankt innerhalb breiterer Grenzen als die Größe des Breitendurchmessers (dieser Umstand tritt am deutlichsten an den Kernen der ersten Kategorie hervor);

6) sowohl die Durchschnittsflächen als auch das Volumen der Kerne verschiedener Kategorien sind verschieden gross.

C. Wie bei Gelegenheit meiner früheren Untersuchung der Epithelzellen, konnte ich mich auch jetzt überzeugen, dass die Kerne eines und desselben Schnittes, ja sogar die nächsten Nachbarn sich vollkommen different verhalten können gegenüber einem und demselben Tinctioverfahren. Es schwebt mir hierbei das Bild der Kerne in toto vor, welches man bei der Untersuchung der Objecte mittelst schwacher Objecte bekommt, wobei der innere Bau der Kerne kaum wahrgenommen wird. In der uns gegenwärtig interessirenden Beziehung lassen sich folgende Arten der Kerne unterscheiden:
S. M. Lukjanow:

a) die einen sind leicht bläulich oder blass violett;
b) die anderen blass rosa gefärbt;
c) manche der Kerne sind blau oder violett;
d) wiederum andere intensiv violett blau, fast schwarz;
e) die fünfte Gruppe nimmt tiefrote Farbe an:
f) die sechste erscheint schmutzig roth und nicht selten roth-violett, ja braun tingirt;
g) nur selten stösst man auf Kerne von Orangefarbe.

Irgende eine constante Beziehung zwischen der Farbe der Kerne und ihrer Grösse konnte nicht festgestellt werden. Es muss nur hervorgehoben werden, dass nicht alle Farbengruppen gleich oft zur Beobachtung kommen, sondern dass die mit c, b, d und e bezeichneten Kerne am häufigsten gefunden werden 4).

II.

Indem wir vorläufig die structurlos erscheinenden Theile ausser Acht lassen, wollen wir zunächst die geformten Elemente betrachten, aus denen sich die Muskelkerne aufbauen.

A. Es fällt recht schwer sich irgend eine Vorstellung über die Structur der Kerne zu bilden aus Objecten, welche reich an Chromatinsubstanzen sind. Zu diesem Ende ist es am zweckmässigsten die Kerne der Kategorien I, C, a, b und c zu studiren. Wenn wir diese Kerne aufmerksam betrachten, so bemerken wir leicht, dass das hyaline Bläschen oder das achromatische Körnchen ein wesentlicher Bestandtheil der Muskelkerne (analog den Epithelialkernen) 5) ist. Die eben erwähnten Elemente verbinden

5) Cfr. cit. sub. 1); ausserdem: Kosinsky, Zur Lehre von verschiedenen
sich im Innern der Kerne zu Ketten, wobei sich an den Contact-polen oft die allerfeinsten Körnchen Chromatinsubstanz beobachten lassen; dieselbe kann unter Umständen auch im peripherischen Theile des aechromatischen Gebildes abgelagert sein. In Bezug auf die Grösse stehen diese Körperchen, die ich der Kürze halber halber H yalosomen nennen will, den auf Safranin empfindlichen Kernkörperchen in der Regel nach und kommen an Grösse fast denjenigen gleich, die vom Hämatoxylin gefärbt werden; manche unter ihnen sind sogar ebenso gross, wie die letzterwähnten. Besonders interessant scheint die Thatsache zu sein, dass die H yalosomen dort am leichtesten angetroffen werden, wo auch die blauvioletten Kernkörperchen gefunden werden, d. h. dicht neben den rothen resp. safranophilen; übrigens beobachtet man auch dieselben in deutlicher Unabhängigkeit von den letzten, als die nächsten Nachbaren der blauviolet gefärbten Nucleolen — ja man sieht sie mitunter vollkommen frei liegen. Es wäre natürlich gewagt zu behaupten, dass die Kerne im lebenden Gewebe genau dasselbe Bild liefern, wie diejenigen der mit Sublimat behandelten Präparate. Anderseits liegen keine Gründe vor, die besprochenen Erscheinungen einzig und allein der Behandlungsweise der Objecte zur Last zu legen. Es ist im Gegenteil wahrscheinlich, dass die H yalosomen im lebenden Gewebe praexistiren. Schon allein der Umstand, dass die H yalosomen in gewisser Anordnung auftreten, scheint dafür zu sprechen.

B. Indem wir die combinierte Färbung anwenden, sind wir in der Lage interessante Differenzen nicht nur unter den Kernen in toto, sondern auch zwischen den Kernkörperchen zu statuiren. Es konnten folgende Arten der Kernkörperchen festgestellt werden:

a) die sogenannten Plasmosomen;

b) die sogenannten Karyosomen;

c) Kernkörperchen von gemischtem Charakter.

Die Form dieser Gebilde ist annähernd sphärisch (manche haben die Gestalt eines regelmässigen Ellipsoids oder Ovoids). Die Grössenunterschiede der Kernkörperchen verschiedener Kategorien sind sehr gering und weisen innerhalb jeder Kategorie fast gleiche Schwankungen auf. Die grössten Dimensionen werden ge-

Typen der Kernkörperchen beim Menschen (aus dem Labor. f. allg. Pathol. der K. Univ. Warschau); Jeschenedjelnaja klin. Gazeta, 1887, Nr. 24 (russisch).
S. M. Lukjanow:

Tabelle III. Schnittpräparat α.

<table>
<thead>
<tr>
<th>Nr. des Kernkörperchens</th>
<th>Die Grösse der Plasmosomen</th>
<th>Nr. des Kernkörperchens</th>
<th>Die Grösse der Plasmosomen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,85</td>
<td>0,85</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1,02</td>
<td>1,02</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1,11</td>
<td>1,02</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1,19</td>
<td>1,19</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>1,53</td>
<td>1,19</td>
<td>10</td>
</tr>
</tbody>
</table>

In Mittel: Längendurchmesser = 1,45 μ.
Breitendurchmesser = 1,20 μ.

Wenn wir die drei beigeftigten Tabellen vergleichend betrachten, so bemerken wir leicht, dass die Plasmosomen in manchen Fällen die ganze Breite schmälster Kerne in Anspruch nehmen können. Das stimmt vollkommen mit der Wirklichkeit. In breiteren Exemplaren etablieren sich dieselben im mittleren Theile, wo bei sie entweder den Polen oder dem Aquator nahe liegen. Für gewöhnlich finden wir nur ein Plasmosoma, können aber auch zwei, ja drei in einem Kerne sehen. Doppelte Plasmosomen sind häufig symmetrisch gelagert 6). Was die Karyosomen anbetrifft, so muss

6) Vgl. hierzu manche Angaben von Frankenhäuser, Die Nerven der Gebärmutter etc., Jena 1867 (p. 72 u. ff.).
Beiträge zur Morphologie der Zelle.

553

notirt werden, dass sie nicht selten zu mehreren in einem Kerne angetroffen werden, wobei sie dann recht klein zu sein pflegen. Uebrigens möchte ich betonen, dass in manchen Kernen die Kernkörperchen gänzlich fehlen, in anderen entweder nur eine Kategorie derselben, oder mehrere zugleich vertreten sind. Diese Behauptung lässt sich am besten durch diejenigen Objecte beweisen, in welchen ganz deutlich differenzierte Plasmosomen in gewisser Verbindung mit ebenso deutlichen Karyosomen und Hyalosomen stehen.

III.

Die Muskelkerne kommen ziemlich oft in Gruppen 7) zu zweien, dreen und mehreren verbunden vor. Wir müssen hier zwei Fälle unterscheiden:

1) die Kerne liegen nebeneinander parallel,
2) die Kerne liegen reihenweise einer hinter dem anderen.

A. Bei der Betrachtung des ersten Typus wird unsere Aufmerksamkeit vorzüglich durch jene Fälle gefesselt, wo die neben

Es ist recht interessant, dass einer von den paarigen Kernen sehr arm an Chromatinsubstanzen sein kann: neben einem Kerne, welcher Alles, was überhaupt ein solcher enthalten kann, aufweist, wird ein anderer gefunden, der, neben einer schwachen Andeutung der inneren Structur, seine Contouren noch kaum zur Schau tragen kann. Man könnte dieses Bild mit demjenigen des Kerns und dessen Schatten vergleichen.

B. Was den Kettentypus der Kerngruppirung anbelangt, so müssen hier augenscheinlich drei Modalitäten unterschieden werden.

a) Wenn die Kette nur aus zwei Gliedern besteht, die ihrem

das nächste besass denselben Farbenton, war indess von ovaler Form und bedeutend kleiner; das folgende erschien röthlich, verhältnissmässig gross und ebenfalls oval; das vierte bot dieselben Verhältnisse wie das dritte; das fünfte, welches an Grösse den zwei letzten gleichkam, war intensiv roth gefärbt und birnförmig. Die ersten vier Kerne sind innig mit einander verbunden, der letztgenannte aber liegt lose in gewisser Entfernung von ihnen.

Nicht nur die eben geschilderten Ergebnisse scheinen lehrreich zu sein, sondern auch manche negative Resultate verdienen eine eingehende Besprechung. Ich will nur das wichtigste hervorheben. Es muss zunächst die Abwesenheit der extranuclearen Formen constatirt werden, die in so grosser Mannigfaltigkeit und in relativ so grosser Zahl bei der Betrachtung der Drüsenzellen und des Cylinderepithels im Magen der Salamandra angetroffen werden. Im Muskelgewebe stossen wir ausserordentlich selten auf
extranucleare Plasmosomen, Karyosomen und Hyalosomen. Andere Formen haben wir gar nicht beobachtet, obgleich wir eine grosse Anzahl Schnitte durchmustert haben. Wenn die Deutung, die wir sub III, A machten, hinreichend begründet ist, so ist bei der Umbildung der extranuclearen Plasmosomen und Karyosomen mit den zu ihnen gehörenden Hyalosomen zum jugendlichen Kerne, welcher dicht neben dem älteren angetroffen wird, eine Art von Synthese der differenten Elemente des Mutterkernes vorauszusetzen; es können aber die Arten dieser Synthese mannigfaltig sein und man braucht im Muskelgewebe nicht gerade dasselbe anzutreffen, was man bei den Drüsen etc. gesehen hat. Es muss noch hinzugefügt werden, dass der eben besprochene Combinationstypus keine häufige Erscheinung ist. Ferner möchte ich auf die Abwesenheit der Zy-

Von der Keramembran und dem sogenannten Kernsaft lässt sich nur wenig sagen. Die Membran tritt verschieden deutlich hervor und kann sogar stellenweise fehlen. Wenn im Kerne irgend eine Chromatinsubstanz prävalirt, so nimmt die Keramembran die entsprechende Färbung an. Ich konnte z. B. nie beobachten, dass in einem intensiv rothen Kerne die Membran aus derjenigen Substanz bestünde, welche vom Hämatoxylin gefärbt wird und umgekehrt. Es ist ebenfalls recht schwer etwas positives über den Kernsaft anzugeben. Vermuthlich wird der Allgemeincharakter der Kernfärbung durch die chemischen Eigenschaften desselben be-

dingt. Ich bin der Ansicht, dass der genannte Saft auch in Muskelkernen neben den achromatischen Stoffen auch amorphe Chromatin-

substanzen enthalten kann. — Ueber die Beziehungen zwischen den Nerven und Muskelzellen will ich mich bei einer anderen Ge-

legenheit aussprechen.
Erklärung der Abbildungen auf Tafel XXXII und XXXIII.

Fig. 1—19. Stäbchen- und spindelförmige Kerne, gradlinige und S-förmig gebogene. Fig. 2 a: Plasmosoma in einem freien Hofe. Fig. 7 a: Plasmosoma mit einem Kranze von Hyalosomen. Fig. 13 a: Kernkörperchen von gemischtem Charakter. Fig. 15 a: Plasmosoma mit einem Karyosoma und mehreren Hyalosomen.

Figg. 27—29. Gruppen von Kernen im Querschnitt.

Fig. 30. Kern mit extranuclearem Plasmosoma, das mit einem kleinen Karyosoma verbunden ist.

Fig. 31. Kern mit extranuclearen Hyalosomen und Karyosoma.

Fig. 32. Kern mit zwei extranuclearen Paaren von Plasmosomen und Hyalosomen in einem freien Felde.

Fig. 33. Zwei Kerne nebeneinander; a Hauptkern mit einem Plasmosoma und mehreren Karyosomen; b secundärer Kern mit einem kleinen Plasmosoma.

Fig. 34. Zwei Kerne nebeneinander; verschiedene Färbung.

Fig. 35. Ein ähnlicher Fall.

Fig. 36. Zwei Kerne nebeneinander; der Kern a ist nur teilweise abgebildet.

Fig. 40. Paarige Kerne; der Kern a ist kaum angedeutet, der Kern b mit deutlicher Struktur.

Figg. 41—44. Quergespaltene Kerne von verschiedenem Aussehen.

Fig. 45. Kern mit Einschnürung; a Haupttheil des Kernes, b accessorischer Theil.

Figg. 46—48. Hauptkerne (a) und accessorische Kerne (b).

Figg. 49—50. Spirale Kerne.

Figg. 51—52. Fragmentierung der spiralen Kerne.
Zwei junge menschliche Embryonen.

Von

Prof. Dr. J. Janošík an der k. k. böhm. Universität in Prag.

Hierzu Tafel XXXIV und XXXV.

Vor zwei Jahren sind mir zwei sehr junge menschliche Embryonen durch die Güte des Herrn Doc. Dr. Schwing zur Verfügung gestellt worden, von welchen, besonders von einem, welchen ich ganz frisch zur Hand bekomen habe, ich des Näheren etwas berichten will.

Was die Bestimmung des Alters anbelangt, so will ich in Kürze nur die betreffenden Data angeben.

Die Körperlänge jenes Embryo, welchen ich ganz frisch zur Untersuchung bekommen habe, beträgt in einer geraden Linie von der Scheitelkrümmung bis zur Schwanzkrümmung 3 mm. Das Ei, aus welchem der Embryo genommen wurde, misst 8 mm. Seine ganze Oberfläche trägt Zotten von 1 mm Länge 1). Das Amnion legt sich ziemlich dicht dem Embryo an und der Abstand beider ist nicht grösser, als man ihn bei Säugethiere- oder Vogelembryonen vorzufinden pflegt, also der Entwicklungsstufe angemessen. Es steht somit das Amnion vom Chorion ziemlich weit ab, es ist das aber kein grosses Missverhältniss.

Diese Umstände sind zu beherzigen, da die Frucht manchmal abstirbt und das Ei noch weiter wächst; findet man also ein Missverhältniss zwischen den Eihüllen und dem Embryo, so ist dieses an und für sich schon ein Zeichen, dass der Embryo nicht frisch ist, oder aber dass es sich um eine Missbildung handelt.

1) Bei der mikroskopischen Untersuchung zeigen die Zotten an der Oberfläche ein cubisches einschichtiges Epithel, im Inneren bestehen sie aus gallertartigem Gewebe, in welchem die vielverästigten Zellen nicht reichlich sind.

His\(^1\) bestimmt das Alter der menschlichen Embryonen nach den Angaben Reichert's und Leopold's. Man verfährt darnach am sichersten, wenn man von jener Zeit an rechnet, wann die letzte Periode ausblieb und wenn man zwei oder drei Tage dazu rechnet. His sagt aber zugleich, dass Fälle bekannt sind, auf welche diese Regel keine Anwendung findet.

In dieser Hinsicht ist eine neuere Arbeit in Bezug auf die Deutung des Menstruationsprocesses bemerkenswerth.

Löwenthal\(^2\) misst dem Ei eine sehr lange Lebensfähigkeit zu und zwar beiläufig eine so lange, wie die Zeit zwischen zwei Menstruationen. Weiter scheint ihm die Befruchtungsfähigkeit des Eies auch zu einer Zeit zulässig zu sein, in welcher eine Decidua sich gebildet hat.

Durch Versuche auf Thieren ist aber dargethan worden, dass das Ei nur eine sehr kurze Zeit nach dem Austritte aus dem Graaf'schen Follikel befruchtungsfähig ist, also am Ovarium selbst oder im Anfangsstücke der Tuba. Beim Menschen lassen sich solche Details allerdings kaum einmal ermitteln.

His ist auch der Meinung, dass auch beim Menschen die ersten Entwicklungsvorgänge sich zu jener Zeit abspielen, in welcher das Ei durch den Oviduct vorschreitet und dass es kaum je gelingen wird im Uterus ein jüngeres Stadium vorzutreffen als jenes von Reichert.

Die zu meinem Embryo bezüglichen Data sind kurz folgende. Jener 3 mm lange Embryo rührt von einem Abortus her bei einer

Zwei junge menschliche Embryonen.

Wollen wir nun das Alter des Embryo nach His bestimmen, da stossen wir schon auf Schwierigkeiten. Man soll vom Ende Juni zu rechnen anfangen, also etwa vom 28. bis zu dem Tage, an welchem das Ei herausgetrieben wurde, was in diesem Falle 15 Tage ausmacht. Diese Zeitangabe entspricht der Entwicklungsstufe. Die Unsicherheit beruht aber darin, dass man nicht weiss bis zu welchem Tage man rechnen soll, da der blutige Ausfluss schon den 5. oder 8. Juli begann.

Das zweite Ei misst im Diameter 15 mm. Zwischen Amnion und Chorion ist ein grosser Raum, das Amnion steht ebenfalls weit vom Embryo ab. Der Embryo ist fast von derselben Länge, wie der erste, der äusseren Form nach ist er aber bei Weitem nicht so entwickelt, wie jener. Aus diesen Verhältnissen geht deutlich hervor, dass der Embryo abgestorben war und die Eihüllen sich noch weiter entwickelten. Diesen Embryo habe ich nicht weiter bearbeitet, weil ich davon nichts hoffte. Was das Alter anbelangt kann ich folgende Data mittheilen. Von der letzten Periode, welche ausblieb, trat nach drei Wochen blutiger Ausfluss ein und war das Ei herausgetrieben. Das Ei ist ziemlich gross und man ist genöthigt, die Zeit der Befruchtung vor die Zeit der ausgebliebenen Periode zu setzen.

Wie zu ersehen, ist die Altersbestimmung ziemlich ungenau und His sagt im II. Theile l. c., dass Differenzen von drei bis sieben Wochen vorkommen können.

Der erste Embryo war im aufgeschlitzten Ei in Müller'scher Flüssigkeit conservirt, in welche er ganz frisch eingelegt war. Nach zehn Tagen, nachdem täglich die Flüssigkeit gewechselt wurde, ist der Embryo mit destillirtem Wasser gut ausgewaschen worden und allmählich in Alkohol nachgehärtet. Die Färbung geschah in toto mit Grenacher'schem Alaunkarmin. Vorher schon

Nachdem der Embryo mit der Loupe und bei schwacher Vergrösserung unter dem Mikroskope gut durchgemustert wurde, ist derselbe bei einer 25fachen Vergrösserung von der linken Seite her gezeichnet worden.

Vom peripheren Nervensysteme sind deutlich die Anlagen des Trigeminus und des Acustico-facialis zu sehen.

Die Augenblase liegt etwas nach hinten von der sechsdären Vorderhirnblase und ist sehr leicht als solche zu erkennen. Man bemerkt an derselben ein centrales etwas dunkleres Feld (beim durchfallenden Lichte) mit einer helleren peripheren Partie. Die Form ist oval. Das Gehörbläschen erscheint schon bei dieser Besichtigung vom Ectoderm losgetrennt und hat annähernd die Form eines Dreieckes, dessen Fläche etwas lichter erscheint als die Umgebung.

Die Visceralbogen sind zwei zu sehen. Der obere, also jener näher dem Kopfe gelegene ist sehr stark und man kann den Uebergang des einen in den der anderen Seite sehen. Der untere Visceralbogen ist viel schwächer, kürzer und biegt unter den vorderen etwas ein. Vor dem vorderen steht der eigentliche Kopf ziemlich weit hervor.

Etwas caudal hinter dem schwächeren (sagen wir dem zweiten, ohne darauf Bezug nehmend, ob er es genetisch ist) kann man eine leichte Prominenz wahrnehmen, welche sich etwas caudalwärts immer schwächer werdend zieht bis zu jener Gegend, wo sich das

Das Herz erscheint als zwei Erhabenheiten beiläufig von kugeliger Form, welche sich dicht an einander legen. Der vordere Abschnitt ist bedeutend grösser als der hintere und liegt auch etwas mehr median.

Im Schwanzende, welches eine starke Biegung zeigt, kann man einzelne Mesoblastsomiten unterscheiden.

Der Strang, welcher den Embryo an die Eihüllen befestigt, ist ziemlich kräftig und man unterscheidet in denselben einige dunklere Streifen, über deren Natur die Querschnitte Aufschluss geben.

Die Nabelblase ist zur linken Seite umgebogen. Ihr ziemlich breiter Stiel ist durch das Herz etwas caudalwärts eingebogen und liegt dicht neben jenem Strange, welcher den Embryo mit den Eihüllen verbindet. In der Wand der Blase verlaufen zahlreiche Blutgefäße. Was die Form und Grösse der Blase anbelangt, ist beides aus den beigegebenen Figuren zu ersehen.

Dieses war am Embryo in toto zu sehen. Behufs der weiteren Durchforschung ist der Embryo in Chloroform-Paraffin eingebettet worden und in 98 Schnitte zerlegt, welche senkrecht auf die Linie geführt wurden, welche gezogen die am meisten prominenten Punkte am Kopf- und Schwanzende verbinden würde. Diese Linie stellt auch jene vor, nach welcher der Embryo gemessen wurde. Die Schnitte wurden als vollständige Serie in Canada balsam eingelegt. Damit man sich von der inneren Organisation eine klare Vorstellung machen kann, besonders was die streitige Allantois und die Blutgefäße anbelangt, war es nöthig alle Schnitte streng abgemessen zu zeichnen, was mittelst der Camera lucida bei 55 facher Vergrösserung geschah.

Zur Ergänzung der Beschreibung der äusseren Form will ich nur noch kurz anführen, dass aus den Schnitten zu ersehen war, dass drei Viserarlabyrin gebildet sind, obwohl äusserlich man nur zwei bemerken konnte, indem der hinterste oberflächlich nur durch eine seichte Furche angedeutet war, welche an keiner Stelle noch zum Durchbruche geführt hat. Von der inneren Seite, von Cavum
pharyngis, ist dieser Bogen ganz deutlich abgegrenzt und es verläuft in demselben eine Visceralarterie.

Das Skelet.

Das Skelet ist nur durch die Chorda vertreten, welche vorne bis an die Basis des Mittelhirns reicht, nach hinten aber soweit wie das Medullarrohr sich hinzieht bis fast zum Ende des Schwanzes. Ihre Lage ist vor dem Medullarrohre zwischen indifferenten Mesodermzellen. Die Distanz vom Medullarrohre ist nicht an allen Stellen dieselbe: im vorderen Ende ist sie grösser als z. B. im Brustabschnitte, und im Schwanzende ist es gar nicht möglich die Zellen, welche die Chorda zusammensetzen, von jenen des Medullarrohores zu trennen, indem sie eine Masse bilden.

Ein solches Verschmelzen der Chorda mit dem Medullarrohre ist ein constantes Vorkommniss nicht nur bei Säugethier-, sondern auch bei Vogelembryonen und wie weit ich es zu verfolgen Gelegenheit hatte, auch bei niederer Vertrebraten. Wohl existirt eine solche Verschmelzung nur bis zu einem gewissen Grade der Entwicklung und scheint die Andeutung eines Canalis neuroentericus zu sein.

Das Nervensystem und die Sinnesorgane.

Das centrale Nervensystem ist durch die secundäre Vorderhirnblase, die Zwischen-, Mittel- und Hinterhirnblase vertreten. Nach hinten zieht sich das Medullarrohr bis an das Schwanzende. Das ganze centrale Nervensystem folgt allen Krümmungen des Embryo.

Der ganzen Länge nach ist das Rohr des centralen Nervensystems geschlossen, nur vorne, im Bereiche der Gehirnblasen kann man eine unvollständige Verlötung der beiden Kanten der Medullarrinne nachweisen (Taf. XXXV, Fig. 16).

Bei der Beschreibung des Embryo in toto ist schon der einzelnen Gehirnbläschen Erwähnung gethan worden. Am meisten prominiert die Mittelhirnblase, welche auch die grösste ist und das grösste Lumen besitzt.

Die secundäre Vorderhirnblase ist im Vergleich zu jener der Sängethiere klein, was besonders durch die Weite des Augenblasenstieles verursacht wird. Die Zwischenhirnblase, von welcher die Augenblasenstiele abgehen, besitzt so zu sagen gar keine seitlichen Wände, indem sich ihr Lumen ganz in die Augenblasenstiele fortsetzt. Das Lumen des Zwischenhirns ist durch Zellen ausgefüllt, von denen ich nicht angeben kann wozu sie gehören.

In der Pharyngealhöhle findet man an jener Stelle, an welcher dem Epithel, welches sie auskleidet, dicht die Zwischenhirnblase anliegt, einige röhrenförmige Auswüchse. Sie nehmen ihren Ursprung vom Pharyngealepithel, welches an dieser Stelle mit der Masse des Centralnervensystemes zusammenzuhängen scheint.

dass ein solches Verhalten von Autoren beschrieben wäre. Ich kann auch nicht angeben, ob es eine normale oder zufällige Bildung ist, erwähnenswerth ist sie aber doch. Diese röhenförmigen Auswüchse sind auf drei Schnitten zu sehen.

Das Mittelhirnbläschen ist von den Seiten her abgeflacht und sein Lumen erscheint in der ventralen Richtung spaltförmig, erweitert sich aber nach oben zu bedeutend und ist ebenfalls von Zellen erfüllt. Nach hinten zu senkt es sich zur Hinterhirnblase, welche immer schmächtiger werdend in das Medullarrohr übergeht.

In ganzer Ausdehnung des Hinterhirns, sowie am Uebergange des Mittelhirns in das Hinterhirn ist das Lumen sehr erweitert, besonders im oberen Abschnitte, so dass die obere Wand ganz dünn erscheint. Der Uebergang der Seitenwände in die obere Wand ist ein ziemlich rascher, so dass die Wand fast auf einmal dünn wird. Wenn noch irgendwelche Differenzen bestehen, so sind sie keineswegs von solcher Bedeutung, dass man sie besonders hervorheben sollte.

Das Lumen im Medullarrohr erscheint als eine von beiden Seiten abgeflachte Spalte, bleibt aber dessen ungeachtet ziemlich weit. Das Lumen zieht sich im ganzen Rohre bis nach hinten zu, wo es blind endet und zwar in der Weise, dass der untere Uebergang der beiden Wände in einander ein mächtiger wird.

Zwei junge menschliche Embryonen.

567

stehen. Dieser ganze nach innen gerichtete Theil der Zelle scheint bis zu jenem hellen Saume leicht gestreift und schwach gelblich pigmentirt.

Gegen das anliegende Gewebe zeigt das ganze Centralnervensystem eine scharfe Grenze, besonders das Medullarrohr. Hier scheint sogar ein kleiner Zwischenraum zwischen dem Medullarrohr und dem angrenzenden Gewebe zu bestehen.

Es ist nicht zu sehen, dass Nervenstämme in das Medullarrohr eintreten oder aus demselben austreten möchten. Ebenfalls ist keine Andeutung von Spinalganglien zu finden, welche so deut- lich bei viel jüngeren Vogelettelembryonen in Verbindung mit den hinteren Wurzeln anzutreffen sind, welche aus der Medulla ihren Ursprung genommen haben. Ich bemerke hier nur kurz, dass die Frage nach der Entstehung dieser Gebilde nicht abgeschlossen ist und verweise diesbezüglich auf die Angaben von His, Hensen u. s. w. bei Thier- und Menschenembryonen. Es handelt sich nämlich um die Frage, ob die Ganglien mit der entsprechenden Nervenwurzel sich vom Centrum her entwickeln oder ob sie un-
abhängig vom Centralorgane entstehen aus der Masse der Meso-
blastsomiten und unabhängig auch von den Nervenwurzeln, welche
aus dem Centrum hervorwachsen.

Von peripheren Nerven finde ich bei diesem Embryo nur den
Anfang des Trigeminus mit dem Ganglion Gasseri und dann den
Acustico-facialis mit entsprechendem Ganglion. Was die Entwickel-
zung dieser beiden Stämme anbelangt, so kann man bei der ge-
nanunten Durchmustering der betreffenden Schnitte nicht eine Spur
von einer Verbindung mit dem Centralnervensystem nachweisen
wenn man nicht einige Fäden, welche eine Verbindung zu be-
werkstelligen scheinen, als solche ansprechen will. Eine so sichere
Verbindung, wie ich dieselbe bei Thieren vorfinde, existiert hier
gar nicht.

An welcher Stelle diese beiden Anfänge des peripherischen
Nervensystemes liegen ist aus den beigegebenen Figuren zu sehen.
Der Anfang des Acustico-facialis liegt dicht vor dem Gehörbläs-
chen. Der Anfang für den Trigeminus und das Ganglion Gasseri
liegt noch weiter vorn.

Von den Sinnesorganen haben einen gewissen Grad von Ent-
wickelung das Auge und das Ohr erreicht.

Das Augenbläschen, welches durch einen starken Stiel mit
dem Zwischenhirn zusammenhängt, ist zwar etwas abgeflacht, man
kann es aber dennoch als primäre Augenblase bezeichnen. Die
Zeichnung und Messung der Augenblase nach dem Präparate in
toto stimmt ganz mit jener durch Construction erhaltenen. Jene
Kleinheit der Augenblase bei Säugethiere im Vergleich zu jener
der niederen Wirbelthiere hatte mich hier zur sorgfältigen Bet-
trachtung so zu sagen aufgefordert, weil die Augenblase bei diesem
Embryo etwas zu gross erscheint. Ich führe dieses nur desshalb
an, um dem Missverständnisse vorzubeugen, als hätte ich mich in
der Deutung geirrt, wie es His Waldeyer vorwirft, indem His
sagt, es sei unmöglich, dass das, was Waldeyer als Auge an-
spricht, es auch sein könnte.

Was nun die Form und die Lage der Augenblase anbelangt,
so sind die Verhältnisse etwas anders, als man sie bei Säu-
geathieren und Vögeln anzutreffen pflegt. Die Augенstiele nehmen
ihren Ursprung sehr weit vorne und bewirken einerseits durch
ihre Mächtigkeit, anderseits durch die Lage, wenn man noch die
Größen der Blasen in Betracht zieht, dass die sekundäre Vorderhirnblase klein erscheint.

Im Ectoderm ist gegenüber der anliegenden Augenblase nicht die geringste Verdickung nachzuweisen. Es besteht auch hier nur aus einer Lage cylindrischer Zellen; es ist also von einer Linse noch nichts entwickelt.

Die Gehörbläschen sind beiderseits gleichmässig entwickelt und liegen schon tief zwischen indifferenten Mesoblastzellen. Sie haben nicht mehr die Form eines runden Bläschens, sondern sind an jener Stelle, an welcher das Ganglion des Nervus Acustico-facialis ihnen anliegt, abgeflacht. Von dieser Stelle aus proliferieren die Epithelzellen der Bläschen in das Innere in Form eines niedrigen T (Taf. XXXV, Fig. 17). Diese Bildung wird theilweise auch dadurch zu Stande gebracht, dass die Bläschen durch das Ganglion nicht nur abgeflacht, sondern etwas eingestülpt werden.

Histologisch besteht die Wand des Bläschens aus mehreren Schichten von cylindrischen Zellen nach der Art der geschichteten Epithelien. Die inneren Zellen tragen Cilien.

Die Riechgrübchen erscheinen nur als eine leichte Einsenkung und das Epithel ist an dieser Stelle stärker als in der Umgebung.

Das Verdauungsrohr und seine Adnexa.

Das Verdauungsrohr ist allenthalben geschlossen, nur am vorderen Ende desselben ist die seitliche Wand durch zwei Visceralspalten durchbrochen und die vordere durch die Mundöffnung. Der Ductus omphalo-entericus, welcher den Darm mit der Nabelblase verbindet, ist schon ziemlich eng und man kann die Verbindung beider nur an zwei Schnitten antreffen. Wären die Schnitte gerade nach seiner Verlaufsrichtung geführt, so würde man die Verbindung an mehr als zweien constatiren können, sie sind aber, wie früher angegeben, in einer etwas anderen Richtung geführt, schiefl zu seinem Verlaufe.

Der ganze Verdauungstractus zeigt dieselbe Krümmung wie die Chorda und man kann an ihm der ganzen Länge nach keine be-
sonderen Abschnitte unterscheiden, welche durch ihr histologisches Verhalten an die definitiven Formationen hinduten würden. Nur an jenen Stellen kann man auch dem Verdaungstractus besondere Namen beilegen, an welchen man die Anfänge jener Organe vorfindet, welche später zu einem gewissen Abschnitte besondere Beziehungen haben, anders aber ist es nicht gerechtfertigt.

Der vordere Theil des Verdaungstractus ist weit und seine lateralen Wände bilden die Visceralbogen, welche von innen her sehr deutlich von einander getrennt sind.

Zwei junge menschliche Embryonen.

Von jener Stelle angefangen, an welcher das Verdauungsrohr sein Lumen eingeengt zeigt, ist das Epithel an der ventralen Seite noch stärker im Vergleich mit dem vorderen Abschnitt, an der dorsalen Seite aber ist das Epithel nunmehr eubisch, einschichtig. Die innersten Zellen sind an jenen Stellen, an welchen das Epithel so mächtig ist, von deutlich cylindrischer Form, mit lichterem inneren Abschnitte, welcher gelblich pigmentirt ist und einen scharf ausgeprägten Saum besitzt, welcher nur verschmolzene Flimmerhärchen zu sein scheinen.

Diese ungleiche Mächtigkeit im Epithel erstreckt sich nicht auf den ganzen Verdaunungstractus, sondern reicht bis zu jener Stelle, an welcher man schon den Anfang der Leber finden kann; sie erstreckt sich bis zum 54. Schnitte und am 45. ist schon die Leberanlage wohl nicht in Verbindung mit dem Verdaunungsrohre, welche erst auf den 40. Schnitt fällt.

Die anliegenden Mesodermzellen bieten keine Besonderheiten in Betreff ihrer Anordnung dar.

Je weiter distal unsomehr entfernt sich das Verdaunungsrohr von der Chorda und um so deutlicher tritt ein selbständiges Mesenterium auf, welches noch sehr breit ist auch an jenen Stellen, an denen es am längsten ist, welches Verhältniss etwa auf jene Stelle fällt, an welcher der Ductus omphalo-entericus vom Darme abgeht.

Querschnitte das etwas verlängerte Lumen des Darmes reichte. Noch am nächsten Schnitte ist die Zellmasse zu sehen, aber ausser Verbindung mit den Epithelzellen zwischen den Mesodermzellen und zwar an derselben Stelle, an welcher jene mit dem Epithel verbundene Zellmasse gelegen war.

Jene Zellen sind sicher nur Derivate der Epithelzellen des Darmes und zeigen keine erwähnenswerthen Charaktere. An Stellen, wo sie ein Lumen einschliessen, sind sie so wie im Darme geordnet und auch die Abgrenzung gegen das umgebende Gewebe ist dieselbe.

Betrachtet man weiter distal auf einander folgende Schnitte, so findet man, dass jene Zellmasse in sagittaler Richtung immer
kürzer und kürzer wird. Von dieser Zellmasse nun springen starke Auswüchse in die Pleuro-peritonealhöhle vor, in welchen jederseits eine Vena omphalo-mesenterica verläuft, welche annähernd beide gleich stark sind.

Dieses Zusammenfließen der beiden Lumina fällt auf jene Stelle, an welcher die Pleuro-peritonealhöhle nicht mehr durch jene Zellmasse abgeschlossen ist, sondern sie hängt da durch einen kleinen Spalt mit der falschen Amnionhöhle zusammen.

Die Erweiterung des Darmrohres in ventraler Richtung, durch jenes Zusammenfließen zu Stande gebracht, reicht distal bis etwa zu jener Stelle, an welcher vom Darme der Ductus omphalo-entericus abgeht.

Wie aus dem Gesagten hervorgeht entwickelt sich die Leber in Verbindung mit den Leibeswänden. Bei den Vögeln finde ich die erste Leberanlage in der Art, dass die Ausstülpung des Darmrohres, welche nur ein spaltförmiges Lumen zeigt, nachdem sie sich ramifizirt die erweiterte Vena omphalo-mesenterica so zu sagen.
Dr. J. Janošík:

umwächst, zu einer Zeit, in welcher die zweite Vena omphalo-mesenterica einer Involution anheim fällt. Die weitere Entwicklung geht bei den Vögeln in der Art vor sich, dass durch stetige Ramification sich neue Auswüchse bilden, welche in das Lumen der Vena omphalo-mesenterica einwachsen, indem sie das Endothel vor sich schieben.

Wie aus der Beschreibung bei diesem menschlichen Embryo hervorgeht, besteht nicht gleich im Anfang eine innige Beziehung zwischen der Leberanlage und den Blutgefässen, es bestehen aber besondere Beziehungen zu jener Zellmasse der vorderen Leibeswand, welche zur Entwicklung des Diaphragma in Connex steht und zwar wie beim Menschen, so auch bei anderen Säugethieren.

Auf diese Erweiterung, bedingt durch die Leberanlage, folgt ohne alle Grenze jene Erweiterung, von welcher der Ductus omphalo-entericus abgeht. Dieser Gang ist schon ziemlich schwach und erscheint um so schwächer wegen der Richtung der Schnitte zu seiner Verlaufsrichtung.

Das Darmepithel, welches sich in den Ductus weiter zieht, wird Schritt für Schritt niedriger und im Ductus selbst ist es cubisch, einschichtig, und so bleibt es in der ganzen Blase nur mit dem Unterschiede, dass der innere Theil der Zellen in der Nabelblase einen hellen, gelblichen Saum aufweist.

Zwei junge menschliche Embryonen.

nur durch Ausläufer unter einander zusammen. Die Schichte ist die mächtigste unter allen drei.

Ganz separirt liegt der Querschnitt des Schwanzendes am 32. Schnitte (Taf. XXXIV, Fig. 8).

Auf dem 33. Schnitte tritt noch in jenen verdickten Theil der rechten Leibeswand die rechte Vena umbilicalis; die linke Vena umbilicalis tritt etwas mehr distal in dieselbe Masse ein.

Je weiter man jenen Strang distal verfolgt, um so stärker erscheint er und liegt stets dem Embryo zur Seite. Vom 42. Schnitte angefangen verläuft jener epitheliale Kanal in jenem breiten Strange so, dass er fast in seiner ganzen Ausdehnung der Länge nach getroffen ist und das gilt auch von den ihn begleitenden Gefässen. Auf dem 44. Schnitte erweitert sich der Kanal bedeutend, was etwa bis zum 46. Schnitte (Taf. XXXIV, Fig. 10) anhält, auf welchem von dem Ende des erweiterten Kanales ein solider epithelialer Fortsatz ausgeht, welcher auf seinem Ende etwas aufgetrieben erscheint. Am 48. Schnitte treffe ich von jenem Kanale nichts mehr; er hat sich auf jener Stelle verloren, an welcher der Strang, welcher den Embryo mit dem Chorion verbindet, behufs der Herausnahme des Embryo durchschnitten wurde.

Construiren wir nun diese Verhältnisse, so finden wir, dass von dem Verdauungsstractus ein Kanal abgeht, welcher sich an die vordere Leibeswand anlegt und mit ihr verschmilzt.

Mit diesem Kanal parallel verläuft jederseits ein Blutgefass, welches von dem zweigetheilten hinteren Ende der Aorta (den iliacis) abgeht und nichts anderes als die Art. umbilicalis ist.

Wenn nun dieser Kanal mit den begleitenden Gefässen bis zu jener Stelle gelangte, an welcher die vordere Leibeswand aufhört, so beginnt er sich in jenen Strang, welcher eigentlich nur die Verlängerung der rechten Leibeswand ist und welcher sich nun alsbald dem Chorion anlegt und mit ihm verschmilzt. So gestalten sich die Verhältnisse der Allantois bei diesem Embryo.

Bei der näheren Betrachtung wird man gewahr, dass die Allantois an allen Stellen ihres Verlaufes ein mehrschichtiges
Epithel aufweist, welches an den erweiterten Stellen einschichtig wird.

Die Epithelzellen, obwohl sie von der Umgebung gut abgegrenzt sind, zeigen doch keine so scharfe Abgrenzung gegen das anliegende Gewebe, wie die Epithelauskleidung des Verdauungstractus. Die Zellen der Umgebung zeigen auch keine solche Anordnung, dass man annehmen könnte die Allantois habe ausser dem Epithel noch eine selbständige Wand.

Hensen sagt, wenn bei einem menschlichen Embryo eine freie Allantois zu einer gewissen Zeit existirt, dass bei seinem Embryo, welcher ohne Rücksicht auf die Krümmungen 4,5 mm misst, jener Zeitpunkt schon längst verstrichen ist. Dieser Embryo hat vier Viseralbogen und eine deutliche Extremitätenanlage.

Nach diesen Angaben ist der Embryo von Hensen bedeutend

1) Häckel, "Anthropogenie" und "Ueber Ziele und Wege der heutigen Entwicklungsgesch." Jenasche Zeitschr. V. X.
3) His, Unsere Körperform.
älter als jener, welchen ich beschreibe, weist aber keine so deutlichen Krümmungen auf, wie der meine. Das ist vielleicht etwas an der Manipulation gelegen, obwohl den Angaben zufolge ältere menschliche Embryonen keine so ausgesprochenen Krümmungen aufweisen.

His bespricht im I. Theile seiner Anatomic menschlicher Embryonen aus dem Jahre 1880 etwas eingehender den Krause'schen Embryo und gelangt zur Ueberzeugung, dass jener Embryo ein Voge lembryo ist und zwar wie der äusseren Form nach, so auch in Betreff der Allantois und der Grösse der Nabelblase, so wie auch deshalb, dass die Visceralbogen sehr klein erscheinen. Krause bemerkt selbst, dass der Embryo eine auffallende Ahnlichkeit mit Schildkröt enembryonen aufweist (warum betonte er nicht die Ahnlichkeit mit Voge lembryonen, was ja näher gelegen wäre?).

Kölliker 1) gibt den Krause'schen Embryo mit Sicherheit für einen Voge lembryo aus, nachdem er denselben gesehen hatte. Dasselbe bestätigt Hasse 2), nachdem auch er den Embryo gesehen hat.

Vergleicht man nur die Abbildung jenes Embryo, welche Krause (l. e.) gibt und erinnert sich nur der Säugethiereembryonen, so ist leicht zu ersehen, dass es sich nicht einmal um einen Säugethiereembryo handelt. Durch etwas, wohl ganz untergeordnetes, ähneln jener Embryo mehr den Vogel- als den Säugethiereembryonen, näm lich durch die geringere Ausbildung des Schwanzes, welcher auch bei den menschlichen Embryonen sehr rudimentär bleibt.

Was die Allantoisfrage anbelangt, so ist noch der Publication von v. Preuschen 3) zu gedenken. v. Preuschen beschreibt ausser jenem Strange, welchen auch ich beschreibe und in welchem nach meiner Angabe die Allantois gelegen ist, etwas distal eine freie, bläschenförmige Allantois, welche sich jenem Strange anlegt. Es ist schwer zu entscheiden, um was es sich handelt,
nachdem aus den jener Abhandlung beigegebenen Abbildungen nichts Näheres zu ersehen ist.

Bei allen bisher bekannten jungen menschlichen Embryonen ist nach den einstimmigen Berichten eine Verbindung des Embryo mit dem Chorion constatirt worden. (Krause bekam seinen Embryo ohne Hüllen.) Schreibt man nun der Allantois beim Menschen dieselbe Funktion wie bei Thieren zu, so wird man dazu geführt, a priori dafür zu halten, dass in einem gewissen Stadium eine freie Allantois besteht. Von den bisher bekannten Embryonen des Menschen zeigt keiner ein solches Verhältniss.

His (l. c.) versucht zu erklären, die noch nicht bekannten Formen zwischen dem Reichert'schen Eie, bei welchem der Embryo blos als an einer beschränkten Stelle umgrenzte Verdickung des Eies zu sehen ist und seinem jüngsten Embryo E 2,6 mm, welchen His aber nicht gut erhalten bekommen hat. Dieser Embryo liegt im Inneren des Eies und weist eine bedeutende Nabelblase auf und ein es vollständig umschiessendes Amnion, steht aber durch einen Strang, welcher caudal und ventral von ihm abgeht, mit dem Chorion in Verbindung. Was nun die Erklärung von His anbelangt, so gelangt er zu dem Schlusse, dass der Embryo beim Menschen in keiner Stufe der Entwicklung vom Chorion getrennt ist.

Die Allantois entwickelt sich nun nach His derart, dass vom hinteren Abschnitte des Verdauungstractus ein epithelialer Kanaal in jenen Strang hineinwächst und er nennt ihn den Allantoisgang. Ueber die Gefässe bemerkt er weiter nichts, ob sie mit diesem Gange auch in den Strang hineinwuchern oder ob früher oder später.

Die Erklärung bringt Anschauungen mit sich, welche sich mit den bei Thieren bekannten Vorgängen nicht vereinigen lassen.

Balfour registriert diese Verhältnisse wie etwas Besonderes, Abweichendes mit der Bemerkung, wenn nicht alle bisher beschriebenen jungen Eier krankhaft verändert waren, so scheint man annehmen zu müssen, dass sich das Mesoblast des Chorions ausbildet, bevor der Embryo bestimmt angelegt ist.

Man darf aber keinesfalls übersehen, dass auch bei Thierembryonen in der Entwicklung derartige Abweichungen bekannt

1) Balfour, Comp. embryol. II. 1881.
Zwei junge menschliche Embryonen.

sind und zwar auch in Cardinalfragen, zu deren Klärung noch manches Studium erforderlich sein wird, abgesehen von Controversen und Abweichungen, welche untergeordnetere Fragen anlangen. Ich will hier nur der Frage über die Umkehr der Keimblätter bei gewissen Nagern gedenken, welche man von verschiedenen Seiten her noch neuerdings zu klären versucht.

Das Urogenitalsystem.

Das Urogenitalsystem ist bei diesem Embryo durch den Wolff'schen oder Urnierengang, durch einige Bläschen, welche als Anlagen der primären Urnierekanälen wohl anzusehen sind und dann durch ein Zellblastem, in welchem die Zellen keine besondere Anordnung zeigen, vertreten. Die näheren histologischen Details dieses Systemes sind folgende.

Noch etwas mehr distal bis zum 26. Schnitte finde ich nichts

Vor dem vorderen Kanälchen (proximal) finde ich an jenem Schnitte, an welchem auch die Lungenanlage zu sehen ist, eine Prominenz in die Pleuroperitonealhöhle vorspringen, welche auf drei hinter einander gelegten Schnitten zu beobachten ist und einem kleinen äusseren Glomerulus der Vögel nicht unähnlich aussieht (Taf. XXXV, Fig. 13). Ich will hier nicht etwas behaupten, was ich durch die Entwicklung Schritt für Schritt nicht beweisen kann. Ich bemerke aber dieses dennoch und zwar deshalb, weil ich es nicht für unmöglich halte, dass sich auch bei menschlichen Embryonen eine Vorniere (Pronephros) mit allen charakteristischen Merkmalen entwickeln könnte, wie es ja Renson¹) für die Säugerthiere angiebt, welche Angabe ich nicht im ganzen Umfange für die Säuger bestätigen konnte²).

Medial und ventral von diesem Gange liegt eine Reihe von Bläschen, welche einander vorne und hinten berühren, was noch deutlicher die etwas mehr caudal gelegten Schnitte zeigen. Die Bläschen zeigen wohl bisher kein Lumen, aber die centralen Zellen jener Zellhäufchen zeigen schon das Auftreten jener Verhältnisse, wie ich dieselben für die Vögel des Näheren besprochen habe (l. c.), dass nämlich durch ein Einschmelzen der Zellen hier ein Lumen gebildet wird.

Zwei junge menschliche Embryonen.

Was hier die Angabe der Schnitte anbelangt, so bemerke ich, dass in Folge der Krümmung des Embryos der grösste Theil des Urogenitalsystemes frontal geschnitten ist (was auch für alle anderen axial gelegenen Organe zu beherzigen ist) und somit der grösste Abschnitt dieses Systemes nur in drei auf einander folgenden Schnitten enthalten ist.

Die ganze Plica urogenitalis prominirt nur leicht in das Coelom. Das Epithel an ihrer Oberfläche ist an der lateralen Seite und dem am meisten prominirenden ventralen Theile einschichtig, cubisch, an der medialen Seite aber, wo es auch an das Mesenterium sich fortsetzt, wird es mehrschichtig und zeigt gegen das anliegende Gewebe keine scharfe Begrenzung. Ich bemerke hier, dass diese unbestimmte Abgrenzung nicht durch schiefe Schnitte bedingt ist, sondern dass dieselbe existirt.

Distal von jener Stelle, bis zu welcher jene beschriebenen Bläschen reichen, finde ich anstatt derselben eine Zellmasse, welche von Stelle zu Stelle mit dem Peritonealepithel zusammenhängt, weiter aber nach hinten zu liegt dieselbe ganz vom Peritonealepithel abgelöst.

Der Wolff’sche Gang verläuft nach hinten, ohne mit dem Epithel oder den Bläschen in Verbindung zu treten, ist viel deutlicher und zeigt an einigen Stellen ein deutliches Lumen. In seinem hintersten Abschnitte endigt er blind, ohne eine Tendenz zu zeigen, sich mit der Cloake zu verbinden und sich in dieselbe zu öffnen.

Dieses ganze System reicht fast ebenso weit gegen das Schwanzende als die Pleuroperitonealhöhle, welche sich nur um einige Schnitte weiter caudal erstreckt. Die Plica urogenitalis ist an diesen Stellen ziemlich deutlich.

Das Herz und die Blutgefäße.

Das Herz zeigt bei diesem Embryo noch sehr einfache Verhältnisse. Es besteht aus einem gemeinschaftlichen und aus einem venösen und arteriellen Theile. Die einzelnen Abschnitte sind nicht gegen einander abgegrenzt, sondern sie gehen ohne scharfe Grenze in einander über. Will man eine genaue Einsicht in den Bau des Herzens bekommen, so ist es nöthig, trotz der Einfachheit dasselbe aus den Schnitten zu konstruiren, da ohne die Construction auch dem Geübten die genaue Vorstellung fehlt. Eine durch die Construction erhaltene Figur zeigt Fig. 4, Taf. XXXIV. Aus der Figur ist zu ersehen, dass die Dimension in der sagittalen Richtung jene in der axialen weit übertrifft. Am meisten prominirt nach vorne zu der gemeinschaftliche Theil, welcher hier einzig die Herzkammer vertritt, zu welcher später noch der Conus arteriosus hinzutritt.

Nach hinten von diesem Abschnitte geht der venöse Theil ab, welchen man bei der Totalansicht von der linken Seite her grösstentheils zu Gesicht bekommt, nur der kleinere Theil legt sich hinter den aufsteigenden Aortenstamm.

Zwei junge menschliche Embryonen.

47. Schnitte. Am nächsten Schnitte verengt es sich ein wenig und erweitert sich im linken Abschnitte in sagittaler Richtung.

Der 54. Schnitt (Taf. XXXV, Fig. 13) zeigt wieder zwei Herzlumina, von denen das linke bedeutend dorsal verschoben ist. Vernein, dass man auch die mehr distalen Schnitte, so ist leicht zu sehen, dass es sich um ein Umbiegen des venösen Theiles handelt und zwar in dorsaler Richtung.

Der Zusammenfluss der venösen Stämme beider Seiten kommt auf der linken Seite etwas mehr distal zu Stande als auf der rechten, ist aber am 53. Schnitte schon von beiden Seiten her vollendet. Erst von dieser Stelle an proximal erweitert sich der venöse Theil des Herzens, obwohl keine Vene mehr hier in denselben einmündet.

Der arterielle Abschnitt des Herzens liegt stets mehr gegen die rechte Seite zu, ist aber bedeutend kleiner geworden, obwohl von ihm keine Gefässe noch abgegeben worden sind. An Schnitten, welche mehr proximal geführt sind, biegt dieser Abschnitt etwas ventral um, neigt sich dann gegen die linke Seite zu und verlängert sich nachher etwas dorsal. Am 61. Schnitte verschwindet jener auf der rechten Seite gelegene Abschnitt und es bleibt nur der linke Theil, welcher dorsal etwas verlängert erscheint. In dieser Höhe ist auch das Lumen bedeutend kleiner und man kann diesen Theil als die Aorta ascendens ansprechen.

Die Aorta ascendens, zunächst auf der linken Seite gelegen, nimmt alsbald eine mediale Stellung ein vor dem in dieser Partie erweiterten Verdauungstractus. Ganz vor dem Verdauungstractus liegt sie schon am 68. und auf folgenden Schnitten, wo sie in jene Erhabenheit gegen die Pharyngealhöhle, von der ich früher berichtet habe, eintritt.

Am 68. und 69. Schnitte gehen von der Aorta jederseits drei Visceralarterien, sie selbst erscheint an dieser Stelle etwas erweitert zu sein. Weiter proximal verläuft die Aorta noch in jener erwähnten Erhabenheit, nachdem sie etwas schmächtiger geworden
ist, aber keine Zweige abgegeben hat. His bildet den Abgang der Visceralarterien übereinstimmend mit dem hier Gesagten, aber statt jener Fortsetzung der Aorta in die Erhabenheit zeichnet er wohl bei älteren Embryonen nur ein schwaches Blutgefäß.

Die Schemata, welche zur Erklärung dieser Verhältnisse angeführt werden, sind nichts weniger als richtig. Auch bei Fischen, bei denen ich den Abgang der Visceralarterien zu beobachten die Gelegenheit hatte, fand ich die Verhältnisse so, wie ich sie bei diesem Embryo erwähne.

Jene drei erwähnten Paare von Visceralarterien verlaufen in drei Paaren von Visceralbogen und sind annähernd von gleichem Kaliber, obwohl jenes am meisten distal gelegene etwas schwächer zu sein scheint.

Mit der Aorta descendens verbinden sie sich derart, wie die Fig. 3, Taf. XXXIV es veranschaulicht und wie es auch aus der Fig. 2 zu entnehmen ist. In der Fig. 2 ist die Aorta descendens etwas mehr dorsal gelegen gezeichnet; beide liegen den Seiten der Chorda an. In der Fig. ist der Deutlichkeit wegen die Richtigkeit etwas in den Hintergrund gestellt.

Durch den 78. und 79. Schnitt ist das Umbiegen der ersten Visceralarterie in die Aorta descendens getroffen; das Einnüben des dritten Paares liegt im 73. Schnitte.

Ich kann hier gleich die Beschreibung des Arteriellenystemes folgen lassen, welches bedeutend einfache Verhältnisse darbietet.

Stärkeres arterielles Stämmchen entsendet die Aorta erst am 28. Schnitte. Es ist dies eine Arterie, welche auf der linken Seite

Die vereinigte Aorta, indem sie noch einige Gefässchen abgibt, verläuft distal und richtet sich nach der Krümmung der Chorda und des ganzen Embryo.

Verfolgt man nun weiter caudal den Verlauf der Gefässe, so findet man, dass die Aorta am 28. Schnitte wieder zerfällt (die Nummern der Schnitte gehen wieder in umgekehrter Richtung) in zwei Stämme, welche allenfalls die beiden iliaca sind. Diese beiden Stämme verlaufen jeder zur Seite der Chorda und am 33. Schnitte geht von jedem jener Stämme eine stärkere Arterie ab, welche sich je eine auf die eine Seite der bereits besprochenen Allantois anlegen, und mit ihr an der vorderen Leibeswand verlaufen.

Bei der näheren Besichtigung erscheinen die beiden die Allantois begleitenden Arterien viel stärker als die eigentliche Verlängerung der iliaca, so dass sie für die eigentliche Verlängerung imponiren.
Verfolgt man nun jene mit der Allantois verlaufenden Arterien, so findet man, dass sie dieselbe bis in jenen Stiel begleiten und in diesem verlaufen sie mit der Allantois bis zum Chorion, woselbst der Anfang der Placenta zu sehen ist. Beide dieser Arterien sind Arteriae umbilicales.

Damit ist das arterielle System erschöpft.

Das venöse System weist etwas complicirtere Verhältnisse auf, und weicht in mancher Beziehung von der üblichen Darstellungsweise ab.

Betrachten wir zunächst das Herz, so sieht man, dass von der gemeinschaftlichen Kammer sich ein Lumen zum venösen Theile hinzieht, welches breit in frontaler, schmal in sagittaler Richtung erscheint, erweitert sich aber auch in dieser Richtung, je mehr man gegen den venösen Theil vorschreitet, ziemlich rasch.

Die Venae omphalo-mesentericae verlaufen von der Nabelblase mit dem gleichnamigen Ductus, begleiten dann das Verdauungsrohr und nehmen beiderseits jede die entsprechende Vena umbilicalis seu parietalis in sich auf. An jener Stelle, an welcher der Ductus omphalo-mesentericus sich mit dem Darme in Verbindung gesetzt hat, mündet in die rechte Vena omphalo-mesenterica an der Stelle, wo dieselbe in proximale Richtung umbiegt, eine Vena ein, welche vom Caudalende kommend zur Seite der Verdauungstractus verläuft.

Die Venae umbilicales kann man bis in jenen Strang verfolgen, in welchem die Allantois und die Arteriae umbilicales verlaufen. Die rechte Vena umbilicalis ist stärker als die linke und mündet etwas mehr distal in die entsprechende Vena omphalo-mesenterica ein. Nachdem sich der Allantoisstrang mit beiden Leibeswänden verbunden hat, so treten die Venae umbilicales in die Leibeswände und verbleiben in denselben mehr proximal verlaufend.

Das Verhalten der Venae umbilicales ist an beiden Seiten nicht ein gleiches. Die linke Vena umbilicalis tritt früher in Ver-
Zwei junge menschliche Embryonen.

Zwei junge menschliche Embryonen, welchen die beiden cardinales gebildet haben, bevor sie in die Omphalo-mesenterica ihre Einmündung gefunden hat. Die rechte Umbilicalis mündet früher in die entsprechende Vena omphalo-mesenterica und diese dann verbindet sich mit dem Ductus Cuvieri.

An der Aussenseite bekleidet ein einsehichtiges Epithel die Herzwand, bestehend aus cubischen Zellen. Das Lumen des Herzens ist durch eine Endothelmembran ausgekleidet, deren einzelne flache Zellen man ganz scharf unterscheiden kann.

In der Wand des venösen Theiles suche ich vergebens nach jenen spindelförmigen gelblichen Zellen, den Muskelfasern (denn das sind jene quergestreiften Zellen), welche eine continuirliche Wand bilden möchten. Sie liegen nur hie und da zerstreut, die Hauptmasse der Wand bilden die Bindegewebszellen.

Die innere und äussere Auskleidung ist wie am arteriellen
Dr. J. Janošík:

Theile. Verfolgt man die Aorta ascendens weiter, so sieht man, dass die Muskelfasern verschwinden, sie wird dünner und die Bindegewebszellen, welche dieselbe der Hauptmasse nach bilden, stehen in lockerer Verbindung.

An den Blutgefässen ist bisher keine Wand zur Ausbildung gelangt (die Aorta ausgenommen). Sie sind nur vom Endothel ausgekleidete Spalten oder Röhrchen im Mesoderm.

Die Leibeswände und Körperhöhlen.

An der ganzen Oberfläche ist der Embryo mit einem einschichtigen Epithel bekleidet, welches direkt zur Auskleidung der Amnionhöhle sich fortsetzt, wo es viel niedriger erscheint.

Das Amnion schliesst den Embryo von allen Seiten ein, legt sich diesem nicht dicht an, sondern steht ein wenig ab. Es besteht aus zwei Zelllagen, welche von einander verschieden sind. Die inneren Zellen, welche die directe Fortsetzung des Ectoderms sind, erscheinen flach. Die äusseren Zellen, in welche sich die Zellen des somatischen Blattes des Mesoderms fortsetzen, sind sphärisch und dicht an einander gelagert.

Jener Strang, in welchem die Allantois gelegen ist, liegt zwischen den beiden Zelllagen, welche das Amnion bilden.

In der mittleren Partie sind die Leibeswände noch nicht vereinigt und da tritt der Ductus omphalo-entericus aus der Leibeshöhle heraus und auch ein Theil der Herzwand tritt frei zu Tage. Die vordere Leibeswand erscheint vom 54. Schnitte an bis zur Mundöhle verschlossen.

Die Ränder der Leibeswände sind verdickt und der rechte setzt sich, wie bereits bemerkt wurde, in den Allantoisstrang fort. Bemerkenswerther sind die Verhältnisse der vorderen Leibeswand an jener Stelle, an welcher sie die Körperhöhle abschliesst.
Zwei junge menschliche Embryonen.

Wie aus der Totalansicht schon zu entnehmen ist, erscheint die vordere Leibeswand durch das Herz etwas vorgestülpt zu sein. Betrachtet man nun die Schnittreihe vom distalen Ende, so trifft man an der Stelle, bis zu welcher sich die Körperhöhle im proximalen Ende ihres Schwanzabschnittes geschlossen hat, eine Zellmasse, welche noch weiter proximal mit der Herzwand verschmilzt und auch mit dem Rande der rechten Leibeswand und den Zellen, welche die Darmwand bilden.

Schreiten wir noch weiter vorwärts, so finden wir, dass die Herzwand von der Zellmasse, welche hier die vordere Leibeswand bildet, etwas entfernt liegt und zwar in der Weise, dass sich zwischen das Herz und die Leibeswand die Pleuroperitonealhöhle verlängert. An diesen Schnitten sieht man aber auch, dass die Herzwand in grösserer Ausdehnung mit der Wand des Verdauungsstractus verschmilzt, und in dieser Verschmelzungsstelle sind die grossen Venenstämme eingelagert.

Etwas distal von jener Stelle, an welcher die Herzwand mit der Zellmasse, welche die beiden Leibeswände verbindet und in welcher auch dorsal die Lungenanlage zu sehen ist, verschmolzen ist, bemerkt man die Leberanlage. Die Leber erscheint an der Stelle ihrer Entwicklung in jener Zellmasse gelegen zu sein, welche sich gleich von der Wand des Ductus omphalo-enteriens proximal zieht, mit welcher auch das distale Ende der Herzwand verschmolzen erscheint, und welche sich noch weiter proximal bis zur Lungenanlage und einer nochmaligen Verschmelzung mit der
Dr. J. Janošík:

Herzwand und zwar an der Stelle, wo sich die grossen Venenstämme zum venösen Abschnitte des Herzens begeben.

Einen Ueberblick über diese Verhältnisse, welche zum genauen Verständnisse das Zeichnen aller bezüglichen Schnitte erfordern würden, gibt zum Theil die Constructionsfigur. Die Verhältnisse der Zellmasse, wie sie sich zu den Leibewänden gestalten, sind aus den wenigen Querschnittenbildern zu entnehmen.

In kurzer Übersicht gestalten sich die Verhältnisse wie folgt. Der arterielle Abschnitt des Herzens liegt proximal in der Wand, welche den Abschluss des vorderen Abschnittes des Verdauungs-tractus bildet. Weiter distal liegt das Herz allseits frei in der Pleuroperitonealhöhle bis zu jener Stelle, an welcher die grossen Venenstämme in dasselbe einmünden. Hier verschmilzt die Herzwand in ihrer ganzen dorsalen Ausdehnung und zum Theil auch beiderseits lateral mit den Leibewänden. Die Leibeshöhle findet also eine offene Verbindung in der ganzen Ausdehnung der vorderen Herzwand, so wie auch entlang der Seitenwände des Herzens.

Jene Verbindung mit der dorsalen Leibeswand an der Stelle, an welcher die Venenstämme in das Herz einmünden, besteht an Querschnitten nicht lange, sondern verschwindet und das Herz erscheint auf Querschnitten wieder ganz frei in der Pleuroperitonealhöhle zu liegen, nur die Verbindung mit der rechten Leibeswand hat nicht aufgehört, und lässt sich bis zur Wand des vom Darme abgehenden Ductus omphalo-entericus verfolgen, mit welcher auch die Herzspitze in Verbindung steht. Die vordere Leibeswand hat bereits am 54. Schnitte (Taf. XXXV, Fig. 13) ihren Umschlag in das Amnion gefunden und es tritt nun die Herzwand frei zu Tage.

Wie sich die Verhältnisse weiter im caudalen Ende verhalten, ist leicht verständlich und ich brauche darauf nicht näher einzugehen.

Es erübrigt nun noch etwas Näheres über die Stelle zu bereichen, an welcher der Embryo mit dem Chorion in Verbindung stand.

Etwas von einer Allantois konnte ich an Schnitten, welche parallel zur Fläche des Chorion geführt wurden, nicht nachweisen. Ich bemerke hier aber nochmals, dass ich jenen Strang, welcher den Embryo mit dem Chorion in Verbindung setzte, dicht am Chorion durchschnitten habe, und dass ich an Schnitten die Allantois bis zu dieser Schnittstelle verfolgen konnte, wo sie erweitert
Zwei junge menschliche Embryonen.

Die Auskleidung des Chorion gegen die Eihöhle besteht in einigen Lagen von Epithelzellen, welche vom unterliegenden Gewebe scharf abgegrenzt sind.

Vergleiche ich nun diesen soeben beschriebenen Embryo mit den bisher bekannten, so reiht sich dieser an den Embryo M von His. Nach der Längenangabe und nach der Entwicklung einiger Organe erscheint der von His beschriebene Embryo etwas jünger.

Die Augenblasen zeigen bei jenem Embryo von His einen primitiveren Zustand. Besonders weist auf ein jüngeres Stadium das Verhältniss der Nabelblase zum Verdauungstractus.

Der Embryo von His besitzt vier Viseraldäger, der von mir beschriebene weist nur drei auf. Dem entsprechend ist auch die Zahl der Kiemenarterien eine verschiedene.

Was nun die Conservation anbelangt, so glaube ich, dass der Embryo von His nicht besonders gut conservirt war, denn aus dem ganzen Embryo hat His nur 24 Schnitte angefertigt. Dieses weist auch darauf hin, dass vom histologischen Standpunkte aus sich dieser Embryo durchaus nicht ausnutzen liess.

Den Vergleich mit dem Embryo von Hensen habe ich bereits gemacht.

Der Embryo von v. Preuschen scheint mir nach alledem, was ich der vorläufigen Mittheilung entnehmen kann, eine Missbildung. Das Auge ist noch nicht angelegt, die Gehörblase aber schon ziemlich weit entwickelt und so auch andere Organe, abge-
Dr. J. Janošík:

sehen davon, dass bezüglich vieler anderen Angaben ein völliges Dunkel herrscht. Die Nabelblase fehlte, aber eine Nabelöffnung war vorhanden u. s. w.

Der Embryo von Fo1) ist bedeutend älter.

Es ist somit dieser Embryo der jüngste unter den bekannten, welcher sich in jeder Richtung ausnützen liess.

Erklärung der Abbildungen auf Tafel XXXIV und XXXV.

Allgemein gültige Bezeichnungen:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Deutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>vp</td>
<td>Die Nabelblase.</td>
</tr>
<tr>
<td>Aa</td>
<td>Aorta ascendens.</td>
</tr>
<tr>
<td>Ad</td>
<td>Aorta descendens.</td>
</tr>
<tr>
<td>v</td>
<td>Kiemenarterien.</td>
</tr>
<tr>
<td>cs</td>
<td>Vena cardinalis superior.</td>
</tr>
<tr>
<td>ci</td>
<td>Vena cardinalis inferior.</td>
</tr>
<tr>
<td>dC</td>
<td>Ductus Cuvieri.</td>
</tr>
<tr>
<td>O</td>
<td>Vena omphalo-mesenterica.</td>
</tr>
<tr>
<td>u</td>
<td>Vena umbilicalis.</td>
</tr>
<tr>
<td>Am</td>
<td>Amnion.</td>
</tr>
<tr>
<td>Al</td>
<td>Allantois.</td>
</tr>
<tr>
<td>pp</td>
<td>Die Pleuropitonealhöhle.</td>
</tr>
<tr>
<td>ch</td>
<td>Chorda.</td>
</tr>
<tr>
<td>rz</td>
<td>Verdaungstractus.</td>
</tr>
<tr>
<td>au</td>
<td>Arteria umbilicalis.</td>
</tr>
<tr>
<td>rm</td>
<td>Das Medullarrohr.</td>
</tr>
<tr>
<td>do</td>
<td>Ductus omphalo-entericus.</td>
</tr>
<tr>
<td>mes</td>
<td>Mesoblastsomit oder Urwirbel.</td>
</tr>
</tbody>
</table>

Fig. 1. Die Totalansicht des Embryo von 3 mm Körperlänge von der linken Seite her. Vergrösserung 25.

Tr = Trigeminus; F = Facialis und Acusticus; vn = das Ohrblasen; ok = die Augenblase; pr = die Vorderhirnblase; st = die Mittelhirnblase; z = Hinterhirnblase; S = das Herz; A = der Stiel, in welchem die Allantois, die Arterien und Venae umbilicales verlaufen.

Fig. 2. Idealer Längsschnitt in der sagittalen Ebene, welcher durch die Construction gewonnen wurde. Die Blutgefässen sind in die Figur projiciert. Die Aorta descendens ist dorsal verschoben, damit man die Venen und die Chorda besser unterscheiden kann.

pl = Divertikel als Anfang der Lungenteilwicklung; j = Divertikel als Anfang der Leberentwicklung; m = Vena mesenterica; m' = Arteria mesenterica; el = Cloake; S = das Herz.

Fig. 3. Die Construction der Kiemenarterien von der linken Seite her.

Fig. 4. Die Construction des Herzens von der linken Seite und etwas vorne beigestrecktem Embryo.

1) Fo1, L'anatomie d'un embryon humain d'un peu plus de trois semaines. Revue med. de la Suisse romaine. IV. An.
Fig. 5. Die Construction der Venen und des Herzens bei der Ansicht von der rechten Seite und gestrecktem Embryo.

k = gemeinschaftliche Herzkammer; p = Atrium (venöser Theil des Herzens); st = die Herzwand.

Fig. 6. Dasselbe wie Fig. 5, nur bei der Ansicht von der linken Seite her.

Fig. 7. Der 43. Schnitt vom Schwanzende her gerechnet, an welchem die Leberanlage zu sehen ist. j = die Leber.

Fig. 8. Der 32. Schnitt; Verbindung der Darmhöhle mit der Nabelblase. prl = die Urniere; il = Art. iliaca.

Fig. 9. Der 27. Schnitt, an welchem die Allantois das Coelom verlässt.

Fig. 10. Der 46. Schnitt. Der unterste (am meisten distal gelegene) Abschnitt des Herzens. Die Allantois liegt ausserhalb des Coeloms.

Fig. 11. Der 13. Schnitt. Die Anlage der Urniere ist grösstentheils der Länge nach getroffen. km = die Kanälchen des Mesonephros nur als Bläschen; dW = Ductus Wolffii, zum Theile auch der Länge nach getroffen.

Fig. 12. Der 29. Schnitt. Der Abgang der Allantois vom Darme, und Eintreten derselben in die Leibeswand. Näheres im Texte.

Fig. 13. Der 54. Schnitt. Die Verhältnisse des Herzens. Vs = der venöse Theil; As = der arterielle Theil des Herzschlauches. In diese Gegend fällt die Vorniere. gp = der Glomerulus der Vorniere; pl = die Lungenanlage schief getroffen.

Fig. 14. Der 56. Schnitt. In nächster Nähe des Verschlusses der vorderen Leibeswand. Die Bezeichnungen sind dieselben.

Fig. 15. Der 71. Schnitt. So = die Augenblasenstiele; hy = Hypophysis; A = das blinde Ende der Aorta ascendens; vo = die Visceralbogen.

Fig. 16. Der 73. Schnitt. Die Bezeichnungen sind dieselben. Jene Prominenz am Boden der Pharyngealhöhle, in welcher das blinde Ende der Aorta ascend. liegt, erscheint an diesem Schnitt als ganz freiliegend.

Fig. 17. Der 86. Schnitt. vu = das Ohrbläschen; af = das Ganglion des Acustico-facialis; Tr = Trigeminus.

Fig. 18. Muskelfasern des arteriellen Theiles des Herzens. Sie zeigen leichte Querstreifung. Zwischen ihnen einige Bindegewebszellen. Homog. Immers. Reichert 1/15 Oc. III.

Fig. 19. Ein Querschnitt einer Zotte an der Oberfläche des Eies. Das Epithel ist meist zweischichtig.
Die Entstehung des Blutes bei Knochenfischembryonen.

Von

Dr. H. Ernst Ziegler,
Privatdocent in Freiburg i. Br.

Hierzu Tafel XXXVI—XXXVIII.

Ueber den „Parablast“ und die Entstehung der Blutkörperchen bei den Embryonen der Wirbeltiere sind in neuerer Zeit von hochangesehenen Forschern (His, Waldeyer, Kölliker, Häckel, Kollmann, siehe Nr. 23, 50, 29, 17, 30) sehr verschiedene Ansichten ausgesprochen worden; in der bezüglichen Litteratur spielen die Knochenfische eine grosse Rolle und zwar auf Grund einer unter dem Einfluss Kupffer’s verfassten Arbeit von Gensch (Nr. 12), welche zeigen will, dass die Blutkörperchen des Hechtes aus den im Parablast gelegenen „Zellen“ durch ungleiche Theilungen entstehen.

Ich hatte schon im Jahre 1882 in meiner Dissertation (Nr. 54) die Beobachtung veröffentlicht, dass beim Lachs zwei Stränge von Zellen, die von Oellicher (Nr. 40) zuerst beschriebenen intermediären Zellmassen, ein unter der Aorta verlaufendes Gefäss erzeugen, wobei die im Innern der Gefässanlage befindlichen Zellen Blutkörperchen werden. Im Winter 1884—85 stellte ich die Richtigkeit dieser Beobachtung von Neuem fest1) und zog im Früh-

jahr 1885 während eines siebenwochentlichen Aufenthaltes in Neapel auch mehrere marine Teleostier in den Kreis der Untersuchung. In denselben Jahren veröffentlichte Wenckebach eine Mittheilung (Nr. 51), in welcher er unabhängig von mir dasselbe für den Barsch constatirte, was ich beim Lachs gesehen hatte. Im folgenden Frühjahr beobachtete ich Barsch- und Hechtembryonen und konnte diese Untersuchungen in diesem Jahre in mehreren Punkten vervollständigen.

Aus der vorliegenden Arbeit, welche durch die im vorigen Jahre erschienene Abhandlung von Wenckebach (Nr. 52) in mehreren Punkten ergänzt wird, ergibt sich, dass die Blutkörperchen beim Lachs, beim Hecht, beim Barsch und bei Belone nicht auf dem Dotter entstehen, sondern von mesodermalen Gebilden ihren Ursprung nehmen.

1. Der Periblast und die Keimblätter der Teleostier.

Da eine Reihe von Autoren älterer und neuerer Zeit den Periblast als die Ursprungsstätte der Blutkörperchen betrachtet, ist es gerechtfertigt, hier die Entstehung des Periblastes und seine morphologische Bedeutung zu besprechen.

Beeinflusst von Balfour (Nr. 6) habe ich schon in meiner Dissertation die Ansicht vertreten (Nr. 54, p. 52 u. ff.), dass der Periblast der Teleostier dem grosszelligem Theil des inäqual gefurchten Amphibien-Eies entspricht; diese Auffassung suchte ich hinsichtlich der Gastrulation und der Bildung des Darmcanals durchzuführen. Hinsichtlich der Entstehung des Periblastes folgte ich der Darstellung von Hoffmann, nach welcher die ersten Furchungen der Teleostier principiell von denjenigen der Amphibien verschieden sein sollten. Diese Beobachtungen von Hoffmann, die mir damals nur aus den vorläufigen Mittheilungen (Nr. 24) bekannt waren, sind jetzt durch die sehr lesenswerthe Arbeit von Agassiz und
Withmann (Nr. 1), durch die Beobachtungen von Weneckebach (Nr. 52) und die Untersuchungen von Kowalewski (Nr. 35) widerlegt; ich kann die Angaben Weneckebach's insofern bestätigen, als Herr Weneckebach die Freundlichkeit hatte, mir in Neapel solche Stadien, wie er sie abgebildet hat (Nr. 52, Fig. 1—4), zu zeigen. Auf Grund dieser Arbeiten lassen sich jetzt die Homologien in der Entwicklung der Teleostier und der Amphibien klarer und vollständiger erkennen und ich will versuchen, dieselben an der Hand einiger schematischer Abbildungen darzustellen.

Die Verschiedenheiten in der Entwicklung der Amphibien und der Teleostier sind hauptsächlich durch die relative Menge des Dotters bedingt, welche den letzteren zukommt; auch ist die Vertheilung des Dotters insofern verschieden, als bei den Amphibien alle Zellen Dotterkörnchen erhalten, während bei den Teleosiern die Zellen des Blastodermes (Archiblastes) kein eingelagertes Dottermaterial erkennen lassen; bei den Teleostier wird der Dotter von der Furchung nicht berührt und bildet die bis in sehr späte Stadien persistirende Dotterkugel\(^1\). Zwischen der Furchung der Amphibien und der Teleostier steht die totale inäquate Furchung der Ganoiden, wie sie von Salensky (Nr. 48) bei Acipenser beobachtet worden ist. Die Selachier stimmen zwar insofern mit den Teleostier überein, als auch eine Dotterkugel existirt, welche von der Furchung nicht berührt wird, aber sie weichen, wie es scheint, bei den Vorgängen der Gastrulation und Keimbälterbildung in wichtigen Punkten von den Teleostieren und Amphibien ab.

1) Es ist nicht nachgewiesen, dass bei irgend einem Knochenfische der Dotter an der Furchung Theil nehme. Agassiz und Withmann erwähnen (l. c. p. 31) eine „actual cleavage of the yolk in some teleostean ova as first noted by Mr. Agassiz“; bei manchen Knochenfisch“ (Osmerus und Brown Flounder, siehe Agassiz und Withmann l. c. p. 24) ist der Dotter in grosse polygonale Stücke abgetheilt. Aber Weneckebach (l. c. p. 234), welcher an einigen Eiern in Neapel dieselbe Erscheinung beobachtete, erklärt ausdrücklich, dass sie mit der Furchung in keiner Beziehung stehe und nur der Ausdruck einer eigen tümlichen Anordnung des Protoplasmas der Rindenschicht sei; und Agassiz und Withmann geben in ihrer späteren Arbeit (Nr. 2, p. 13) selbst an, dass es sich nicht um Furchungszellen handle. Neuerdings hat Weneckebach bei den Eiern von Engraulis eine scheinbare Segmentierung des Dotters vorgefunden, welche aber bereits am unbefruchteten Ei zu bemerken ist (Nr. 58, p. 4).
Die Entstehung des Blutes bei Knochenfischembryonen.

Nach den Untersuchungen, welche Agassiz und Withmann an durchsichtigen Teleostier-Eiern (Ctenolabrus, Pseudorhonibus und Tautoga) gemacht haben, sind die ersten Furchungsvorgänge principiell dieselben, wie bei den Amphibien und bei allen Wirbeltieren überhaupt. Der befruchtete Eikern theilt sich horizontal, die beiden neuen Kerne theilen sich ebenfalls horizontal und zwar parallel der Furche, welche zwischen ihnen aufgetreten ist. Die entstandenen vier Kerne theilen sich in meridionaler Richtung; die Richtung der Kernspindel dieser Theilung liegt bei dem wenig Dotter enthaltenden Ei des Amphioxus nahezu vertikal, die Zelltheilungsebene nahe dem Äquator, bei dem mehr dotterhaltigen Ei der Amphibien liegt die Richtung der Kernspindel mehr schief von oben innen nach unten aussen, die äquatoriale Zelltheilungsebene genähert dem oberen Pol; bei dem sehr stark dotterhaltigen Ei der Knochenfische liegt die Kernspindel nahezu horizontal, die Zelltheilungsebene erscheint nahe am Pol; von den acht Zellen, welche durch diese Theilung entstehen, liegen also vier central und vier peripher; die ersteren entsprechen den vier oberen pigmentirten Zellen des entsprechenden Froschembryos, die letzteren den vier unteren Zellen, die nur am oberen Rande Pigment zeigen.

Ich habe dies nur desswegen ausgeführt, um das Princip klarzulegen, dass den untern Segmenten der total sich furchenden Eier die äussern Segmente des Keimes der partiell sich furchenden Eier entsprechen. Die Darstellung ist aber insofern schematisch, als die Kernspindel bei der dritten Theilung nach den Beobachtungen von Agassiz und Withmann nicht in einem Meridian, sondern schief, und zwar meist mehr parallel der zweiten Furche liegt. Damit hängt es zusammen, dass im 16zelligen Stadium nicht acht innere und acht äussere Zellen, sondern vier innere und zwölf äussere vorhanden sind. Aber man wird sich dadurch an der obigen morphologischen Deutung nicht irre machen lassen, wenn man bedenkt, dass, wenn die Segmente in eine Ebene gelegt werden, nothwendig Verschiebungen eintreten müssen, weil sonst in Anbetracht, dass die Zellen ungefähr gleich gross zu bleiben und sich abzurunden bestrebt sind, die äussern Zellen seitlich nicht mehr aneinander schliessen würden; und wenn man ferner bedenkt, dass auch beim Frosch-Ei die Grenze der acht obern und acht untern Zellen bei der weiteren Furchung jede Bedeutung verliert.
Dr. H. Ernst Ziegler:

Im befruchteten Ei ist die Dotterkugel umgeben von einer dünnen Protoplasmaschicht (Rindenschicht bei His), welche oben oder unten eine linsenförmige Verdickung besitzt; diese letztere ist der Keim; wenn der Kern im Keim sich theilt, so gehört zu jedem der beiden neuen Kerne nicht allein die Hälfte des Keimes, sondern auch die Hälfte der den Dotter umgebenden Protoplasmaschicht; ebenso gehört, wenn weitere Zelltheilungen stattgefunden haben, zu jeder am Rande des Keimes gelegenen Zelle ein Theil dieser Protoplasmaschicht, der durch zwei Meridiane begrenzt gedacht werden muss, in Wirklichkeit aber von dem zur benachbarten Zelle gehörigen Streifen nicht abgegrenzt ist. Dass der Keim während der Kerntheilungen gegen die genannte Protoplasmaschicht am Rand äusserlich scharf abgesetzt ist, kommt nur daher, dass die in eine Theilung eintretenden Kerne sich wie Attractionssentren für das sie umgebende Protoplasma verhalten. Beim Eintritt jeder Theilung wird nämlich Protoplasma aus der den Dotter umgebenden Schicht herangezogen (so dass letztere successive sich verdünnt), und das Protoplasma strebt danach, die Form einer Kugel anzunehmen, deren Centrum der Kern ist. (Vergl. Agassiz und Withmann Nr. 1 p. 48.)

Auf Querschnitten des sechszelligen Embryo sahen Agassiz und Withmann, dass die centralen Zellen nach unten begrenzt sind, während die peripheren sich centralwärts in eine dünne protoplastische Schicht fortsetzen, welche unterhalb der centralen Zellen die Oberfläche der Dotterkugel überkleidet; es ist dies die bei späteren Stadien längst bekannte intermediäre Schicht. Es ist folglich jeder peripheren Zelle nicht allein ein Theil der den Dotter umgebenden Protoplasmaschicht (Rindenschicht), sondern auch ein entsprechender Theil dieser Schicht zuzurechnen (siehe das Schema Fig. 7 A). Die einzelnen Zellen sind sowohl in der

1) Vergleiche die Furchung von Acipenser; Salensky (Nr. 48, p. 251) schreibt: Les premiers sillons méridiens sont peu profonds et n'intéressent d'abord que la partie supérieure du germe. Celui-ci est déjà segmenté quand dans l'hémisphère inférieure tous les segments sont encore réunis en une seule masse.

2) Analog Erscheinungen zeigen gewisse Lamellibranchier, bei welchen auch die Dotterkugel zur Zeit der Kerntheilung scharf von der Zelle, zu welcher sie gehört, abgesetzt erscheint. Siehe Agassiz und Withmann Nr. 1, p. 33 und Ziegler Nr. 55, p. 528.
Die Entstehung des Blutes bei Knochenfischembryonen.

Die Entstehung des Blutes bei Knochenfischenembryonen.

Rindenschicht, wie in der intermediären Schicht mit einander verschmolzen. Der Protoplasmamantel der Dotterkugel ist allen den peripheren Zellen des Keimes gemeinsam zugehöri, wären aber die Zellen durchweg abgegrenzt, so würde zu jeder Zelle ein Theil des Dotters gehören, der ungefähr die Form eines Orangenschnitizes hätte. Wie aber bei den Amphibien die unteren (unpigmentirten) Zellen die Hauptmasse des Dottermaterials enthalten, so gehört den homologen (nämlich den peripheren) Zellen der Teleostier die Dotterkugel zu.

Wenn im weiteren Verlauf der Furchung die Randzellen des Keimes sich teilen, bleiben für die unteren und äusseren der entstehenden Zellen die Beziehungen zur Dotterkugel bestehen, welche wir soeben besprochen haben, und es prägt sich unter den entstehenden Zellen allmählich eine Trennung der Zellen des Blastoderms und der Zellen des Periblastes aus. Die in der Nähe des Keimrandes gelegenen Zellen verhalten sich unter der Einwirkung der Härungs- und Färbungsmittel verschieden gegenüber den übrigen Zellen und zwar um so verschiedener, je weiter sie nach unten und aussen gelegen sind; es beruht dies höchst wahrscheinlich darauf, dass in die unteren und peripheren Zellen mehr Dottermaterial eingelagert ist; allmählich werden aber die untersten und äussersten Zellen schärfer gegen alle übrigen differenziert und von da an mögen sie Periblastzellen genannt werden, im Gegensatz zu allen übrigen Zellen, welche das Blastoderm bilden. Die Zellen des Periblast, die ja, wie aus dem oben Gesagten hervorgeht, zum Theil in der Rindenschicht und der intermediären Schichte mit einander zusammenhängen, verschmelzen mit einander (s. Agassiz u. Withmann l. c. p. 56) und anstatt weiterer Zelltheilungen treten nur noch Kerntheilungen auf. So entstehen die „freien“ Kerne des Periblasts, die längst bekannt sind.

Der Zeitpunkt, wann diese Verschmelzung eintritt, scheint bei verschiedenen Species, ja sogar vielleicht bei derselben Species verschieden zu sein. Nach den Beobachtungen von Wenckebach an Belone (Nr. 52 p. 226 u. 227), welche die Differentiation des Periblastes, wie sie äusserlich sichtbar ist, genau darlegen, sieht man in einem Stadium, in welchem schon sehr viele Furchungszellen vorhanden sind, die Randzellen des Keimes sich so teilen, dass die peripherere der beiden neuen Zellen keine Abgrenzung gegen ihre Nachbarzellen zeigt und dass ihr Kern demnach als
ein freier Kern des Periblastes erscheint 1) (Schema Fig. 7 A 3). Es kommt aber auch vor, dass in einer oder mehreren Reihen der peripheren Zellen die Zellgrenzen verschwinden und die Zellen sich damit dem Periblast anschliessen. Es kann als sicher gelten, dass bei manchen Knochenfischen die Zellen des Periblastes zu einer Zeit, wenn sie schon deutlich von den Zellen des Blastodermis abgesetzt sind und wahrscheinlich sich hinsichtlich des relativen Gehaltes an Dottermaterial schon scharf unterscheiden, noch nicht sammlich ihre Zellgrenzen verloren haben (Schema Fig. 7 A 3).

In diesem Sinne sind auch die Beobachtungen von Kupffer an Gasterosteus (Nr. 36 p. 217), von van Bambeke (Nr. 7 p. 22) an Lenciscus, von van Beneden (Nr. 8) an einem Gadoiden aufzufassen. Alle diese Autoren haben ausserhalb des Blastodermrandes eine oder mehrere Reihen von Zellen und ausserhalb derselben freie Kerne gesehen. Ich sah in Neapel an einem Ei von Labrax ausserhalb des deutlichen Blastodermrandes blassere Zellen, von welchen die mehr peripher gelegenen nach aussen nicht scharf begrenzt waren; ich konnte aber leider in Folge zufälliger Umstände die Beobachtung nicht weiter verfolgen. Es scheint, dass in allen Fällen, welche bisher beobachtet worden sind, die Grenzen der Periblastzellen bald verschwinden. Wenckebach gibt dies für Belone (Nr. 52 p. 227) ausdrücklich an. Soviel kann ich mit Sicherheit behaupten, dass bei allen Knochenfischen, welche ich auf Schnitten studirt habe, nämlich bei Salmo salar, Trutta fario 2), Esox lucius und Belone aecus zu der Zeit, wenn das Blastoderm den Dotter umwächst, niemals abgegrenzte Zellen, wohl aber freie Kerne im Periblast zu finden sind. Was Gensch beim Hecht (Nr. 12) und Oellacher bei der Forelle (Nr. 40) als Zellen des Periblastes bezeichnen, das sind Kerne; beim Lachs bemerkt man nach Fär-

Die Entstehung des Blutes bei Knochenfischembryonen.

Die Entstehung des Blutes bei Knochenfischembryonen. 603
bung mit Alanucochenille ein dünnenes Netzwerk von Chromatin, welches die Frage unzweifelhaft entscheidet. His (Nr. 22 p. 36) sah die Kerne im Keimwall des Lachses von einem kleinen unbegrenzten Protoplasmahof umgeben; ich habe diesen Hof, dem ich gar keine morphologische Bedeutung beilege, zwar nicht gesehen, will aber nicht bezweifeln, dass man ihn bei geeigneter Härtungsmethode sehen kann.

Die freien Kerne des Periblastes liegen vorzugsweise am Rande des Blastoderms, wo sie entstanden sind und wo der Periblast am dicksten ist (Keimwall bei His). Bei der Vermehrung dieser freien Kerne, welche, wie mehrere Autoren angeben, in der ersten Zeit durch indirekte Theilung erfolgt, kommen einzelne derselben centralwärts in die intermediäre Schichte, andere peripher in die Rindenschicht zu liegen. Die letzteren entfernen sich bei manchen Teleostieren (z. B. Lachs) nur wenig, bei anderen (z. B. Hecht) ziemlich weit vom Rande des Blastoderms.

Nach den Beobachtungen von Kowalewski (Nr. 35) gilt die soeben gegebene Darstellung, die sich an die Arbeit von Agassiz und Withmann anschliesst, nicht für alle Knochenfische. Bei manchen findet die Bildung des Periblastes nicht allein am Rande, sondern an der ganzen Basis des Keimes statt. Während in dem oben genannten Fall beim Übergang vom 4zelligen zum 8zelligen Stadium und beim Übergang vom 8zelligen zum 16zelligen Stadium die Trennungsebenen so verlaufen, dass die centralen Zellen gänzlich vom Dotter abgetrennt werden (Schema Fig. 7 A1), bleiben nach Kowalewski beim Goldfisch die centralen Zellen ebenfalls in Verbindung mit dem Dotter (Schema Fig. 7 B1). Im Verlauf der weiteren Furchung bleibt dies Verhältniss jeweils für die untersten Zellen des Keimes bestehen, und es differenzieren sich an der Unterfläche des Keimes Blastoderm und Periblast in ganz homologer Weise wie es oben für den Rand des Keimes dargelegt ist. Nachdem die untersten Zellen des Keimes, welche mit dem Dotter zusammenhängen, eine Zeit lang sich so getheilt haben, dass die obere Zelle abgeschnürt wurde und dem Blastoderm sich anschloss, während die untere im Zusammenhang mit dem Dotter und ihren Nachbarzellen blieb (Schema Fig. 7 B2), erfolgt von einem bestimmten Zeitpunkte an (in den untersten Zellen) anstatt der Zelltheilung nur eine Kerntheilung und so entsteht der Periblast. Dieser Furchungsmodus hängt damit zusammen, dass der Dotter beim Beginn der
Dr. H. Ernst Ziegler:

Furchung nicht allein an seiner Peripherie von einer Protoplasmaschichte (Rindenschicht) umgeben ist, sondern auch in seinem Innern viel Protoplasma enthält, welches allmählich während der Furchung nach oben sich ansammelt und den protoplasmatischen Zellkörper derjenigen Zellen, welche mit dem Dotter zusammenhängen, vermehrt. Dieser Furchungsmodus kann nur dann auftreten, wenn die Furchungshöhle spät oder gar nicht zur Entwicklung kommt, denn die Furchungshöhle trennt in der mittleren Gegend des Keimes den Periblast vom Blastoderm. Ich halte diesen Entwicklungsmodus für phylogenetisch secundärer als den erst beschriebenen, weil die Beziehungen zu den Amphibien und zu Amphioxus gänzlich verwischt sind, die bei jenem so deutlich hervortreten.

Auf die Beobachtung von Wenckebach (Nr. 52), welche er durch seine Fig. 6 illustriert, nach welcher ein Theil der in der intermediären Schichte gelegenen Kerne von Zellen des Blastodermis abstammen sollten, welche in die intermediäre Schichte eingedrungen wären, kann ich, so lange sie nicht bestätigt ist, keinen grossen Werth legen, obgleich Oellacher schon früher für die Forelle einen ähnlichen Vorgang annahm.

Der Periblast in dem oben definierten Sinn umfasst dem Gesagten zu Folge die dünne protoplasmatische Schichte, welche den Dotter aussen umgibt (Membrane vitellaire bei Vogt, Dotterhaut bei Oellacher, Rindenschicht bei His), ferner den Keimwall (His), welcher einen Ring um den Rand des Blastodermis bildet, und die intermediäre Schichte (feuillet muqueux bei Lereboullet, couche intermédiaire bei van Bambeke), welche unter dem Blastoderm gelegen ist.

Aus der Entstehungsgeschichte des Blastodermis geht hervor, dass das Blastoderm keineswegs genau dem Keim des ungefurchten Eies entspricht und es muss Confusion hervorrufen, wenn man diese beiden Gebilde mit denselben Namen bezeichnet, wie dies bisher immer geschehen ist.

Auch halte ich es nicht für passend, für das Blastoderm die Bezeichnung Ectoderm und für den Periblast die Bezeichnung Entoderm zu gebrauchen, oder gar, wie es Kowalewski (l. c. p. 440) thut, die entsprechenden Theile des ungefurchten Eies so zu nennen, denn der Periblast ist nur ein Theil dessen, was bei der Gastrulation als Entoderm zu bezeichnen ist (s. unten).
Die Entstehung des Blutes bei Knochenfischenembryonen.

Nachdem wir jetzt die Entstehung des Periblastes besprochen haben, wollen wir sein Verhältniss zu den Keimblättern betrachten und zu diesem Zweck den Embryo der Teleostier in den Blastula- und Gastrulastadien mit den entsprechenden Embryonen der Batracier vergleichen.

Bei den Teleostiern findet man über der Keimhöhle das Blastoderm, welches aus kleinen Zellen besteht; unter der Keimhöhle liegt der Periblast, und zwar derjenige Theil desselben, welcher als intermediäre Schichte bezeichnet wird. Der Rand des Blastoderm stösst an den Theil des Periblastes, welcher Keimwall heisst (Schema Fig. 8 B).

Bei Triton und bei der Unke findet man im Blastulastadium über der Furchungshöhle kleine Zellen, die auch durch ein dunkles Pigment ausgezeichnet sind (animale Hälfte des Blastula), und unter der Furchungshöhle grosse Zellen, welche Dotterzellen genannt werden (vegetative Hälfte der Blastula) (Fig. 8 Schema A, Hertwig Nr. 21 Taf. II Fig. 1, Goette Nr. 15. Taf. II Fig. 27, 28 u. 29). Die ersteren entsprechen dem Blastoderm, die letzteren dem Periblast der Teleostier. Bei den Knochenfischen entsteht die Abgrenzung zwischen Blastoderm und Periblast im Verlauf der Furchung. Bei den Amphibien kann die entsprechende Grenze\(^1\) zwischen Blastoderm und Dotterzellen im Verlauf der Furchung allmählich immer schärf er gezogen werden, erreicht aber nie eine solche Schärfe wie bei den Teleostieren, weil die dem Periblast entsprechenden Zellen nicht zusammenfließen, sondern ihre Grenzen behalten und sich überhaupt nur in der Grösse von den andern Zellen unterscheiden.

Beim Amphioxus wird die untere Hälfte der Blastula in die obere eingestülpt; jedoch ist diese Einstülpung bald nicht mehr ringsum gleichmässig, sondern man kann an der entstehenden Gastrula die Dorsalseite erkennen, welche eine immer deutlicher werdende Abflachung zeigt; diese Dorsalsfläche ist der späteren Längsachse parallel. Die dorsale Urmundlippe bewahrt während der Gastrulation „rein den Character eines Umschlagsrandes“.

\(^1\) Diese Grenze fällt nicht etwa zusammen mit der ersten Äquatorialfurche; denn die untern vier Segmente des achtzelligen Stadiums geben im weiteren Verlauf der Furchung sowohl Blastoderm- als Dotterzellen; dies ist aus allen Darstellungen der Amphibienfurchung ersichtlich.
während am ventralen Theil schon früh zwei besonders grosse Entodermzellen zu bemerken sind, welche an der ventralen Ur-
mandlippe verbleiben und dadurch anzeigen, dass hier eine Umstälzung nicht stattfindet (Hatschek Nr. 18 p. 31).

Bei Amphibien (Triton) beginnt die Einstülpung im Bereich der grossen Zellen, jedoch nicht am untern Pol, sondern mehr ge-
nähert der Zone, in welcher die kleinen Zellen in die grossen übergehen (die Ebene, in welcher diese Verschiebung zu denken ist, ist die Medianebene). Sobald daher die Einstülpung ein wenig vor-
geschritten ist (vergl. Hermwig Nr. 21 Fig. 2 und Fig. 3), werden die kleineren Zellen von derselben betroffen und die dorsale Wand des sich entwickelnden Urarmes wird von kleinen Zellen gebildet. Die Stelle, an welcher die Einstülpung beginnt, ist die dorsale Urmandlippe. Die Einstülpung schreitet von hier lateralwärts weiter, aber nur da, wo sie begann, dringt sie tief ein, um den Urarm zu erzeugen. Ihre Richtung ist die Längsachse des Embryo. Bei der Unke liegt, wie ich aus den Abbildungen bei Götte schliesse, die Stelle, an welcher die Einstülpung beginnt, noch mehr als bei Triton der Zone genähert, in welcher die kleinen Zellen in die grossen übergehen. Die sich einstülpende Schicht der kleinen Zellen bildet die dorsale Wand des Urarmes.

Bei den Knochenfischen erfolgt beim Eintritt der Gastrulation eine Einfaltung, eine Umstülzung des Blastodermrandes 1). Die Existenz eines solchen Vorgangs wurde schon von Häckel (Nr. 17a) für einen Gadoiden, dann in gewissem Sinne von Götte (Nr. 13) für die Forelle2), später in schärferer Weise von mir (Nr. 54 p. 22 n. 23) für den Lachs behauptet und wird neuerdings auch von Agassiz und Withmann (Nr. 1 p. 67) und von Ko-
walowski (Nr. 35 p. 470) angenommen. Dieser Vorgang erfolgt nicht, wie Haeckel glaubte, an der ganzen Peripherie der Keim-
scheibe, sondern nur an einer Stelle, nämlich der dorsalen Ur-

1) Die Deckschicht nimmt an der Umstülzung nicht Theil (vergl. Ziegler Nr. 54, p. 21 und p. 55). Ich möchte sie als ein frühzeitig differenziertes Homologon des Stratum corneum der Epidermis auffassen. Betrachten wir das Ectoderm eines späten Stadiums, so sehen wir ihre flachen Zellen die obere Schicht desselben bilden (Fig. 14 und 15).

2) Für die Forelle gibt Henneguy (Nr. 19 a und Nr. 20) eine ähn-
liche Darstellung wie Götte.
Die Entstehung des Blutes bei Knochenfischembryonen.

Die Piiitstehung des Blutes bei Knochenfischembryonen. 607

Die Mundlippe; die Richtung, in welcher die Umstülpung vordringt, ist die Längsachse des Embryo. Die eingestülpte Schicht ("secundäre Schicht", "untere Schicht") muss als dorsale Wand des eines Lumens entbehrenden Urdarms gedacht werden.

Wenn man bei Triton während der Gastrulation an der Seite, welche der dorsalen Urmundlippe gegenüberliegt, die Stelle verfolgt, an der die kleinen Zellen in die grossen übergehen, so bemerkt man, dass diese Stelle nach dem unteren Pol des Eies und dann nach der dorsalen Urmundlippe hin vordringt (s. im Schema Fig. 8 A₁ u. A₂ die mit * bezeichnete Stelle). Dadurch erfolgt die Einstülpung der Masse der Dotterzellen. Die letztere bildet den ventralen Theil des Urdarmes. Die ideelle Urmundlippe (Properistom) der ventralen Seite ist die Uebergangszone der kleinen und der grossen Zellen. Soweit die Einstülpung an der dorsalen Urmundlippe nach den Seiten hin sich fortsetzt, ist die Urmundlippe bei Amphibien äusserlich scharf zu erkennen (hufeisenförmige Rinne Hertwigs Nr. 21 p. 8). Indem beim Vorrücken der Urmundlippe der Kreis immer kleiner wird, nimmt die Umstülpung einen immer grösseren Theil derselben ein, bis mehr oder weniger kurze Zeit vor dem Schluss des Blastoporus das ganze Properistom dieselbe zeigt ¹). Die Masse der Dotterzellen ragt von innen her in den Blastoporus hinein (Dotterpfropf).

Bei Knochenfischen rückt der Rand des Blastoderms in der gleichen Weise vor, wie bei Amphibien die Uebergangszone der kleinen und grossen Zellen (vergl. die Lage der mit * bezeichneten Stelle in den Schenata der Fig. 8). Die scheinbare Umwachung ist gleichbedeutend mit einer Einstülpung des Dotters in das Blasto

1) Bei Amphibien wie bei Knochenfischen wird die am lateralen und ventralen Properistom entstehende Zellmasse (Keimwulst) zur Verlängerung der Mesodermstreifen verwendet; ich kann auf diese Vorgänge, welche zur Entstehung einer Schwanzknospe in wichtiger Beziehung stehen, hier nicht genauer eingehen.

2) Dass an der mit * bezeichneten Stelle in der That nicht allein der Blastodermmrand, sondern auch die angrenzenden Theile des Dotters vorrückt, ist aus dem Vorschreiten des Periblastringes zu erkennen, der das Blastoderm umgibt; der Vorgang ist auch besonders deutlich bei solchen Eiern zu demonstrieren, wo der Dotter jene segmentirungsähnliche Eintheilung an seiner Oberfläche besitzt (siehe Agassiz und Withmann Nr. 2, p. 14);

40

Wie oben gesagt wurde, erzeugt eine Einstülpung des Blastodermrandes die sogenannte „untere Schichte“. Wie bei den Amphibien (Göttte Nr. 15) gehen bei den Knochenfischen aus dieser die Chorda, die Mesodermstreifen und das Entoderm (Entoderm im engeren Sinne, Darmdrüsenblatt) hervor. Ich lasse die Frage bei Seite, ob sich dabei im Sinne der Hertwig'schen Darstellung (Nr. 21) Bilder ergeben, die auf die Entstehung des Mesoderms durch Divertikelbildung des Urdarms hinweisen. Wie mir scheint, ist dies bei Knochenfischen besonders schwer zu verfolgen.

es werden nämlich die scheinbaren Segmente, welche anfänglich am Blastoderm-Pol über der Dotterkugel eine Art Haube bilden, während der Umwachung über die ganze Dotterkugel gezogen.
Ich will hier mit kurzen Worten angeben, welche Stellung ich zu den morphologischen Auffassungen der Teleostiertwicklung einnehme, die von Kupffer und von Miecz. von Kowalewski neuerdings ausgesprochen worden sind.

Kupffer (Nr. 37) geht zur Betrachtung der Teleostierentwicklung von den Amnioten aus. Dafür, dass die Umwachsung, wie dies die Amphibien zeigen, auch einen Theil des Gastrulationsvorganges darstellt, hat er kein Verständniss, da ihm feststeht, dass der Canalis neurentericus allein der Urmund ist. Mit der Darstellung, welche sich auf die Forelle und auf den Hecht bezieht (p. 20—36), kann ich durchaus nicht einverstanden sein. Was Kupffer (z. B. l. e. an Fig. 7 und 8) als Primitivrinne auffasst, ist, wie Querschnitte entsprechender Stadien unzweifelhaft zeigen (vergl. Ziegler Nr. 54 Taf. II Fig. 5 und Taf. III Fig. 7—11, Goronowitsch Nr. 16), der äussere Ausdruck der medianen Einfaltung der Medullarplatten. Kupffer's Homologisierung ist nur auf die Vergleichung von Oberflächenbildern 1) gegründet. Nach meiner Ansicht liegt bei Teleostier das Rudiment des Canalis neurentericus im vorderen Theile der Schwanzknospe und kann nur die letztere in gewissem Sinn als Homologon des Primitivstreifens der Amnioten angeschen werden (vergl. p. 643, Anm. 2). Dieselbe Auffassung wird von Henneguy vertreten, welcher mit Recht gegen die Kupffer'sche Darstellung sich ausgesprochen hat (Henneguy, Sur la ligne primitive des poissons osseux. Zoolog. Anzeiger 1885, p. 103).

Miecz. von Kowalewski betrachtet (Nr. 35 und Nr. 34 p. 6) die in Entstehung begriffene Kupffer'sche Blase als Gastruladarm (resp. Blastoporus) und zwar nicht als den ganzen Darm, sondern bloss als einen kleinen, doch wichtigsten Theil desselben, von welchem nach vorne eine nimmer hohle, sondern solide Ver-

1) Bei den Knochenfischen ergeben auch die besten Härungsmittel neben den guten viele diforme Embryonen; es ist nicht schwer, nach dem Habitus die normalen auszulesen und man hat dann eine Controle darin, dass sowohl die Oberflächenbilder, wie die Schnittserien mit den früheren und den späteren Stadien continuirliche Reihen bilden müssen. Es ist auch aus diesem Grunde gefährlich, Oberflächenbilder, welche nicht durch Schnittserien controlirt sind, der Homologisierung zu Grunde zu legen.
Dr. H. Ernst Ziegler:

längerung (desselben) abgeht, die der Chorda und dem definitiven Darme den Ursprung gibt*. Ich sehe nicht ein, warum Kowalewski nur die Kupffer'sche Höhle, deren Epithel doch quantitativ nur einen minimalen Theil des wirklich angelegten Darmblattes bildet, als Gastruladarm bezeichnet. Ich glaube, dass das ganze Darmblatt (Darmdrüsenachsel, Enteroderm) in homologer Weise wie bei den Amphibien angelegt wird und dass die Kupffer’sche Höhle nur einen minimalen Theil der theoretisch zu denkenden Gastrulahöhle darstellt; freilich ist die letztere grösstentheils ohne Lumen und wird ihre untere Wand nicht durch abgegrenzte Zellen, sondern durch den Periblast gebildet.

Nachdem wir die Entstehung und die morphologische Bedeutung des Periblastes erörtert haben, muss noch die Beschaffenheit und physiologische Bedeutung seiner Kerne besprochen werden.

Die Kerne des Periblastes der Knochenfische theilen sich zur Zeit der Furchung durch Karyokinese, wie dies von vielen Autoren übereinstimmend angegeben wird; später aber nehmen sie allmählich einen eigenthümlichen Habitus an und zeigen die Bilder direeter Kerntheilung. Diese Eigenthümlichkeiten der Kerne sind schon von Oellacher (Nr. 40, p. 13 u. 88) und von Goronowitsch (Nr. 16, p. 384) erwähnt und von Klein (Nr. 28, p. 127 und Fig. 9 und 10), sowie von Rauber (Nr. 45, p. 290) richtig beschrieben worden. Auch die Bilder, welche Gensch (Nr. 12) von den Periblastkernen von Esox und Zoarces gibt, stellen solche Vorgänge dar.

Die Erscheinungen, welche ich an den Periblastkernen beim Lachs zur Zeit der Umwachsung und später beobachtet habe (Fig. 9 a, b, e, d, c) sind folgende (vergl. auch p. 621). Die Kerne sind auffallend gross; ihr Chromatingerüst ist locker und dünn; sie besitzen ein oder häufig auch zwei Kernkörperchen; sie sind meistens oval oder rund, häufig langgestreckt; manchmal bestehen sie aus zwei Halften, die durch eine mehr oder weniger breite Brücke verbunden sind, so dass man das Bild direeter Kerntheilung vor sich hat; man findet häufig Gruppen von Kernen, welche aus einem oder zwei grossen Kernen und mehreren kleineren bestehen; es ist sehr wahrscheinlich, dass jede derartige Gruppe aus den successiven Theilungen eines einzigen Kernes resultirt. Vielfach trifft
Die Entstehung des Blutes bei Knochenfischenembryonen.

man mehrere Kerne dicht zusammengelagert und manchmal kleinere mit grösseren so verbunden, dass sie wie Knospen derselben erscheinen.

Beim Hecht findet man im Dotter ebenfalls anormal grosse Kerne; das Chromatin derselben ist um den Nucleolus angehäuft und der Kern erscheint im Uebrigen ganz hell; man sieht häufig langgestreckte Kerne und es finden sich auch die Bilder directer Kerntheilung; diese waren aber beim Lachs viel häufiger und viel typischer zu sehen.

Ich bin der Ansicht, dass die Erscheinungen, welche man an den Periblastkernen des Lachses und des Hechtes beobachtet, Anzeichen der Degeneration sind und dass die Kerne zwar vielleicht eine physiologische Rolle bei der Resorption des Dotters spielen, aber nie mehr irgend welche normalen Zellkernen den Ursprung geben, nie mehr an der Bildung der Gewebe des Embryo morphologisch sich betheiligen. Auch von Kowalewski (Nr. 35, p. 452 u. 456) und von Wenckebach (Nr. 52, p. 231) wurden die Periblastkerne der Teleostier für degenerirt erklärt.

Ähnliche Kerne, wie wir sie im Periblast der Teleostier gefunden haben, zeigt auch der Periblast der Selachier; ich glaube wenigstens dies aus den Abbildungen und der Beschreibung Balfour's (Nr. 6, p. 39 u. 90 und Taf. III, V u. IX) schliessen zu dürfen.

Es scheint, dass sich in sehr verschiedenartigen Fällen eigenthümliche Kernformen finden, die man den Periblastkernen der Knochenfische an die Seite stellen kann, und dass diese Erscheinungen ein für die Naturgeschichte des Zellkerns überhaupt wichtiges Capitel bilden. Ich will hier einige derartige Fälle zusammenstellen 1).

Derartige Kerne fand Korschelt (Nr. 33, p. 610, 628, 651) in der Endkammer der Ovarien von verschiedenen Wanzen (beachte insbesondere Korschelt's Figur 82, 90, 114, 115); die ungewöhnliche Grösse dieser Kerne, der Schwund des Chromatins,

1) Von Paneth (Nr. 41) sind in den sogenannten Sarcooplasten (bei jungen Fröschen) eigenthümliche Kernformen gefunden worden, welche dem Aussehen nach recht wohl hierher gehören könnten; es scheint mir aber, dass der Fall für die Discussion der Bedeutung solcher Zellformen noch nicht verwerthet werden kann, weil die Frage der Sarcooplasten zu wenig abgeklärt ist.
die eigenthümlichen Formen der Kerne erinnern an die Periblastkerne der Teleostier; Korschelt deutet diese Erscheinungen als Degeneration, und wie ich glaube, mit Recht; die Kerne spielen aber höchst wahrscheinlich physiologisch eine wichtige Rolle als Kerne von Nährzellen1).

Blochmann (Nr. 9) sah in der Embryonalhülle des Scorpions Kerne von ungewöhnlicher Grösse, welche sich durch directe Kerntheilung vermehren; es ist ihm sehr wahrscheinlich, dass in diesem, wie auch in anderen Fällen auf die directe Kerntheilung keine Zelltheilung mehr folgt.

Ich habe bei Cyclas an den Bruttaschen, welche von dem Epithel der Kiemen gebildet werden, eine eigenthümliche Vergrösserung und Fragmentirung der Kerne beobachtet (Nr. 55, p. 562 und Taf. XXVII, Fig. 22); da in den Brutkapseln sich allmählich eine Flüssigkeit ansammelt, ist es wahrscheinlich, dass den betreffenden Zellen eine secretorische Function zukommt; die Zellen, welche solche grosse, durch Einschnürung zertheilte Kerne zeigen, dürften schwerlich noch Theilungen eingehen; wohl aber lösen sich einzelne derselben von dem Epithel ab und dienen den im Brutraum befindlichen Embryonen zur Nahrung.

In der Botanik sind unter dem Namen der Fragmentation (siehe Johow Nr. 27 und die dort citirte Litteratur) Erscheinungen beschrieben worden, welche sich den Befunden an den Periblastkernen der Teleostier, wie auch den letzterwähnten Fällen an die Seite stellen lassen; ich verweise insbesondere auf die Abbildungen der Kerne aus Zellen von Chara, Sempervivum und Tradescantia, welche Johow gegeben hat2). Es pflegt hier niemals", der Kerntheilung eine Zelltheilung zu folgen.

Die grossen verzweigten Kerne, welche in seernirenden Zellen verschiedener Arthropoden gefunden sind, dürfen vielleicht hier auch beigezogen werden, da es möglich scheint, dass Verzweigung und unvollständig erfolgende directe Theilung in einander übergehen. Man kennt längst die verzweigten Kerne in den

1) Neuerdings hat Korschelt die Beobachtungen zusammengestellt, welche die Wichtigkeit des Zellkerns für die Abscheidung und Aufnahme von Substanzen wahrscheinlich machen (Sitzungsber. d. Gesellschaft naturf. Freunde Berlin 1877, p. 126).

2) Siehe auch die Abbildung der Kerne aus älteren Internodien von Tradescantia bei E. Strasburger, Das botanische Practicum 2. Aufl Jena 1887, p. 585, Fig. 193.
Die Entstehung des Blutes bei Knochenfischembryonen.

613

Es würde mir passend erscheinen, wenn man den Ausdruck Fragmentation im Thierreich und zwar zunächst nur bei Metazoen für die morphologisch und physiologisch zusammengehörigen Fälle gebrauchen würde, welche in folgender Weise charakterisirt sind. Die Kerne sind beträchtlich grösser als gewöhnliche Kerne derselben Thiere und zeigen anormale Armuth an Chromatin oder anormale Vertheilung desselben. Die Kerne vermehren sich durch direkte 1) Kerntheilung (Embryonalhülle des Scorpions); häufig wird die Theilung nicht bis zur Trennung der Theilstücke durchgeführt, so dass die Kerne knospenähnliche Fortsätze oder unregelmässige Ausläufer zeigen (Periblastkerne von Salmo, Ovarien mancher Wan- zen)2) oder dass sie durch Einschnürungen zertheilt erscheinen (Brutkapseln von Cyclas); ich möchte vorschlagen, in diesen Fällen die Ausdrücke „amöbiforme Fragmentation“ und „morulaförmige Fragmentation“ zu gebrauchen. Die Fragmentation kommt vor in Zellen, welche sich nicht mehr theilen oder in Protoplasmassen, welche durch unvollständige Zelltheilung (d. h. durch Kernthei- lung ohne zugehörige Zelltheilung) entstanden sind. Das Auftreten der Fragmentation hängt damit zusammen, dass die Zelle sich specialisirt, sich an eine bestimmte physiologische Func- tion angepasst hat, dass sie z. B. Dotter beherbergt und assi-

1) Es ist fraglich, ob zwischen directer und indirekter Kerntheilung eine scharfe Grenze gezogen werden kann. Da nach Pfitzn e r's (Nr. 42) Beobachtungen auch bei der Karyokinese der Kern gegen das Protoplasma abgegrenzt ist, so würde die typische Umlagerung des Chromatins den Unterschied ausmachen.

2) Hier wären wahrscheinlich auch die eigenthümlichen Kerne zu nennen, welche in Lymphzellen beobachtet wurden (Pfitzner Nr. 42, Fig. 21 und die in Nr. 9 citirte Litteratur); doch schien mir die physiologische Bedeutung der betreffenden Zellen und auch die Vorgänge am Zellkern nicht genügend festgestellt, um den Fall unter die obigen einreißen zu können.
miliert, dass sie irgend einen Secretions- oder Resorptionsvorgang besorgt u. s. w. Die Kerne sind degenerirt, insofern die Zelle keiner Theilung mehr fähig ist und folglich sich an dem weiteren Aufbau des Embryo oder an Regenerationsvorgängen nicht mehr morphologisch betheiligen kann); wenn man die Kerne in diesem Sinne als „degenerirt“ bezeichnet, so schliesst dies nicht aus, dass sie ihre physiologische Function mehr oder weniger lange Zeit hindurch erfüllen. Es giebt einfachere Modi der Degeneration, welche zu raschem Untergang führen (vergl. Pfitzner Nr. 43 und Korschefit Nr. 33), die Fragmentation tritt nur dann auf, wenn die Kerne erst eine specialisirte Function übernehmen und dann zu Grunde gehen.

Aus diesem Abschnitt ergibt sich, dass bei den Knochenfischen zur Zeit der Entstehung der Blutkörperchen im Dotter keine abgegrenzten Zellen, sondern nur „freie“ Kerne vorhanden sind und dass diese Kerne hinsichtlich ihrer morphologischen Bedeutung den Kernen der Dotterzellen der Amphibien entsprechen und in Anpassung an die physiologische Function der Resorption des Dotters eigen tümliche Modificationen erleiden, welche die mehrfach behauptete, aber nirgends erwiesene Erzeugung von Blutkörperchen als unwahrscheinlich erscheinen lassen.

II. Die Entstehung des Herzens.

Die folgende Darstellung bezieht sich auf Salmo salar²).

2) Obgleich ich mehrere Abtheilungen von Eiern in den verschiedenen

¹) Die Lachseier wurden conservirt durch 1/2% Chromsäure mit ge-
Die Entstehung des Blutes bei Knochenfischembryonen. 615
derm 3/4 des Dotters überwachsen hatte, sah ich Folgendes: Fig. 33 stellt einen Querschnitt dar, welcher das Ohrbläschen getroffen hat, man bemerkt das Centralnervensystem, seitlich von demselben die Ohrbläschen, unter demselben die Chorda. Unter der Chorda liegt das Entoderm, welches hier seitlich das Ectoderm erreicht und eine Kiemenspalte bildend mit demselben verschmilzt. Man kann ein oberes Blatt desselben unterscheiden, welches median unter der Chorda durchgeht, und ein unteres, welches noch nicht bis zur Medianebene vorgedrungen ist. Die Räume zwischen den genannten Organen sind mit Mesodermzellen ausgefüllt; diese bilden einen Theil der unsegmentirten Masse von Mesodermzellen, welche in direkter Fortsetzung der Ursegmente vom ersten deutlich differenzirten Ursegment (welches eine kurze Strecke hinter dem Ohrbläschen gelegen ist) bis zu den Augenblasen sich erstreckt. Seitlich finden wir unter dem Entoderm die Seitenplatten, welche die Pericardialhäohle umschließen. Das untere Blatt der Seitenplatten und der mediane Theil des unteren Entodermblattes berühren den Dotter. Gehen wir von dem eben beschriebenen Schnitt aus in der Schnittserie nach vorn, so sehen wir, dass unter den Seitenplatten eine Masse von Zellen auftritt, welche medianwärts an die Zellen des unteren Entodermblattes anstösst (Fig. 32 hz). Auf weiter vorn gelegenen Schnitten (Fig 32a) findet man auch einige dieser Zellen zwischen dem unteren Blatt des Entoderms und dem medianen Theil der Seitenplatten, während von oben her die Zellen des Mesoderms des Kopfes zwischen das untere Blatt des Entoderms und die Seitenplatten sich eindrängen. Weiter vorn stehen die unter den Seitenplatten gelegenen Zellen mit dem Mesoderm des Kopfes in continuirlichem Zusammenhang (Fig. 31). Wenige Schnitte weiter vorn enden die Seitenplatten, nachdem sie sich dem Dotter unmittelbar aufgelagert haben; sie treten aber noch nicht weiter medianwärts vor, so dass durch die Zellen, welche an ihrem medianen Rande liegen, auch nach Jahren zur Untersuchung verwandt habe, welche sich hinsichtlich der Entwicklungsdauer beträchtlich unterschieden, so sind doch in dieser Arbeit alle Altersangaben so gemacht, wie wenn alle Embryonen einer Abtheilung angehört hätten und zwar derjenigen, welche den Angaben in meiner Dissertation zu Grunde lag; daher sind die Altersangaben wenigstens zur Vergleichung unter sich zu gebrauchen. Der Schluss des Blastoporus erfolgte am 15. Tage.
Dr. H. Ernst Ziegler:

vorn hin ein continuirlicher Uebergang von dem Mesoderm des Kopfes zu den unterhalb der Seitenplatten liegenden Zellen existirt.

Für diese Auffassung sprechen auch die Befunde an einem Embryo vom vorhergehenden Tage. Vergleicht man Fig. 30 (vom 13. Tag) mit Fig. 32 (vom 14. Tag), welche derselben Stelle (1. primitive Kiernspalte) entsprechen, so findet man in dem früheren Stadium eine breite Verbindung zwischen den Zellen, die unter den Seitenplatten liegen und den Mesodermzellen des Kopfes; in dem späteren Stadium ist die Verbindung an dieser Stelle durch das Vordringen der Seitenplatten unterbrochen, aber sie existirt noch etwas weiter vorn (Fig. 31). In dem früheren Stadium nach hinten gehend, findet man ein ähnliches Bild wie Fig. 32 links, insofern die Seitenplatten bis zum Entoderm medianwärts vorge drungen sind. Wieder etwas weiter hinten fehlen die mesoder malen Zellen (hz) unter der unteren Seitenplatte, und an ihrer Stelle wird das untere Blatt des Entoderms gefunden, welches, da die zur Bildung der Kiemenöhle führende seitliche Auffaltung
noch nicht vollendet ist, noch eine Strecke weit lateralwärts unter die untere Seitenplatte sich erstreckt\(^1\).

Im Stadium der Fig. 31—33 ist die laterale Begrenzung der Mesodermmasse des Kopfes nicht überall eine scharfe. Der periphere zwischen Ectoderm und oberer Seitenplatte liegende Rand zeigt zwischen Auge und Ohrbläschen (namentlich gegen das letztere hin) locker liegende Zellen; aber eine Ablösung von Wanderzellen habe ich nicht beobachtet.

Bei einem Embryo, welcher um einen Tag älter war, bei welchem der Blastoporus im Begriff war sich zu schliessen (15. Tag), findet man in der Gegend des Ohrbläschens das untere Blatt des Entoderms bis zur Medianebene vorgedrungen, während dem entsprechen die Seitenplatten sich der Medianebene genähert haben; doch steht das untere Blatt des Entoderms median in dieser Gegend noch überall mit dem Dotter in Berührung (vergl. Oellacher Nr. 40 Taf. IV Fig XIV 3). Etwas weiter vorn ist das untere Blatt des Entoderms vom Dotter abgehoben und das Entoderm stellt ein flachgedrücktes, von einschichtigem Epithel gebildetes Rohr dar (Fig. 35). Die Seitenplatten erreichen die Medianebene nicht, sondern es bleibt zwischen denselben ein Raum, der oben an das untere Blatt des Entoderms, unten an den Dotter grenzt; dieser Raum ist die primitive Herzhöhle. Wir finden dieselbe in diesem Stadium schon von Endothel ausgekleidet; dieses setzt sich unter die untere Seitenplatte lateralwärts fort, so dass zur Herzanlage nicht allein die ebengenannte Höhle, sondern auch ein lateraler unter der unteren Seitenplatte gelegener Raum gehört, welcher sich, wie Fig. 4 erkennen lässt, von der Herzhöhle ein wenig nach vorn, und jederseits ein wenig nach hinten erstreckt (Fig. 4 hz). Im Bereich dieses Raumes liegen diejenigen Zellen der Herzanlage, welche Wanderzellen werden. Indem das Entoderm median sich zusammenzog und zwischen den Seitenplatten in die Höhe rückte, kamen die Zellen, welche wir im vorigen Stadium unter den Seitenplatten und medianwärts von denselben bemerkten (hz Fig. 31, 32 und 32a) dahin zu liegen, wo wir jetzt die Herzanlage finden. Ein Theil

\(^1\) Vergl. die ganz richtige Abbildung bei Oellacher (Nr. 40) Taf. IV, Fig. 12, 2; gegen die Abbildung Oellacher's Taf. IV, Fig. 12, 1 habe ich ein Bedenken, da ich beim Lachs in diesem Stadium die Seitenplatten nicht bis unter die Augenblasen verfolgen kann.
Dr. H. Ernst Ziegler:

dieser Zellen hat sich abgeflacht und zur Bildung des Endothels zusammengelagert; man kann schon an Embryonen des vorhergehenden Tages einzelne platte Zellen sehen, welche zur Bildung des Endothels sich anschicken. Der andere Theil der Zellen liegt unter dem Endothel und zwar vorwiegend in dem lateralen Bezirk. Diese Zellen wandern laterallwärts weg und findet man einzelne solcher Wanderzellen unter der unteren Seitenplatte und am äusseren Rande der Seitenplatten zerstreut. Nach vorn hin reichen jetzt (15. Tag) die Seitenplatten weiter als im vorigen Stadium; sie dringen medianwärts vor, vereinigen sich median und schliessen so den Raum, welcher die Herzhöhle darstellt, nach vorn hin ab. Die Verbindung zwischen den im Herzen befindlichen Zellen (resp. seinem Endothel) und den Mesodermzellen des Kopfes ist jetzt darauf reducir, dass am vorderen Theil der langgestreckten Herzöhle das Endothel des Herzens lateralwärts zwischen Somatopleur und unterem Entodermblatt hindurch bis zu den Mesodermzellen des Kopfes verfolgt werden kann (Fig. 36).

Die Veränderungen, welche an dem eben beschriebenen Embryo bis zum nächsten (dem 16.) Tage vor sich gehen, sind folgende. Hinter dem Ohrbläschen hebt sich das Entoderm vom Dotter ab, die Seitenplatten dringen dem entsprechend medianwärts vor und vereinigen sich in der Medianebene; dem Gesagten zu Folge berühren sie oben die untere Fläche des entodermalen Rohres, unten den Dotter (Fig. 40), soweit nicht die Endothelzellen der Herzanlage und die unter denselben gelegenen Wanderzellen zwischen den Dotter und die unteren Seitenplatte sich einschieben. Auch vor dem Herzen trafen die Seitenplatten median zusammen; das dadurch entstandene mesenteriumähnliche Septum schwindet, so dass die beiden Pericardialhöhlen zusammenfließen (Fig. 37); etwas später tritt letzterer Vorgang auch hinter dem Herzen ein und so wird das Herz zu einem freistehenden selbständigen Gebilde; der Hohlraum zwischen den Seitenplatten (Pericardialhöhle) wird grösser und höher und dabei nimmt das Herz, welches im vorigen Stadium sehr niedrig war, die Form eines Schlauches an, dessen vordere Wand vertikal und dessen hintere schief von hinten nach vorn aufsteigt. Am oberen Ende des Herzens tritt das Endothel des Herzens lateralwärts zwischen das Entodermrohr und die obere Seitenplatte und lässt sich bis zu dem Mesoderm des Kopfes verfolgen (Fig. 38); dieser Zusammenhang der Zellen des Herzend
Die Entstehung des Blutes bei Knochenfischembryonen.

619

theils mit dem Mesoderm des Kopfes, welcher, wie aus dem Obigen hervorgeht, von jeher besteht, ist in diesem Stadium und in den folgenden wieder deutlicher als im vorigen; es bilden sich da die ersten Aortenbögen aus. Das Endothel des Herzens bildet in diesem Stadium einen Sack (Fig. 38 und 39), dessen vorderes engeres Ende schief nach vorn aufsteigt, während sein unterer, breiterer, flachgedrückter Theil sich nach hinten umschlägt und nach hinten öffnet; dabei reicht die untere Lamelle etwas weniger weit nach hinten als die obere; doch ist es schwer, die Verhältnisse dieser feinen Lamellen in der Gegend der Öffnung genau zu erkennen.

In der Herzgegend sind lateral am Rande der Seitenplatten einzelne Wanderzellen häufig zu finden (Fig. 37—40 wz), im vorigen Stadium waren sie seltener; wie ich schon oben sagte, glaube ich, dass diese Zellen von der Herzanlage stammen und von da unter der unteren Seitenplatte durch amöboide Bewegung lateralwärts hervorgewandert sind. Man findet sie grösstenteils am Rande der Seitenplatten liegend, einzelne aber auch etwas weiter vom Embryo entfernt; die letzteren sind gewöhnlich sowohl hinsichtlich des Kerns als des Zellkörpers etwas grösser.

An dem Embryo vom 16. Tage bemerkt man hinter den Kiemenpalten auf den Seitenplatten auflagernd eine Zellschicht, welche die Anlage der vorderen Extremität (Figur 41) darstellt. Die Zellen derselben treten über den Rand der Seitenplatten hinaus und zeigen ausserhalb des Randes eine sehr lockere Lagerung, so dass es mir wahrscheinlich geworden ist, dass auch von hier einzelne Zellen als Wanderzellen hinwegwandern. Wo die Anlage der vorderen Extremität entsteht, erkennt man aus Fig. 16, welche einen Hechsembryo des entsprechenden Stadiums in der Seitenansicht zeigt. Man sieht, dass das Mesoderm des Kopfes am hinteren Ende des Pericardialraumes, vor den Urwirbeln lateralwärts vordringt und eine über der oberen Seitenplatte liegende Zellenplatte erzeugt; die Zellen treten nicht allein vor den ersten Ursegmenten heraus, sondern auch in schiefer Richtung nach hinten — lateralwärts unter den ersten Ursegmenten hindurchtreten — hervor; die drei ersten Ursegmente erschienen nach unten nicht scharf begrenzt. Demgemäss sehen wir an den Schnitten vom Lachs (Fig. 41) die in Rede stehende Zellmasse vorn direct übergehend in das Mesoderm des Kopfes, wobei zu bemerken ist, dass letzteres mit der oberen Seitenplatte nahe deren medianem Rande
Dr. H. Ernst Ziegler:

in inniger Verbindung steht, gewissermaassen verschmolzen ist (Fig. 41, rechts bei **; die linke Seite der Fig. 41 liegt etwas weiter hinten als die rechte); etwas weiter hinten trifft man die ersten Ursegmente und die der oberen Seitenplatte aufgelagerte Zellmasse kommt unter denselben hervor; sie geht nach hinten allmälicher und von der rechten Seite der Fig. 41 liegt etwas weiter hinten als die rechte; etwas weiter hinten trifft man die linke Seite der Fig. 41; die ersteren Ursegmente und die der oberen Seitenplatte aufgelagerte Zellmasse erscheint; diese verliert sich weiter hinten bald. Auf die Frage, in welcher Beziehung die Anlage der vorderen Extremität zu den ersten Ursegmenten steht, will ich hier nicht genauer eingehen. Von Seiten des Ectoderms wird die Bildung der Brustflosse durch eine parallel der Längsrichtung des Embryo gelegene Falte eingeleitet. Von der Brustflosse bis zur Aftergegend wachsen die Seitenplatten rasch lateralwärts vor, während das Pericardium sich zunächst nur unbedeutend lateralwärts ausdehnt.

Die Veränderungen, welche das Herz von dem oben beschriebenen Stadium des 16. Tages bis zum 20. Tage, an welchem die Blutkörperchen auftreten, durchmacht, bestehen hauptsächlich im Auswachsen der bereits angelegten Theile. Der Herzschlauch erhält sich mehr, wächst in die Länge und krümmt sich. In Fig. 38 und 39 sahen wir noch eine ziemliche Anzahl Wanderzellen unter dem unteren Blatt des Endothelschlauches; diese Zellen werden hier spärlicher, da sie hinwegwandern; man trifft solche Wanderzellen unter der unteren Seitenplatte zerstreut vor dem Herzen und seitlich von denselben, auch besonders reichlich hinter denselben bis in die Gegend, wo die Leber angelegt wird; viele dieser Zellen sind unter dem Rand der Seitenplatten hervorgetreten und lateralwärts weiter gewandert. Auch tritt im hinteren Theil des Herzschlauches eine Anzahl Zellen auf, welche, wie ich glaube, ebenfalls solche Wanderzellen sind, die durch die Endothelwand hindurch oder von der hinteren Öffnung des Endothelschlauches her in denselben eingetreten sind. Ich bezweifle sehr, dass diese Zellen, welche man im Herzlumen tritt, bereits an der Circulation Theil nehmen und vermuthe vielmehr, dass sie durch protoplasmatische Ausläufer unter sich und mit dem Endothel zusammenhängen. Ich glaube, dass zu dieser Zeit ein homogenes Serum circulirt, welches keine zelligen Elemente mit sich führt; freilich kann man dies beim Lachs am lebenden Thier nicht beobachten,
Die Entstehung des Blutes bei Knochenfischembryonen.

aber es ist diese Erscheinung bei vielen anderen Knochenfischen constatirt.

Die Kerne, welche im Dotter unterhalb des Herzens sich befinden, zeigen während der Entwicklung desselben eine rege Vermehrung; man trifft Gruppen, welche aus vielen kleinen und einem oder mehreren grösseren Kernen bestehen; die kleinen Kerne sind nicht viel grösser als die Kerne der Wanderzellen, welche an der Herzanlage sich befinden; aber trotzdem habe ich mich nicht davon überzeugen können, dass aus den Kernen des Dotters Kerne von Wanderzellen werden; man ist namentlich dann verführt dies auszunehmen, wenn der Embryo durch den Druck der schrumpfenden Eihaut oder irgend welche Manipulation gegen den Dotter gedrückt wurde; an guten Präparaten findet man die Kerne des Dotters durch eine fast homogene dünne Grenzschicht des Dotters von der Herzanlage getrennt und ist kein Bild zu finden, welches ein Austreten der Kerne des Dotters beweise. Die kleinen Kerne im Dotter besitzen meist kein Kernkörperchen.

Ich habe nur beim Lachs die Entstehung des Herzens eingehend verfolgt; doch habe ich mehrere Schnitserien vom Hecht angesehen und Folgendes beobachtet; die Entstehung der Herzens ergibt beim Hecht ähnliche Bilder wie beim Lachs; die bei der Herzanlage sich findenden Wanderzellen sind viel zahlreicher als beim Lachs; sie bilden in den Stadien der Fig. 31 und 32 eine flache Zellenmasse, welche unter dem unteren Pericardialblatte liegt und in homologer Weise wie beim Lachs mit dem Mesoderm des Kopfes zusammenhängt.

Was die Angaben der Autoren über die Entstehung des Herzens der Knochenfische betrifft, so muss ich zunächst constatiren, dass es auch bei durchsichtigen Embryonen, wie ich mich selbst überzeugt habe, enorm schwer ist, nach Beobachtungen am lebenden Thiere eine sichere Ansicht über den Ursprung der Herz- zellen zu gewinnen. Ich kann daher keinem der Autoren, welche nur am lebenden Thiere beobachtet haben, in dieser Frage eine grosse Autorität zuerkennen.

Die einzige Arbeit, in welcher durch sorgfältige Untersuchung auf Querschnitten der Ursprung der Herzanlage eruirt wird, ist diejenige von Oellacher (Nr. 40, p. 82—88). Ich halte seine Angaben, die sich auf die Forelle beziehen, grösstentheils für richtig und muss seine Darstellung vor Allen zum Studium empfehlen.

Über die Entstehung des Herzens der Forelle hat neuerdings auch Hoffmann (Nr. 25a, p. 35) Beobachtungen veröffentlicht, welche aber im Vergleich zu denen Oellacher's auf weniger eingehenden Untersuchungen basirt zu sein scheinen. Wenn Hoff- mann aus Stadien, wie dasjenige seiner Fig. 9 auf Taf. 2 schliesst, dass die Endothelzellen des Herzens „durch Proliferation der Zellen des Entoderms des Parablastes entstanden sind“, so muss ich entgegen, dass erstens diese Frage nur auf früheren Stadien entschieden werden kann und dass zweitens dasjenige, was er in der Figur als Entoderm des Parablast bezeichnet, wahrscheinlich der unter dem Splanchnopleur befindliche Theil des Endothels des Herzens ist (vergl. meine Fig. 35).

Über die Anlage des Herzens bei Belone hat Wenckebach (Nr. 52) ausführlich berichtet; ich habe in Neapel Belone untersucht und habe das Meiste von dem, was Wenckebach beschreibt, auch selbst gesehen; Wenckebach's Beobachtungen muss ich daher zwar in den einzelnen Angaben für richtig erklären, aber seine ganze Darstellung der Frage der Herzbildung leidet daran, dass er den Antheil der Seitenplatten und den Antheil der mesodermalen Zellmasse nicht getrennt hat; es hängt dies damit zusammen, dass Wenckebach vorwiegend am lebenden Thiere beobachtet hat. Wenckebach's Fig. 9 zeigt von Belone ein ähnliches Stadium, wie meine Fig. 13 vom Hecht; der „Embryonalsaum“ (Es) ist das Pericardium.

Schliesslich will ich noch die Angaben Kupffer's (Nr. 36 a) erwähnen, nach welchen das Herz beim Hecht, beim Hering und beim Stichling nach demselben Schema wie das Herz des Kaninchens durch mediane Vereinigung zweier am Splanchnopleur durch Einfaltung angelegter Schlüche entstehe.

Das Resultat dieses Abschnittes lässt sich folgendermaassen kurz zusammenfassen. Das embryonale Herz ist ein Schlauch, welcher aus zwei Schichten, dem Pericardialepithel und dem Endo- thel besteht; das letztere mitsamt einer Anzahl von Wanderzellen entstammt einer Gruppe von Mesodermzellen; diese Zellen sind in continuirlicher Fortsetzung des Mesodermes des Kopfes schon ehe
der Kiemendarm geschlossen ist, jederseits zwischen Entoderm und Pericardium (Seitenplatten) zu sehen; wenn das Entoderm sich zur Vollendung des Kiemendarms hinaufgezogen hat, liegen sie median in dem Zwischenraum zwischen den medianen Theilen der Pericardialplatten und lateralwärts unter der unteren Pericardialplatte; theils erzeugen sie das Endothel des Herzens, theils bewegen sie sich als Wanderzellen fort.

III. Die embryonale Circulation.

Dieser Abschnitt behandelt die embryonale Anordnung des Gefäßsystemes im Rumpfe bei Perca fluviatilis, Salmo salar, Esox lucius, Belone acus und Syngnathus acus. Die meisten der hier mitzuteilenden Beobachtungen habe ich am lebenden Thiere gemacht und zwar zu der Zeit, wenn schon viele Blutkörperchen circulirten. Die Schnittserien dienten zur Controle der am lebenden Thiere constatirten Befunde, sie haben auch in einzelnen Fällen die Erkenntniss des Richtigen gefördert, aber es wäre nicht ratsam sich nur auf die Untersuchung von Schnittserien zu stützen, weil es leicht vorkommen kann, dass ein Gefäss bei der Tödtung und Härtung des Embryo sein Lumen verliert und dann auf den Schnitten nur schwer zu erkennen ist.

Ich will zuerst die Circulation beim Embryo des Barsches (Perca fluviatilis) beschreiben, da sich diese am leichtesten und vollständigsten beim lebenden Thier beobachten lässt (Fig. 2 und 3), und zwar bezieht sich die folgende Darstellung auf ein Stadium, in welchem schon Blutkörperchen circuliren.

Die beiden Aortenwurzeln, welche das Blut aus den Aortenbögen aufgenommen haben, vereinigen sich zur Aorta, welche unter der Chorda bis in die Nähe des Schwanzendes verläuft; zwischen Aorta und Chorda liegt nur der sog. subchordale Strang. Die Aorta gibt unmittelbar vor der Kopfniere ein kleines unpaares Gefäss ab, welches die zwei Glomeruli der rechten und der linken Kopfniere versorgt; gelegentlich bemerke ich, dass die Glomeruli 1) bei jedem Pulssstoss deutlich aufschwellen. Unmittelbar hinter der Kopfniere entspringt aus der Aorta eine Arterie, die Eingeweidearterie, arteria mesenterica. Früher glaubte ich zu sehen, dass

1) Es mag hier erwähnt werden, dass ich im Anfangstheil des Vornierengangs zu einer Zeit, als die allmählich stattfindende Aufknäuelung durch Bildung einer Schlinge eingeleitet war, einzeln stehende lange Cilien bemerkte.

Dr. H. Ernst Ziegler:

das aus den Glomerulis der Kopfniere austretende Blut in die arteria mesenterica gelangt; doch machte ich in diesem Jahre kurz ehe mein Material zu Ende ging, die Beobachtung, dass dasselbe in die Aorta zurücktritt und dass unmittelbar vor der Einmündungsstelle die Arteria mesenterica entspringt. Die Arteria mesenterica tritt auf der rechten Seite des Darmes an die Leber und verzweigt sich in anfangs zwei, später mehr Äste, welche in die Leber ein- treten. Wenn der Embryo einige Wochen alt ist, verläuft ein starker Ast der Arteria mesenterica über dem Darm nach hinten und gibt zahlreiche Ästchen ab, welche den Darm umlaufend in die unten zu besprechende Subintestinalvene einmünden. Die Aorta gibt hinter dem After eine unpaare Arterie ab, welche, nachdem sie sich getheilt hat, den Enddarm nahe dem After auf beiden Seiten umgreift und in die Subintestinalvene übergeht; diese Arterie will ich die Analarterie nennen. In späteren Stadien läuft die Analarterie über dem Darm nach vorn und gibt zahlreiche kleine Gefässe nach beiden Seiten des Darmes ab, welche in die Sub- intestinalvene münden. Die Subintestinalvene verläuft unter dem Darm bis in die Nähe der Leber; da tritt sie auf die linke Seite des Darmes und läuft über den Darm hinweg nach der rechten Seite, wo sie sich abwärts wendet und dann nach links unter dem Darm hindurchtretend zur Leber gelangt. Das Blut, welches der Leber durch die Subintestinalvene und durch die oben besprochene Arteria mesenterica zugeführt wird, tritt, da die Leber etwas nach links liegt, auf der linken Seite der Dotterkugel aus; dasselbe strömt hier über den Dotter in einer halbkreisförmigen Randvene und mehreren anastomosirenden Bahnen, welche in die Randvene einmünden; die Randvene ergiesst sich in den Sinus venosus. Der Schwanzteil der Aorta geht an seinem Hinterende in die unmittelbar unter der Aorta verlaufende Vene über; diese will ich bis dahin, wo sie von der Analarterie, die median durch dieselbe hindurch geht, getheilt wird, als Caudalvene bezeichnen; von der oben bezeichneten Stelle an verläuft die Vene als medianes Gefäss (Stamnivene) bis in die Nähe der Eingeweidearterie; nicht weit hinter der Eingeweidearterie theilt sie sich und die beiden Aeste (Cardinalvenen) treten schief nach vorn — unten — aussen; sie gehen lateralwärts unter dem Urnierengang hindurch und laufen unter der Anlage der vorderen Extremität nach vorn bis sie jederseits mit einer aus dem Kopf kommenden Vene, die als
Die Entstehung des Blutes bei Knochenfischembryonen. 625

Die ebenenannnte mediane Vene, welche in der directen Fortsetzung der Caudalvene im Rumpf liegt und welche später in der Niere eingeschlossen ist, will ich als Stammvene bezeichnen; der Name wurde von Götte (Nr. 15, p. 759) für die Cardinalvenen bei Batrachien gebraucht. Einige der Autoren, welche die embryonale Circulation der Teleostier beschrieben haben, nennen anstatt dieser einen Vene zwei, eine rechte und eine linke. So spricht Rathke (Nr. 44a p. 35) von einer rechten „hinteren Hohlvene“, welche das Blut des Schwanzes und der rechten Hälfte des Bauchstücks, also auch das der rechten Niere aufnimmt und von einer linken, welche „im hinteren Ende der linken Niere entsteht und das Blut derselben, sowie überhaupt das der linken Hälfte des Bauchstücks“ aufnimmt. Diese Beobachtung bezieht sich auf Bleunins viviparus. K. E. von Bär (Nr. 4 u. 5) nennt die von Rathke beschriebenen Gefässe rechte und linke hintere Wirbelvene. Ich habe bei allen Knochenfischembryonen, welche ich auf Schnitten untersuchte, Salmo¹), Perea, Belone, Esox die Vene im Rumpfe median und einheitlich gefunden. Um mit der gebräuchlichen Bezeichnungsweise im Einklang zu bleiben, hätte ich dieselbe als median einheitliche Cardinalvene bezeichnen müssen; ich will aber der Einfachheit wegen dafür den Namen Stammvene und für die beiden aus der Theilung resultirenden Aeste die Bezeichnung rechte und linke Cardinalvene verwenden.

Freilich entsteht die Stammvene der Teleostier durch mediane Verschmelzung zweier lateraler Anlagen, insofern, wie wir unten sehen werden, die intermediäre Zellmasse aus zwei lateralen Strängen hervorgeht; aber zu der Zeit, wenn das Gefäss eine Höhlung erhält, hat die mediane Verschmelzung längst stattgefunden. Es existirt also bei Teleostier eine principiell der gleiche Vorgang wie bei den Batrachien, bei welchen die Stammvene bilateral angelegt wird, und dann im Bereich der Niere eine mediane Verschmelzung der beiden Gefässe eintritt (Götte Nr. 15). Es mag

¹) Hoffmann (Nr. 26, p. 624) meint, dass beim Lachs zwei „venae cardinales posteriores“ angelegt werden, „von welchen die eine frühzeitig wieder abortirt."

hier noch bemerkt werden, dass ebenso wie bei den Batrachiern die Stammvene mit der Urniere in inniger Beziehung steht (Fig. 29), und dass ebenfalls wie bei den Batrachiern die zur Kopfniere gehörige Aufknäuelung des Urnierenganges in die Cardinalvene zu liegen kommt.

Von der oben beschriebenen Circulation ist diejenige erheblich verschieden, welche bei jüngeren Barschembryonen vor dem Auftreten der Blutkörperchen zu der Zeit stattfindet, wenn das Herz das Serum in Bewegung zu setzen begonnen hat1). Die Caudalvene setzt sich noch nicht in die Stammvene fort, sondern geht mittelst zweier den Darm umgreifender Aeste in die Subintestinalvene über (Fig. 5); diese ergiesst sich auf den Dotter; es bildet sich bald eine gefässartige Verlängerung der Subintestinalvene aus, welche in der Medianebene an der Hinterseite der Dotterkugel herabläuft, etwa 1/3 der Dotterkugel umfasst und deren zellige Wand dann aufhört, so dass das Blut weiterhin frei über den Dotter strömt (Vena vitellina media). Das Herz saugt die Flüssigkeit auf, welche über den Dotter (zwischen dem Dotter und der unteren Pericardialplatte) herauffliess. Der Sinus venosus ist anfangs nichts anderes als der Hohlraum zwischen der unteren Pericardialplatte und dem Dotter. Das Herz ist in diesem Stadium ein schwach gebogener Schlauch, dessen arterielles Ende nach hinten und dessen venöses Ende nach vorn sich öffnet; später, wenn der Kopf sich relativ zum Dotter nach vorn verschiebt, wir das arterielle Ende nach vorn gerichtet. Wenn die Subintestinalvene auf den Dotter übertritt, so zeigt sie da, wo sie abwärts umbiegt, einen in der ursprünglichen Richtung gelegenen, zwischen Darm und Dotter eindringenden spitzen Fortsatz, aus welchem vermutlich der vordere Theil der späteren Subintestinalvene hervorgeht.

Um diesen Zustand der Circulation in den oben beschriebenen überzuführen, treten im Lauf von ein oder zwei Tagen folgende Veränderungen ein: Die Stammvene wird für die Blutflüssigkeit durchlässig und ein Theil der in ihr aufgehäuften Blutkörperchen wird weggeschwemmt. Die Verbindung der Caudalvene mit der Subintestinalvene obliterirt und demgemäß verlieren die letztere und das median

1) Man kann sich beim Barsch leicht davon überzeugen, dass vor dem Auftreten der Blutkörperchen eine wirkliche Circulation stattfindet; wenn man die Spitze des Schwanzes abschneidet, schwindet sehr bald das Lumen des Herzens in Folge der eintretenden Verblutung.
Die Entstehung des Blutes bei Knochenfischnembryonen.

Die Entstehung des Blutes bei Knochenfischnembryonen. 627

Beim Lachs findet man, wie ich aus Schnittserien festgestellt habe, um die Zeit, wenn die Blutkörperchen im Blutstrom auftreten, folgende Circulation: Die Vena caudalis ergiesst sich am After in die Subintestinalvene; später setzt sich die vena caudalis direkt fort in die Stammvene; aber zu dieser Zeit wird letztere noch durch eine compacte Zellenmasse repräsentirt; die Subintestinalvene mündet auf den Dotter, ehe sie die Leber erreicht.
Das über den Dotter strömende Blut sammelt sich in den beiden Randvenen des Gefässhofs, welche von rechts und links in den Sinus venosus einmünden. Die beiden Randvenen stehen hinten in Communication und bilden zusammen annähernd einen Kreis (Fig. 10 rv). Die Randvenen verlaufen unter dem Splanchnopleur nahe dem Rande der Seitenplatten.

Im Verlauf der weiteren Entwicklung treten dann folgende Veränderungen ein. Wenn die Stammvene durch die Wegschwemmung der sie erfüllenden Blutkörperchen durchgängig geworden ist und sich nach vorn die zum Sinus venosus führenden Cardinalvenen entwickelt haben, nimmt das Blut der Caudalvene seinen Weg durch die Stammvene, und die Verbindung mit der Subintestinalvene geht allmählich zu Grunde. Fig. 11 zeigt den Gefässverlauf in der Analgegend zu der Zeit, wenn das Blut der Caudalvene theils schon in die Stammvene, theils noch durch eine auf der linken Seite des Darmes herabsteigende Anastomose in die Subintestinalvene geht. Man sieht in derselben Figur die Analarterie, welche aus der Aorta entspringt, median die Stammvene durchsetzt und in mehrere Zweige zertheilt in die Subintestinalvene einmündet; beiläufig wil ich erwähnen, dass ich die Analarterie in dem abgebildeten Stadium ausnahmsweise in einigen Fällen doppelt gefunden habe.

hingewand zu laufen und dann in die nach rechts hin gelagerte Leber zu gehen. Ehe sie in die Leber sich ergiesst, nimmt sie noch mehrere starke Zweige der Arteria mesenterica auf (Fig. 6). Aus der Leber treten nach rechts und vorzugsweise nach hinten mehrere starke und schwächere Gefässe auf den Dotter über; die vielen feinen Gefässe, welche aus denselben entspringen, bilden durch reichliche Anastomosen ein ziemlich gleichmässig ausgedehntes engmaschiges Netz auf dem ganzen Dottersack. Das Blut sammelt sich an der Unterseite des Dottersackes in einigen grösseren Venen, welche in die obengenannte mediane Vene übergehen; diese nimmt auch von den Seiten her zahlreiche kleine Gefässe auf. Wie nach dem oben Gesagten leicht begreiflich ist, wendet sich dies Gefäss ein wenig nach links und mündet von links her in den Sinus venosus ein.

Beim Hecht (zur Zeit des Ausschlüpfens) tritt das durch die Caudalvene herbeigeführte Blut grossentheils in die Subintestinalvene über, während die Stammmvene im hinteren Rumpftheil nur schwach entwickelt und nur im vorderen Rumpftheil am lebenden Thier deutlich zu sehen ist. Mehrere Analarterien entspringen in kurzen Entfernungen hinter einander aus der Aorta, anastomosiren oberhalb des Darmes und liefern mehrere kleine Gefässe, die um den Darm herum gehen und in die Subintestinalvene einmünden. Die Subintestinalvene tritt nach kurzem Verlaufe auf den Dotter über und gelangt an die Unterseite des hinten zugespitzten Dotter sackes, wo jede Gefässwand aufhört und das Blut sich frei über den Dotter ergiesst (vena vitellina media), (vergl. Aubert Nr. 3). Die Subintestinalvene nimmt, ehe sie auf den Dotter übertritt, von vorn her eine Vene auf, welche aus der Leber kommt. Das Blut, welches (vermutlich aus der Mesenterialarterie) in die Leber gelangt, geht zum Theil durch das ebengenannte Gefäss nach hinten zur Subintestinalvene, theils nach vorn direct zu der Stelle, wo die beiden Ductus Cuvieri sich vereinigen. Das durch die Subintestinalvene auf den Dotter gelangende Blut strömt in breiter Bahn unten und seitlich über den Dotter nach vorn und gelangt an den Vorhof, der auf der linken Seite des Dotters gelegen ist. Zu der Einströmungssöffnung des Vorhofs kommt auch von oben her ein starker Strom, der das Blut beider Ductus Cuvieri herbeiführt, da die letzteren eine kleine Strecke weiter oben von rechts und links sich vereinigen. Das Blut, welches auf der rechten Seite des Dotters strömt, begibt sich zum Theil auf der vorderen Fläche des
Dotter nach der linken Seite, theils tritt dasselbe mit dem Ductus Cuvieri der rechten Seite zwischen dem Embryo und dem Dotter hindurch, um nach links zur Einströmungsöffnung des Vorhofs zu gelangen.

Bei Belone ist der Verlauf der Venen insofern ähnlich wie bei Syngnathus, als die Subintestinalvene ebenfalls auf den Dotter sich begibt und in der Medianebene um denselben herumläuft (vena vitellina media); ebenso wie bei Syngnathus mündet in die Subintestinalvene, ehe sie auf den Dotter übertritt, von vorn her eine Vene ein, deren Verlauf ich aber nach vorn nicht genauer verfolgen konnte. Belone hat die Besonderheit, dass die Ductus Cuvieri auf den Dotter übertreten; sie kommen unmittelbar vor der vorderen Extremität seitlich aus dem Embryo hervor und laufen in einem weiten Bogen nach vorn, um vor dem Kopf des Embryo mit der medianen Dottervene zur Bildung des Sinus venosus zusammenzutreten. Es liegt nämlich bei Belone das Herz so, dass der Vorhof nach vorn gerichtet ist und dass derselbe eine kleine Strecke vor der Kopfspitze in den Sinus venosus sich öffnet. Wenckebach (Nr. 52) hat die Lage der auf dem
Die Entstehung des Blutes bei Knochenfischembryonen.

Die auf dem Dotter verlaufenden Gefässe haben sicherlich eine grosse Bedeutung für die Atmung und sind vielleicht auch für die Resorption des Dotters von Werth; daher findet man bei allen Teleostierembryonen, welche einen grossen Dottersack besitzen, ein Gefässnetz auf dem Dotter entwickelt; doch bildet sich dieses, wie aus dem Gesagten hervorgeht, bei verschiedenen Teleostiern an ganz verschiedenen Gefässen aus.

Ich will noch kurz die in der Litteratur über die embryonale Circulation sich findenden Angaben erwähnen.

K. E. von Baer (Nr. 4 p. 21, p. 24 u. ff.; vergl. auch Nr. 5 p. 300) bespricht die embryonale Circulation von Cyprinus blicca. Nach seiner Schilderung kann eine untere und eine obere Caudal-

Vogt (Nr. 49 p. 210—239) hat eine genaue Darstellung der embryonalen Circulation des Blaufelchens (Coregonus palaea)
Die Entstehung des Blutes bei Knochenfischembryonen.

Vogt sah die von der Aorta gespeisten Gefässschlingen der Glomeruli der Kopfniere (l. c. p. 214 „un très-fort remous dont la signification ne m’est pas encore entièrement démontrée“). Er gibt an, dass ursprünglich jederseits eine „hintere Dottervene“ vorhanden sei, welche das Blut aus den Analarterien (zunächst ohne Vermittlung einer Subintestinalvene) erhalte; diese „hinteren Dottervenen“ mögen der Randvene des Lachses entsprechen; die eine derselben (die linke) obliterire bald (l. c. p. 218), die rechte lege sich am hinteren Rumpftheile dem Darme an, werde so Subintestinalvene und trete in Verbindung mit der Leber, wo sie das Blut aus derselben (welches der Leber durch die arteria mesenterica zugeführt wird), um von da im Bogen über den Dotter zum Sinus venosus weiter zu gehen (l. c. p. 223). Es scheint mir, dass für die Darstellung Vogt’s hinsichtlich der Entstehung der Subintestinalvene eine Prüfung durch erneute Untersuchung wünschenswerth wäre. Vogt berichtet von einer vorderen Dottervene, die von einem kleinen, durch das Auge gehenden Gefäss gespeist werde und am Ductus Cuvieri in die hintere Dottervene einmünde; sie verschwinde sehr bald; ich habe dieses Gefäss beim Lachs nicht beobachtet; allerdings ist in Betracht zu ziehen, dass man beim Lachs vor dem Ausschlüpfen die Circulation am lebenden Thier nur dann studiren kann, wenn man den Embryo aus der Eischale herausnimmt und dass dabei die Dotterkugel immer verletzt wird und ausfliesst; daher mussten meine Beobachtungen beim Lachs im Vergleich zu denen Vogt’s unvollständig bleiben. Vogt erkannte, dass die venae cardinales verhältnissmässig spät entstehen und vermutete (l. c. p. 232), dass sie im Rumpfe (bis in die Gegend der Leber) zu einem einheitlichen medianen Gefäss verschmolzen sind. Auch der Verlauf der kleinen intersegmentalen Gefässe (entspringend aus der Aorta, mündend in die Stammvene) wird ganz richtig beschrieben (l. c. p. 233).

Aubert (Nr. 3) hat die embryonale ¹) Circulation des Hechtes beschrieben und abgebildet; er sah, dass das Blut durch die Sub-

¹) Gelegentlich will ich erwähnen, dass Aubert (Nr. 3, p. 350) und auch Genisch (Nr. 12, p. 19) den eigenthümlichen Irrthum hegen, dass diejenige Seite des Embryo, welche unter dem Mikroskop als rechte erscheine, in Wirklichkeit die linke sei.
Dr. H. Ernst Ziegler:

intestinalvene zum Dottersack gelangt und anfangs ohne in Gefässe eingeschlossen zu sein über denselben zum Herzen strömt.

Lereboullet beschrieb mit erfreulicher Correctheit die embryonale Circulation der Forelle in ihren verschiedenen Entwicklungsstufen (Nr. 38); er gibt nur wenige Abbildungen und scheint in neuerer Zeit wenig Beachtung gefunden zu haben. Auch seine Angaben über die embryonale Circulation des Hechtes und des Barsches treffen vielfach das Richtige, sind aber sehr kurz abgefasst (Nr. 39); ich erwähne nur, dass er die Wandungslosigkeit der ersten Dottergefäss beachtete.

Wenckebach (Nr. 51, p. 232) sah beim Barsch zu der Zeit, wann die Blutkörperchen in die Circulation eintreten, die Aorta, die Caudalvene und die Stammvene (vena vertebralis posterior sive cardialis), welche er richtig als medianes Gefäss beschreibt und in welcher er die Ablösung der Blutkörperchen beobachtete. Bei Belone beschreibt er das mediane Dottergefäss und die auf dem Dotter liegenden Ductus Cuvieri (von Wenckebach als Randvenen bezeichnet): „Blenius und Syngnathus verhalten sich wie Belone; bei Gobius treten auch die drei Hauptdottergefässes auf, dieselben verzweigen sich aber nicht und es bildet sich also kein Gefässnetz auf dem Dotter“ (Nr. 52, p. 243).

Ich will hier die embryonalen Circulationsverhältnisse im Rumpf der Teleostier, soweit sie bekannt sind, übersichtlich zusammenstellen. Nachdem sich die beiden Aortenwurzeln unter der Chorda zur Aorta vereinigt haben, zweigt sich bald ein medianes Gefäss, die Arteria mesenterica ab, aus welcher Zweige zur Leber und ein an der Dorsalseite des Darmes nach hinten verlaufendes Gefäss hervorgehen (Fig. 6). In der Nähe des Afters gibt die Aorta eine oder mehrere Analarterien-ab; der Hauptast der Analarterie verläuft an der Dorsalseite des Darmes nach vorn. Die Aorta geht bis in die Nähe des Schwanzendes. Unter derselben verläuft die Caudalvene; die direkte Fortsetzung derselben nach vorn ist die Stammvene (median vereinigte Cardinalvenen) (Fig. 2, 3, 11); die Stammvene theilt sich eine kurze Strecke hinter der Kopfniere in die beiden Cardinalvenen, welche mit den Jugularvenen zusammentreffend die Ductus Cuvieri bilden. Ich habe keinen Grund, die von mehreren Autoren vertretene Auffassung zu bestätigen, dass die Stammvene die eine der Cardinalvenen sei, zu
Entstehung des Blutes bei Knochenfischembryonen.

deren Gunsten die andere obliterate. Da die Stammvene anfänglich nicht durchgängig ist und bei manchen Teleostiern auch später keine beträchtliche Weite erreicht, geht das Blut der Caudalvene anfänglich immer und in manchen Fällen (Hecht) zum Theil auch später noch in die Subintestinalvene; diese letztere nimmt in allen Fällen das Blut auf, welches durch die Analarterien dem Darme zugeführt wird. Beim Barsch und beim Lachs geht die Subintestinalvene zur Leber, nachdem sie an der linken Seite des Darmes aufgestiegen, über den Darm hinweggegangen und auf der rechten Seite des Darmes herabgelaufen ist; der vordere Theil der Subintestinalvene nimmt die Verzweigungen der Arteria mesenterica auf, soweit diese nicht direct zur Leber gehen. Wenn die Subintestinalvene zur Leber geht, so kann das Blut aus der Leber auf vielen Bahnen austreten, welche entweder (Barsch) sich alle nach einer Seite wenden und auf dieser Seite durch eine Randvene gesammelt werden, oder (Lachs) nach hinten und nach beiden Seiten gehen und jedesseits in einer Randvene sich vereinigen. Beim Lachs und beim Barsch ergiesst sich die Subintestinalvene in den jüngsten Stadien der Circulation auf den Dotter; dies Verhältniss bleibt bei vielen anderen Teleostiern für die ganze embryonale Circulation bestehen; in letzterem Fall ist (bei Syngnathus, bei Belone?) ein zur Leber gehendes Gefäss nachgewiesen, welches sich von der Subintestinalvene da abzweigt, wo diese auf den Dotter mündet und welches die Verzweigungen des Darmastes der Arteria mesenterica aufnimmt; insofern verhält sich also dies Gefäss wie der vordere Theil der Subintestinalvene des Lachses oder Barsches. Bei allen Teleostiern, bei welchen die Subintestinalvene direct auf den Dotter sich ergiesst, fliess das Blut median in einer mehr oder weniger breiten Bahn (vena vitellina media) um die Dotterkugel herum (Hecht, Syngnathus, Belone, Blennius, Gobius u. a.).

Die hier gegebene Darstellung der Circulation bedarf namentlich insofern der Vervollständigung, als erstens noch mehr Species in den Kreis der Betrachtung gezogen und zweitens mehrere der hier besprochenen Species, namentlich Syngnathus und Belone, eingehender untersucht werden müssen.

Wenn ich schliesslich auf Grund der embryologischen Beobachtungen eine Hypothese über das phylogenetisch primitive Gefässsystem der Teleostier resp. ihrer Vorfahren aussprechen soll,
Dr. H. Ernst Ziegler:

so möchte ich dieselbe im Anschluss an Balfour\(^1\) (Nr. 6, p. 234) etwa folgendermaßen formulieren. Es existirte ausser dem dorsalen Gefäss (Aorta) ein ventrales, welches im ventralen Mesenterium verlief; dasselbe ist durch die Caudalvene, die Subintestinalvene und die Vena vitellina media repräsentirt und das Herz liegt in seiner directen Fortsetzung; das Gefäss ist ebenso wie das Herz ein Hohlraum zwischen den ventralen Rändern der unter dem Darm sich nähernden Seitenplatten. Da das ventrale Gefäss, wie auch das dorsale ursprünglich im Sinne eines schizocoelen Hohlraumes aufzufassen ist, so wird dasselbe in den Fällen, in welchen ein grosser Dotter eine beträchtliche Entfernung der ventralen (lateralen) Ränder der Seitenplatten herbeigeführt hat, durch den ganzen Hohlraum dargestellt, der sich zwischen diesen Rändern befindet, innerhalb dessen das Blut in dessen ganzer lateraler Ausdehnung (Hecht) oder in schmälerer auf dem Dotter eingegrabener Bahn (Belone) nach vorne zum Herzen strömt (vena vitellina media). Ich glaube jedoch, dass man hinsichtlich der Subintestinalvene vom After bis zum Dottersack am sichersten behaupten darf, dass sie ein Theil des primitiven ventralen Gefäßes sei, während schon sehr schwer zu entscheiden ist, ob dessen Fortsetzung nach vorn in der Richtung der Vena vitellina media (unter dem Dotter), oder in der Richtung des späteren weiteren Verlaufs der Subintestinalvene (über dem Dotter), zu suchen sei; doch scheint diese Entscheidung von geringem Werth zu sein in Anbetracht, dass der Dotter eine eocogenetische Acquisition neueren Datums ist. Unter Berücksichtigung der Verhältnisse bei Amphioxus müsste angenommen werden, dass das ursprüngliche ventrale Gefäss unter dem Darm verlief, dann (über den Darm hinweglaufend?) zur Leber ging, hier ein Capillarnetz bildete und von da zum Herzen gelangte.

IV. Die Entstehung der Gefässe auf dem Dottersack.

Zuerst will ich angeben, in welcher eigenthümlichen Weise die Gefässe auf dem Dottersack des Hechtes entstehen; es liegt

\(^{1}\) Nach Balfour existirt bei den Selachiern eine Caudalvene, welche unter dem postanalen Darm sich anlegt, anfänglich am Enddarm sich spaltet denselben umgreift und als Subintestinalvene sich fortsetzt. Ebenso wie bei Teleostieren entwickeln sich die Cardinalvenen erst später und obliterirt dann die Verbindung der Caudalvene mit der Subintestinalvene.
Die Entstehung des Blutes bei Knochenfischembryonen. 637

hierüber die Arbeit von Aubert (Nr. 3) vor, welche ich hinsichtlich der Schilderung und Abbildung der in das Auge fallenden Bilder wohl bestätigen kann, aber hinsichtlich der Herleitung der ersten Blutkörperchen nicht für ganz correct halte.

Ehe noch am lebenden Embryo eine Spur von Circulation zu erkennen ist, treten auf dem Dotter, namentlich in der Nähe des Kopfes reichlich Wanderzellen von amöboider Form auf; diese kommen unter den Pericardialplatten hervor, welche deutlich an den Seiten des Kopfes zu sehen sind (Fig. 12 und 13) und wandern allmählich über den ganzen Dotter. Ich habe schon oben (p. 617) für den Lachs angegeben, dass bei der Entstehung des Herzens eine Anzahl indifferenter mesodermaler Zellen unter die Pericardialplatte zu liegen kommt, und dass diese Zellen als Wanderzellen lateralwärts hervortreten. Dasselbe findet, wie ich aus den Schnittserien erschen habe, in noch ausgiebigerer Weise beim Hecht statt. Während die Wanderzellen über den ganzen Dotter sich vertheilen, wird das Herz sichtbar und entsteht eine Circulation eines keine Blutkörperchen führenden Serums; die über den Dotter strömende Flüssigkeit bewegt einige der Wanderzellen, die nur an einem Punkte fixirt sind und frei in die Flüssigkeit hineinragen, hin und her und kann auch ausnahmsweise eine Zelle losreissen und zum Herzen führen. Zwei Tage nach dem Erscheinen der Wanderzellen sieht man im Blutstrom runde Blutkörperchen, erst spärlich, bald aber reichlich. Wie ich weiter unten (p. 652) darlegen werde, sind diese Blutkörperchen in der Aorta in den Blutstrom gelangt.

In Fig. 12, welche nach dem lebenden Embryo gezeichnet ist, sieht man links an der Seite des Embryo einen breiten Saum, welcher höchst wahrscheinlich durch die ohne Lumen aufeinanderliegenden Seitenplatten gebildet ist; die rechte Seite derselben Figur entspringt einem ein wenig älterem Stadium, in welchem die Pericardialplatten anfangen durch Flüssigkeit getrennt zu werden und daher heller erscheinen. In Fig. 13, welche ebenfalls durch Beobachtung des lebenden Embryo in der Eischale gewonnen ist, sieht man rechts unter dem scharf begrenzbaren Pericardium eine Masse von Zellen, welche im Begriff stehen, lateralwärts hervorzutreten und sich auf dem Dotter die Wander-
zellen und zwischen Dotter und Embryo das Herz, dessen Wand aus dem Endothel und dem Pericardialblatt besteht; in solchem Stadium bemerkt man schon Pulsationen des Herzens; einen Tag später findet man das durch Fig. 19 dargestellte Bild; man sieht auf dem Dotter Wanderzellen, welche sich grossentheils in Pigmentzellen umwandeln, und ferner zahlreiche Blutkörperchen; die Pfeile deuten die Richtungen an, in welchen der Zufluss des Blutes erfolgt und die beigesetzten Buchstaben bedeuten, dass bei a der intensivste, bei b u. c ein schwächerer und bei d ein ganz langsamer Strom zu bemerken ist. Die in das Herz eintretenden Blutkörperchen sind von den fixen Wanderzellen nicht in jedem Fall mit Sicherheit zu unterscheiden; erstere sind zwar meistens rund, letztere länglich oder in Folge amöboider Bewegung unregelmässig gestaltet, doch kommen unter den ersteren längliche, unter den letzteren runde Formen vor.

Der Blutstrom wird dem Dotter durch die Subintestinalvene zugeführt; er ist an der Hinterseite des Dottersacks eine kurze Strecke weit von zelliger Wandung umschlossen, fließt aber von hier ab frei über die Dotterkugel; nur die Peritoneal- und die Pericardialplatten bilden für ihn an den Seiten des Körpers eine Grenze. Die Blutkörperchen, welche über den Dotter schwimmen, sind nur in ganz langsamer Bewegung, was leicht daraus zu erklären ist, dass hier die Blutbahn sehr weit ist, während das zu führende wie auch das abführende Gefass verhältnissmässig eng sind; man sieht häufig Blutkörperchen einzeln oder in Gruppen auf dem Dotter ganz ruhig liegen, die dann später wieder weiter geschwemmt werden. Die Hauptmasse des Blutes strömt an der Unterseite des Dottersacks, nahe der Medianebene auf der linken Seite (die venöse Öffnung des Herzens ist ja ebenfalls nach links gerichtet); schon vor dem Beginn der Circulation der Blutkörperchen war diese Bahn dadurch bemerkbar, dass die Wanderzellen hier häufiger als auf dem übrigen Dottersack zu finden waren.

Nach dem Ausschlüpfen treten während der folgenden Tage in dem über die Dotterkugel fließenden Blutstrom Inseln auf, die mehr oder weniger vollständig von Wanderzellen umgrenzt sind; eine solche Insel ist anfangs niedrig, so dass manchmal noch ein Blutkörperchen über dieselbe hinweggetrieben wird, aber bald hebt sie sich mehr und es wird durch solche Inselbildung der ursprünglich einheitliche Strom allmählich in viele Arme zerlegt.
Die Entstehung des Blutes bei Knochenfischembryonen. 639

(Siehe Aubert Nr. 3, Fig. 5 u. 6.) Man könnte beim Hecht wie auch beim Barsch und bei anderen Teleostier die derartigen Er- scheinungen wohl erklären, durch die Annahme, dass der Blutstrom Substanzen aus dem Dotter herauslöst und dass er daher auf dem Dotter Rinnen zu graben im Stande ist. Die Inselbildung auf dem Dottersack des Hechtes beginnt am hintern Theile des Dottersacks und schreitet nach vorn vor; rechts erfolgt sie rascher als links. In welcher Weise die einzelnen Bahnen von Zellen umschlossen und dadurch zu wirklichen Gefässen werden, dies habe ich nicht genauer verfolgt, ich zweifle aber nicht, dass es in ähnlicher Weise, wie Wenckebach (Nr. 52) den Vorgang bei marinen Teleostier darstellt, durch die Betheiligung der Wanderzellen geschieht. Soviel ist leicht zu constatiren, dass den Rändern der entstehenden Inseln flache Zellen, vermutlich abgeflachte Wanderzellen sich anlegen, welche die Rinnen auskleiden. Ein grosser Theil der Wanderzellen verwandelt sich in Pigmentzellen.

Beim Barsch habe ich beobachtet, dass ebenfalls vor dem Auftreten der Circulation Wanderzellen auf den Dotter sich begeben, deren Ursprungsstätte am Herzen unter der unteren Pericardialplatte zu liegen scheint. Viele dieser Wanderzellen entwickeln Pigment. Wie beim Hecht strömt anfangs das Blut dem Dottersack durch die Subintestinalvene zu, wird an der Hinterseite des Dottersacks eine kurze Strecke weit durch ein aus flachen Zellen bestehendes Gefäss geleitet und tritt aus diesem heraus, um sich, ohne von einer Gefässwandung umschlossen zu sein, auf einer median um den Dotter herumlaufenden Bahn zum Herzen zu begeben; diese Bahn ist ein bevorzugter Aufenthaltsort der Wanderzellen; sie obliterirt bald (s. p. 627). Die Randvene und die anderen Gefässe, welche das von der Leber kommende Blut über die linke Seite des Dotters zum Herzen führen, scheinen, wenn sie anfangen sichtbar zu werden, keine continuirliche Zellwandung zu besitzen; insbesondere scheint die Randvene nach der äusseren Seite ohne zellige Begrenzung zu sein; doch wird die Zellwandung allmählich continuirlich und die dann später entstehenden Seitensprossen der Gefässe bilden sich in gewöhnlicher Weise von der bestehenden Gefässwand aus (s. p. 641).

Dr. H. Ernst Ziegler:

verweilen konnte, eine ausführliche Darstellung der hier zu beobachtenden interessanten Gefäßbildung gegeben, welche ich, soweit meine Beobachtungen reichen, bestätigen kann. In ganz ähnlicher Weise, wie ich es beim Hecht gesehen habe, ist ein „Embryonasum“ (Wenckebach) sichtbar, welcher den Seitenplatten entspricht (Fig. 1); die ursprünglich aufeinanderliegenden obere und untere Seitenplatte werden im Bereich des Pericardiums durch Flüssigkeit getrennt (Es in Wenckebachs Fig. 9 zeigt das pericardium). Ehe dies geschieht, treten um den Kopf des Embryo zahlreiche Wanderzellen auf (Fig. 1); es hat den Anschein, als ob sich diese Zellen von dem Embryonasum ablösen, aber ich möchte eher glauben, dass sie unter demselben hervorkriechen; ich halte es für wahrscheinlich, dass diese Zellen ebenda ihren Ursprung haben, wo wir beim Lachs und beim Hecht die ersten Wanderzellen entstehen sahen, nämlich unter der unteren Pericardialplatte; aber es scheinen auch in der Gegend der Augenblasen und ferner am hinteren Theil des Embryo, sowie an dem Keimwulste 1), der das schon ziemlich verkleinerte Dotterloch umgibt, Wanderzellen hervorzu treten, die, wie ich vermute, mesodermalen Ursprungs sind, deren Entstehung ich aber nicht genauer kenne. Ein grosser Theil der Wanderzellen entwickelt schwarzes oder gelbes Pigment in Form feiner Körnchen, die sich im Körper der Zellen ablagern. Fig. 21 und Fig. 52 zeigen einige Wanderzellen, von welchen zwei Pigment enthalten. Man sieht, dass die Bewegung der Zellen unter Bildung sehr feiner Pseudopodien erfolgt. Was nun die Bildung der Gefässe betrifft, so ist die vena vitellina media (das Gefäss, welches vom Hinterende des Embryo in der Medianebene um die Dotterkugel läuft) anfangs eine flache Rinne ohne zellige Begrenzung; dann bemerkt man Wanderzellen am Boden und an den Rändern dieser Rinne und allmählich entsteht ein geschlossenes Gefäss. Ohne Zweifel es, wie Wenckebach mit Recht behauptet, die Wanderzellen, welche die Gefässwand bilden. Ferner entstehen Gefässe längs des Randes der Pericardialplatten von hinten nach vorn wachsend, nämlich die Ductus Cuvieri (Wenckebach's Randvenen). Wenckebach schildert die Entstehung dieser Gefässe in ähnlicher Weise wie

1) Nach Kupffer (Nr. 36, p. 264) scheint beim Stichling diese Stelle für die Entstehung der Wanderzellen von besonderer Bedeutung zu sein.
diejenige der Vena vitellina media; mir gelang es nicht, den Bildungsmodus dieser Gefässe mit Sicherheit zu erkennen.

Von den drei bisher besprochenen grossen Gefässen aus bilden sich zahlreiche Gefässbögen und Communicationen und man kann die Entstehungsweise dieser kleinen Capillaren sehr gut verfolgen. Ich will hier nur kurz angeben, wie ich mir nach meinen Beobachtungen den Vorgang vorstelle, ohne über diese Fragen in eine Discussion einzutreten. Eine kurze Darstellung eben dieser Vorgänge bei Belone gibt Wenckebach (Nr. 52 p. 242); über die Capillaren überhaupt siehe die Darstellungen von Götte (Nr. 15 p. 505), von Ziegler (Nr. 56 I. Theil p. 124) und die an letzterer Stelle citirte Litteratur.

Der Modus, wie sich neue Capillaren anlegen, ist mir bei Belone und bei Perca folgendermaassen erschienen. Viele (alle?) Zellen der Gefässwandung besitzen pseudopodienartige feine Fortsätze, welche von der Gefässwandung aus in verschiedenen Rich
tungen über den Dotter ausstrahlen. Wenn zwischen zwei Capillaren oder zwei Stellen derselben Capillare eine Verbindung entsteht, so wird dies dadurch eingeleitet, dass ein solcher feiner pseudopodienartiger Fortsatz einer Zelle mit demjenigen einer andern Wändzelle verschmilzt; eben diese Fortsätze nehmen an Dicke zu und scheinen auf die Zelle einen Zug auszuüben, so dass sie zurückrückt und eine zeltförmige Erhebung (trichterförmige Ausziehung) der dünnen Gefässwand erzeugt. Die Spitze des trichterförmigen Hohlraums dringt nun weiter in die Zelle ein, so dass sie aus einer endständigen zu einer wandständigen wird, und setzt sich allmählich in den feinen Protoplasmafaden fort, welcher die beiden Zellen vereinigt; indem die feinen Hohlräume, welche von beiden Seiten herandringen, zur Vereinigung gelangen, ist eine Capillare entstanden; diese erweitert sich, führt aber zuerst nur Serum und es dauert einige Zeit, bis Blutkörperchen durch dieselbe hindurch gehen. Der soeben besprochene Fall ist der einfachste; meist stehen die beiden Zellen der Gefässwände nicht direct, sondern nur vermittelst einer oder mehrerer Wanderzellen in Verbindung. Die Erscheinungen, welche in diesem Fall zur Bildung der Capillare führen, sind die gleichen wie im vorigen; es entsteht an dem Gefäss eine trichterförmige Ausziehung und von dieser aus setzt sich das Lumen allmählich in den Körper der ursprünglichen Wandzelle fort, die an der Spitze des Trichters liegt, schreitet von da nach der Wander-

Die Resultate dieses Abschnittes zusammenfassend möchte ich constatiren, dass ich durch Betrachtung der an der Oberfläche des Dotters sich abspielenden Vorgänge keinerlei Stütze gefunden habe für die Ansicht, dass die Blutkörperchen auf dem Dotter entstehen, und dass ich die auftretenden Wanderzellen aus dem Embryonalkörper ableite; die Blutkörperchen werden durch das Serum herbeigeführt; die Gefässe auf dem Dottersack sind anfangs Bahnen zwischen dem Dottersack und dem Ectoderm oder zwischen dem Dottersack und dem Splanchnopleur; meistens besitzen sie anfangs wenigstens theilweise keine selbstständige Wandung und sind dann morphologisch als einfache Spalträume zwischen den übrigen Organen (schizocoele Hohlräume) aufzufassen; sie werden allmählich von Wanderzellen (Mesenchymzellen) begrenzt. Häufig entsteht entsprechend der Bahn der über den Dotter strömenden Flüssigkeit eine Rinne auf dem Dotter, welche durch Wanderzellen allmählich ausgekleidet und zum Rohr geschlossen wird.

1) Die Gefässe überhaupt sind als ein System schizocoeler Hohlräume aufzufassen; es sind Hohlräume zwischen den übrigen Organen oder Spalträume im Bildungsgewebe (Mesenchym); die obengenannten Dottergefässen stammen direct von Blastocoel, denn der Raum zwischen dem Ectoderm und der Dotterkugel ist die Furchungshöhle (s. Fig. 8).
Zunächst soll die Herkunft der Blutkörperchen bei Lachsembryonen besprochen werden.

Am Ende des Schwanztheils befindet sich der aus undifferenzirten Zellen bestehende Schwanzknopf, welcher in diesem Stadium schon

2) Dieser Knopf entsteht an derjenigen Stelle, wo der Blastoporus sich schliesst und geht aus der Verschmelzung der Schwanzknospe (Oellacher) und des Randwulstes hervor. Im vorderen Theile dieses Knopfes liegt die Kupffer'sche Blase; die Chorda tritt an der Kupffer'schen Blase in Verbindung
ein wenig vom Dotter abgehoben ist (Fig. 51). Im Schwanztheile findet man das Medullarrohr, die Chorda, das Entoderm, welches den Schwanzdarm anlegt, die Ursegmente, deren mediane (der Chorda anliegende) Zellen schon deutlich als Muskelzellen differenzirt sind und die Seitenplatten, welche meist nur schwer als getrennte Blätter zu erkennen sind; im Schwanztheil berührt das Entoderm längs der Medianebene die Chorda und zwar direkt, da auch der Subchordalstrang bei diesem Stadium im Schwanz noch nicht entwickelt ist (Fig. 45).

Ein Schnitt durch den Rumpftheil (Fig. 43) zeigt das Medullarrohr, die Chorda, die Seitenplatten und Urnierengänge; man bemerkt ferner die den Ursegmenten entsprechenden Muskelplatten, deren median gelegene Zellen schon deutlich als Muskelzellen differenzirt sind. An der unteren Fläche der Muskelplatten findet man eine Schicht etwas abgeflachter oder lockerer Zellen, welche ich als Bildungsgewebe bezeichne; zwischen diesem, dem Darm und den Seitenplatten liegt die schon oben genannte intermediäre Zellmasse (Oellacher); diese ist von ovalen oder rundem Querschnitt und der Habitus der median gelegenen Zellen lässt deutlich erkennen, dass sie aus der Verschmelzung zweier lateraler Streifen hervorgegangen ist. In der Gegend der Kopfiniere verschmälernt sich die intermediäre Zellenmasse und endet, während das Bildungsgewebe zwischen Chorda, Muskelplatten, Darm und Seitenplatten soweit nach vorn verfolgt werden kann, bis dasselbe am Vorderende der Reihe der Muskelsegmente in das Mesoderm des Kopfes übergeht. Am Hinterende des Rumpfes findet man das Bildungsgewebe und die intermediäre Zellmasse median getheilt durch den Darm (Fig. 44); an etwas älteren Embryonen ist auch hier die mediane Vereinigung erfolgt. Embryonen des vorhergehenden Tages (Fig. 34, Querschnitt durch den Rumpf) zeigen, dass die mediane Vereinigung der genannten Gebilde durch den ganzen Rumpf von vorn nach hinten in dem Maasse erfolgt, als

mit dem Entoderm und verliert gleich darauf die Abgrenzung gegen das Medullarrohr; am Hinterende der Kupffer’schen Blase ist die Chorda nicht mehr als diskretes Gebilde zu erkennen; das Medullarrohr ist (als kielförmige Einstülpung des Ectoderms) noch einige Schnitte weiter zu verfolgen. Aus dem zoologischen Institut in Strassburg wird demnächst eine vergleichende Darstellung dieser Verhältnisse hervorgehen.
das Entoderm von der Chorda (resp. dem Subchordalstrang) sich trennt und entfernt.

Es wäre hier zu besprechen, wie die intermediäre Zellmasse und das Bildungsgewebe entstehen und wie sie sich zu den Ursegmenten verhalten. Diese Frage ist bei den Knochenfischen besonders schwer\(^1\) zu lösen und ich behalte mir eine ausführliche Darstellung der bezüglichen Verhältnisse für eine später einmal vorzunehmende vergleichende Bearbeitung der Differentiation des Mesodermstreifens vor, welche von den Selachiern ausgehen muss. Für die intermediäre Zellmasse steht fest, dass zu der Zeit, wenn in dem Mesodermstreifen die Ursegmente und die Seitenplatten erkennbar werden, zwischen diesen beiden Gebilden ein undifferenzierter Streifen von Zellen bleibt, welcher später medianwärts unter die Ursegmente rückt und sich median unter der Chorda mit dem Streifen der anderen Seite vereinigt; diese Entstehung der intermediären Zellmasse ist von Oellacher (Nr. 40, p. 76, 77 und 102) beobachtet und später auch von mir gesehen worden (Nr. 54 p. 46).

Das Bildungsgewebe wächst, wie ich glaube, am hinteren Rande der unteren Fläche jedes Ursegmentes aus demselben medianwärts hervor (vergl. Fig. 48, 49, 50 und die zugehörige Figurenerklärung). Im Verlauf der weiteren Stadien wird es immer deutlicher, dass das Bildungsgewebe mit der Medianseite des unteren Hinterendes jedes Ursegmentes in Verbindung steht und von da Nachschub erhält (vergl. Fig. 46 u. Fig. 15). Eine analoge Erscheinung zeigt in diesen späteren Stadien das obere Hinterende jedes Ursegmentes, indem von da Wanderzellen sich ablösen, welche die „Membrana reuniens superior“ und Gewebe in der Rückenflosse liefern. Es ist in der Hauptsache genau, wenn man kurz sagt: jedes Ursegment gibt an seinem unteren, wie an seinem oberen Ende in der Richtung nach hinten Bildungsgewebe (Wanderzellen, Mesenchym) ab.

Über die Homologisierung des Bildungsgewebes kann kein Zweifel sein. Die Hauptmasse des Ursegmentes der Teleostier liefert Muskulatur (vergl. die Andeutungen der muskulösen Differentiation der Zellen in Fig. 46 und Fig. 20); sie bildet die Muskelplatte. Bei anderen Wirbelthieren ist diese Muskelplatte relativ

\(^1\) In Folge der compacten Lagerung der Keimblätter und der eigen tümlichen Knickung der Ursegmente.
Dr. H. Ernst Ziegler:

kleiner und es bleibt, wenn sie sich im Ursegment differenzirt,
eine massige undifferenzirte Zellmasse, die sich dann von den
Seiten her zwischen Chorda und Darm hineindrängt; letztere erzeugt
die Anlagen der Wirbelkörper, der unteren und der oberen Bögen
und in ihr entwickeln sich die Aorta und die Cardinalvenen. Kölliker nennt dieselbe „eigentliche Urwirbel“ (Nr. 29a S. 215),
Götte „interstitielles Bildungsgewebe“ (Nr. 15 S. 490). Sie ist
natürlich das Homologon dessen, was ich oben Bildungsgewebe
genannt habe. Ich habe diesen Ausdruck für passend gehalten
und von Götte übernommen, weil in der That aus diesem Gewebe
noch sehr Verschiedenartiges gebildet wird, während die übrigen
Gewebe schon ihren bestimmten histologischen Character haben;
andererseits könnte die Bezeichnungsweise Köllikers zu Ver-
wechslungen Veranlassung geben.

Die intermediäre Zellenmasse, welche bei einigen oder viel-
leicht bei allen Knochenfischen vorkommt, ist eine Eigenthümlich-
keit derselben, für die nach den Darstellungen der Autoren kein
Homologon bei einer anderen Abtheilung der Wirbelthiere zu fin-
den ist; sie kann als ein Gefäss aufgefasst werden, welches als
eine solide Zellmasse angelegt wird, deren periphere Zellen die
Gefässwand liefern, deren centrale als Blutkörperchen wegge-
schwemmt werden; ein solcher Vorgang ist ja von den Dotterge-
fässen des Hühnchens längst bekannt.

Ich glaube, dass man die intermediäre Zellmasse vom Bil-
dungsgewebe nicht trennen darf, denn, wenn das Gefäss ohne In-
halt angelegt würde, so müsste es, ebenso wie die Aorta als ein
Gebilde des Bildungsgewebes erscheinen. Die Einlagerung der
Zellen zog die massige, compacte und scheinbar selbständige An-
lage des Organs nach sich, ist aber ohne prinzipielle Bedeutung.
Ich bin auch keineswegs sicher, ob nicht jedes Ursegment an einer
bestimmten Stelle mit der intermediären Zellmasse von Anfang an
in continuirlichem Zusammenhang steht.

Wir wollen jetzt das weitere Schicksal der intermediären
Zellmasse verfolgen.

Das Darmblatt hat sich, während es sich von der Chorda
entfernte, medianwärts zusammengezogen und zu einem vollstän-
digen Rohr geschlossen; dieser Vorgang erfolgt im Rumpf von
vorn nach hinten (vergl. Fig. 43 und 44), verzögert sich aber in
der Lebergegend; wo er sich vollzogen hat, da liegt die untere
Die Entstehung des Blutes bei Knochenfischembryonen.

Seitenplatte durchweg dem Dotter direct auf; der mittlere Theil der Seitenplatten, der an das Darmrohr und die intermediäre Zellenmasse grenzt, steht mehr oder weniger aufrecht und wird als Mittelplatte bezeichnet. Die intermediäre Zellenmasse fängt nun an, zwischen Mittelplatte und Darm abwärts vorzudringen, bis sie auf den Dotter aufstösst (17. Tag, der Vorgang kann im vorderen Rumpftheil schon etwas früher beginnen s. Fig. 43 vom 16. Tage); dies geschieht an Stellen des Bauchtheils, für deren Lage ich keine Gesetzmässigkeit gefunden habe. Am folgenden Tage hat sich eine Zellenmasse unter die unteren Seitenplatte geschoben, welche eine schmale zwischen Darm und Mittelplatte hindurchgehende Verbindung mit der intermediären Zellmasse besitzt. So treten an mehreren Stellen des Bauchtheils sowohl rechts als links Zellmassen auf den Dotter über; diese Zellmassen rücken unter der unteren Seitenplatte lateralwärts vor; sie können auch unter dem Darm hindurch von einer Seite des Embryo zur andern gehen (18. und 19. Tag, Fig. 46 und 47).

Indem sich dann (am folgenden Tag) der Darm vom Dotter abhebt, treten die Seitenplatten unter dem Darm medianwärts zusammen und bilden unter demselben eine Art von ventralem Mesenterium, welches den Darm mit dem Dotter verbindet. Auch drängt sich der obere Theil der Mittelplatten zwischen Darm und intermediäre Zellenmasse hinein und indem sich die von beiden vordringenden Seitenplatten medianwärts nähern, entsteht ein allerdings nur sehr kurzes dorsales Mesenterium (Fig. 20 vom 20. Tag). Es ist aus dem Gesagten leicht ersichtlich, dass die Zellen der intermediären Zellenmasse, welche auf den Dotter übertreten, jetzt einen viel complicirteren Weg machen; sie müssen nämlich erst durch das obere Mesenterium wandern, dann um den Darm herum sich bewegen, um durch das untere Mesenterium auf den Dotter zu gelangen. Es sind daher zu dieser Zeit nur noch wenige Zellen, welche diesen Weg machen, und es ist in Anbetracht des unbedeutenden Nachflusses leicht erklärlich, dass die Zellenmassen, welche im vorigen Stadium am Embryo und unter demselben lagen, in Folge des nach den Seiten erfolgenden Abflusses in der Nähe des Embryo verschwinden; in diesem Stadium sind am Embryo nur einige kleine lateralwärts verlaufende Stränge von Blutkörperchen zu sehen.

Am 21. Tage finden wir keine Zellmassen mehr am Rande
Dr. H. Ernst Ziegler:

des Embryo auf dem Dotter gelagert; dagegen findet man jetzt viele Blutkörperchen in der (dem lateralen Rand der Seitenplatten benachbart liegenden) Randvene und hauptsächlich im Sinus venosus. Während letzterer bis zu diesem Tage nur einige vereinzelte Zellen enthielt, ist er jetzt mit einer voluminösen Masse von Blutkörperchen erfüllt; übrigens entsteht diese Zusammendrängung des Blutes im Sinus venosus vielleicht erst beim Absterben des Embryo, aber die Beobachtung beweist doch, dass sich von diesem Momente an Massen von Blutkörperchen im Blute befinden. Diese sind also aus der intermediären Zellmasse auf den Dottersack ausgetreten und hier in die Circulation gelangt. Dieses Resultat wird noch durch folgende Beobachtungen bestätigt. Kerntheilungsfiguren sind in der intermediären Zellmasse während der ganzen Zeit, auf welche sich die bisherige Darstellung bezieht, eine häufige Erscheinung. Von dem Moment an, wenn die Zellen anfangen auf den Dotter überzutreten, wird der Querschnitt der intermediären Zellenmassen schmäler (vergl. Fig. 43 und Fig. 47) und nimmt während dieses Vorgangs ganz beträchtlich in Höhe und Breite ab.

Es wurde schon oben gesagt, dass die intermediäre Zellmasse ein Gefäss ist, welches wie die Gefässe auf dem Dotter des Hühnchens solid angelegt wird. Während diese Dentung für diejenigen Knochenfische, bei welchen keine Zellen aus der intermediären Zellmasse auf den Dotter übertreten, keine weitere Schwierigkeit bietet, entsteht beim Lachs die Frage, ob man die auf den Dotter austretenden Zellstreifen als Sprossen dieses Gefäßes betrachten darf. Ich möchte mich für diese Auffassung entscheiden; denn diese Zellstreifen zeigen schon sehr bald (von Anfang an?) an ihrer Grenze flache Zellen, die wahrscheinlich eine continuirliche Gefässwand bilden (Fig. 46); ferner gehen zu der Zeit, wenn die Stammvene bereits den Blutstrom führt, einige kleine Gefässe von der Stammvene nach dem Dotter (Fig. 20), die vermutlich an den Stellen liegen, wo die Zellenmassen auf den Dotter übergetreten sind, so dass die soliden Gefäßsprossen in wirkliche Gefässe übergehen würden; diese kleinen Gefässe gehen bald zu Grunde. Aber in Anbetracht, dass es auf Schnitten kaum zu entscheiden ist, ob die auf den Dotter übertretenden Zellmassen durch eine continuirliche Gefässwand oder durch einzelne abgeflachte Wanderzellen begrenzt sind, will ich die Möglichkeit offen lassen, den
Die Entstehung des Blutes bei Knochenfischembryonen.

Vorgang im Sinne einer plötzlichen massenhaften Auswanderung von Wanderzellen zu deuten.

Nachdem die intermediäre Zellmasse, wie dies oben beschrieben wurde, grosse Massen von Blutkörperchen nach dem Dotter hin abgegeben hat, stellt sie ein mit lockeren Zellen erfülltes flaches Rohr dar, welches mit dem Gefässsystem in Ver-
binding tritt und zur Stammvene (median vereinigte Cardinalvenen) wird (vergl. S. 625), diese theilt sich nach vorn in die beiden Cardinalvenen, welche im Bildungsgewebe entstehen. Die im Innern der Stammvene gelegenen Zellen werden als Blutkörperchen weggeschwemmt.

Fig. 15, welche einem Embryo vom 42. Tage zugehört, zeigt die Aorta, welche jetzt auf den Schnitten ein weiteres Lumen zeigt als früher (vergl. Fig. 20), und unter derselben die Stammvene. Man sieht auch auf diesem Schnitt, dass das Bildungsgewebe zu dieser Zeit gewissermaassen in Wucherung begriffen ist und insbesondere reichlich Wanderzellen zwischen Urnierengang und Muskeln heraustreten. Fig. 14 ist ein etwas weiter hinten liegender Schnitt desselben Embryo und hat eine der kleinen Analarterien getroffen, welche von der Aorta zum Darm gehen; daher erscheint hier die Stammvene zweiteilig, wird aber vor und hinter dieser Stelle wieder median und einheitlich getroffen.

Das Bildungsgewebe, welches die Stammvene umgibt, erzeugt im Laufe der nächsten Wochen die Urniere. Ich habe diese Vorgänge nicht mehr verfolgt, gebe aber in Fig. 29 von einem 27 mm langen jungen Lachse die Abbildung eines Querschnitts, welcher den Rumpf des Embryo da traf, wo die Rückenflossen beginnt. Man sieht die Stammvene, die Urnierengänge, die Urniereanälichen und das lymphoide Gewebe, in welches alle diese Organe eingebettet sind; in letzterem findet man auch kleine Gefässe, nämlich die Intervertebralvenen, welche in die Stammvene einmünden.

Ich kann nicht umhin hier eine Hypothese auszusprechen, welche alle die Stammvene betreffenden Vorgänge von einem einheitlichen Gesichtspunkt aus zu beleuchten im Stande wäre, deren empirische Verfolgung ich aber zur Zeit nicht unternehmen kann. Es ist wahrscheinlich, dass das lymphoide Gewebe der Urniere im ausgebildeten Tier eine Bildungsstätte von (weissen und rothen?) Blutkörperchen ist; es ist ferner wohl möglich — ich habe darüber noch nicht zu sicherer Entscheidung kommen können — dass, ehe ein wirkliches lymphoides Gewebe ausgebildet ist, das an dieser Stelle gelegene Bildungsgewebe, aus welchem das

1) Dieses entstammt dem Bildungsgewebe; ich kann Emery (Nr. 11) nicht beistimmen, wenn er dasselbe (blastème cellulaire du rein) vom Pleuroperitonealepithel ableitet.
Die Entstehung des Blutes bei Knochenfischembryonen.

lymphoide Gewebe hervorgeht, Blutkörperchen nach der Stammvene abgibt; und da die Stammvene selbst den ersten Blutkörperchen den Ursprung gibt, so würde daraus resultieren, dass die Blutkörperchen im Embryo an einem Orte entstehen, der zeitlebens diese Function beibehält. Es kann gegen diese Auffassung die scheinbar selbständige Anlage der Stammvene (intermediäre Zellenmasse) keinen Einwand bilden, da, wie ich oben schon sagte (S. 646), die intermediäre Zellenmasse zu keiner Zeit von dem Bildungsgewebe streng zu trennen ist.

Ich gehe dazu über, die Herkunft der Blutkörperchen bei anderen Knochenfischembryonen zu besprechen. Beim Hecht, wo die Untersuchung auf Schnitten schwieriger ist als beim Lachs, habe ich Folgendes beobachtet:

Vor dem Auftreten der Blutkörperchen circulirt eine Blutflüssigkeit, welche keine Blutkörperchen enthält; doch findet man zu dieser Zeit schon reichliche Wanderzellen auf dem Dotter (der Ursprung dieser Zellen ist p. 637 besprochen).

Untersucht man die Embryonen aus der Zeit, wenn viele Blutkörperchen circuliren, so trifft man ganz dieselben Bilder wie beim Lachs. Man sieht im Querschnitt des Rumpfes die Aorta und unter derselben die Stammvene (dies zeigen auch die Abbildungen bei Rosenthal Nr. 47, Fig. IV u. V). Die Blutkörperchen entstammen beim Hecht wie beim Lachs den intermediären Zellmassen; während letztere aber beim Lachs nur die Stammvene (median vereinigte Cardinalvenen) und die in derselben anfänglich angehäuften Blutkörperchen erzeugen, geben sie beim Hecht nicht allein der Stammvene und den derselben eingelagerten Blutkörperchen den Ursprung, sondern auch einer Masse von Blutkörperchen, welche der Aorta eingelagert erscheint. Da letzteres nur im vorderen Rumpftheile geschieht, erhält man im hinteren Rumpftheile ganz ähnliche Bilder wie beim Lachs; Fig. 24 zeigt die intermediären Zellmassen noch seitlich gelagert und median getrennt durch das Entoderm (vergl. Fig. 34 u. 44); in Fig. 26 ist die Lage derselben noch die gleiche; aber es hat sich bereits unter der Chorda die Aorta gebildet, welche ein weites Lumen zeigt. Ein noch etwas älteres Stadium zeigt Fig. 28, in welcher das Entoderm schon ein Rohr bildet und die intermediären Zellmassen einander median ganz nahe kommen; geht man von dem abgebildeten Schnitt aus um
Dr. H. Ernst Ziegler:

eine Anzahl Schnitte nach vorn, so trifft man die intermediären Zellmassen median vereinigt (Stammvene), abermals einige Schnitte weiter vorn sind die Zellen der intermediären Zellmasse schon deutlich durch Serum gelockert und noch etwas weiter vorn ist die Stammvene ein offenes Gefäss, in dem nur vereinzelte Blutkörperchen sich befinden. In diesem zuletzt besprochenen Stadium ist die Aorta schon durchweg ein offenes Gefäss (Fig. 27 und Fig. 28) und es sind zahlreiche Blutkörperchen in Circulation. Bei jüngeren Stadien bemerkt man in dem Theil der Aorta, welcher hinter der Kopfniere gelegen ist, eine massige Anhäufung von Blutkörperchen (Fig. 23 und 25). Man muss annehmen, dass diese Blutkörperchen aus den intermediären Zellmassen in die Aorta übertreten und dass dies zuerst hinter der Kopfniere und später durch einen grossen Theil des Rumpfes geschieht. Es ist stellenweise unmöglich, die Zellen der intermediären Zellmasse von den in der Aorta befindlichen Zellen abzugrenzen; die Lamelle von Bildungsgewebe, welche sie trennen sollte, scheint an diesen Stellen durchbrochen zu sein. Im vordersten Bauchtheil geht die intermediäre Zellmasse schon in frühen Stadien stellenweise so ohne jede Abgrenzung in die Aorta über, dass ich annehmen muss, die Wand der Aorta sei nicht von Anfang an continuirlich. In Fig. 17, welche einen Schnitt darstellt, der um wenige Schnitte vor Fig. 18 liegt, sieht man rechts die Zellen der intermediären Zellmasse unter die Chorda vordringen, und es ist hier nicht möglich, eine Grenze der Aortenanlage zu ziehen, während links eine solche angedeutet ist. In diesem Stadium ist die Aorta als deutlich begrenztes Rohr mit flachem Lumen (Fig. 18) im vorderen Rumpftheil von vorn und von hinten her weiter zu verfolgen als in einem etwas späteren Stadium. Die Ansammlung von Zellen in der Aorta nimmt während der nächsten Zeit zu, und scheint hinter der Kopfniere die gesamte Masse der intermediären Zellmassen in die Anlage der Aorta anzugehen (Fig. 22), während weiter hinten die intermediären Zellmassen als solche erhalten bleiben (Fig. 23 und 25) und nur stellenweise mit den Zellen in der Aorta in Verbindung stehen, also, wie ich glaube, Zellen dahin abgeben. Da zu dieser Zeit schon eine Circulation von Serum existirt, muss angenommen werden, dass das Serum zwischen den in der Aorta angehäuften Zellen hindurch seinen Weg findet, bis die Ablösung der Blutkörperchen beginnt.
Die Entstehung des Blutes bei Knochenfischenbryonen. 653

Was nun die theoretische Deutung des merkwürdigen Vorgangs beim Hecht betrifft, so glaube ich dieselbe in folgender Weise geben zu müssen. Zwischen den ersten Blutkörperchen und Wanderzellen ist prinzipiell kein Unterschied zu machen; würde es sich nicht um solche Massen von Zellen, sondern nur um einzelne handeln, so würde man nicht viel Auffallendes darin finden, dass Wanderzellen durch die Wand der Aorta hindurchdringen und als Blutkörperchen weggeschwemmt werden. Ich habe oben erwähnt (p. 648), dass es möglich ist die Vorgänge beim Lachs in analoger Weise zu deuten, dass nämlich Wanderzellen zwischen dem Entoderm und den Seitenplatten hindurchkriechen und auf dem Dottersack in die Circulation gerathen. Es wäre dann in beiden Fällen nur die Masse der Zellen, welche das Auffallende der Erscheinungen bedingte.

Unmittelbar hinter der Kopfniere scheint die Aorta von Anfang an von der intermediären Zellmasse nicht getrennt zu sein; und da, wie es scheint, die ganze oder fast die ganze Zellmasse der Aorta entspricht, so kann man für diese Stelle sagen, dass eine aus der medianen Vereinigung der intermediären Zellmassen entstandene Zellmasse die Aorta anlegt. Diese Befunde beim Hecht zeigen eben, insbesondere wenn man die Verschiedenheit gegen den Lachs in Betracht zieht, dass die Elemente, welche die Stammmasse anlegen von denen, welche die Aorta anlegen, nicht prinzipiell verschieden sind, so dass die solide Anlage, d. h. die Einlagerung von Blutzellen, hier wie dort stattfinden und dass sogar aus derselben Zellmasse die Stammvene und ein Theil der Aorta entstehen können.

Was die übrigen Teleostier betrifft, so liegt zunächst über Belone die Beobachtung von Wenckebach (Nr. 52 p. 247) vor, dass die Blutkörperchen auch hier in der Stammvene ihren Ursprung haben. Die intermediäre Zellmasse entsteht nach Wenckebach „aus Zellen, welche von den mesoblastischen Somiten her zwischen Chorda und Darmrohr hineinwachsen und sich dort vermehren“; wenn dies sich so verhält, so kann ich darin keinen wesentlichen Unterschied gegen die Verhältnisse beim Lachs finden; die intermediäre Zellmasse würde dann wie ein Theil des Bildungsgewebes angelegt werden und ich habe früher schon betont, dass zwischen Bildungsgewebe und intermediärer Zellmasse kein prinzipieller Unterschied besteht. Beim Barsch entstehen, wie
Dr. H. Ernst Ziegler:

Wenckebach (N. 51) zuerst nachgewiesen hat, die ersten Blutkörperchen in der Stammvene. Ich habe schon oben bei Besprechung der embryonalen Circulation des Barsches (p. 626) gesagt, dass das Blut anfänglich nicht durch die Stammvene passiren kann, weil diese ganz mit Blutkörperchen angefüllt ist und dass allmählich die letzteren weggescwemmt werden und dadurch die Stammvene in ein offenes Gefäss sich verwandelt. Es lösen sich keineswegs alle Blutkörperchen als bald ab, sondern man sieht noch lange Zeit Zellen an der Wand der Stammvene anhängen. Wenckebach hat Querschnitte der mit Blutkörperchen erfüllten Stammvene abgebildet und die Ablösung derselben geschildert. Bei E. E. Prince (N. 44) findet sich folgende auf Alosa, Salmo und Gasterosteus bezügliche, allzu kurz abgefasste, aber doch bemerkenswerte Angabe: „Sections of early embryos, in which the subnotochordal trunks are developed show an abundance of nucleated cells“ „filling up the lumen of each vessel. Those wich crowd the vena vertebralis are strongly held by one observer (K. F. Wenckebach) to be the original form-elements of the blood. Precisely similar cells, rounded colourless and nucleated, completely fill up the lumen of the aortic trunk“. Dies ist in der ganzen Litteratur die einzige Stelle, wo eine Entstehung von Blutkörperchen in der Aorta, wie ich sie beim Hecht gesehen habe, erwähnt wird.

Uebrigens scheint bei manchen Teleostiern, bei welchen die Blutkörperchen erst spät auftreten, weder die Stammvene noch die Aorta die Ursprungsstätte der ersten Blutkörperchen zu sein. Bei einem Embryo von Engraulis encrasicholus, der schon 5 mm lang war, sah Wenckebach (Nr. 53 p. 9) weder Blutkörperchen noch eine intermediäre Zellmasse. Auch bei Labräx treten, wie ich in Neapel am lebenden Thier constatirte, die Blutkörperchen spät auf und habe ich damals eine intermediäre Zellmasse nicht beobachtet. Die Frage, wo in solchen Fällen die ersten Blutkörperchen entstehen, hängt eng mit der anderen zusammen, wo bei anderen Teleostiern, z. B. Hecht, Barsch oder Lachs die Blutkörperchen in den späteren Entwicklungsperioden und im ausgebildeten Stadium ihren Ursprung haben; hierüber sind sorgfältige Untersuchungen Bedürfniss.

Es erübrigt mir, einen kritischen Blick zu werfen auf die übrigen Angaben der Autoren, die sich auf die Entstehung der
ersten Blutkörperchen bei Knochenfischembryonen beziehen. Ich
brauche mich nicht aufzuhalten bei den älteren Autoren, welche
aus wenig stichhaltigen Gründen die Ansicht gewannen, dass die
Blutkörperchen auf dem Dottersack entstehen (Vogt Nr. 49, Au-
bert Nr. 3). Veranlassung zu dem Irrthum gaben bald die auf
dem Dotter beobachteten Wanderzellen, von welchen wohl einmal
eine weggescbwemmt werden kann, bald Blutkörperchen, die vom
Blutstrom herbeigeführt, einige Zeit auf dem Dottersacke lagen
und sich dann von da ablösten. Ich will nur auf die Ansichten von
K u p f f e r (N r. 36, 36a und 37) und von G e n s c h (N r. 12)
genauer eingehen. Zunächst bedarf das „secundäre Entoderm“
K u p f f e r's einer kleinen Erörterung: K u p f f e r sah bei Gastero-
stens am Rande des Keimes die Periblastzellen und bildete sich
die Ansicht, dass aus denselben das secundäre Entoderm entstehe,
nämlich erstens eine über den ganzen Dotter ausgebreitete Schichte
zerstreut liegender Zellen und zweitens das Entoderm (Darmepithe).
Ich habe schon im ersten Abschnitt dargelegt, dass das Entoderm
mit dem Mesoderm aus dem Umschlag des Blastodermrandes re-
sultirt und nicht vom Periblast aus entsteht; auch habe ich dort
schon angegeben, dass höchst wahrscheinlich bei keinem Knochen-
fisch zur Zeit der Umwachsung Zellen im Dotter sich finden,
sondern dass hier Kerne, die Kerne des Periblast vorhanden sind.
Es scheint mir daher der von K u p f f e r eingeführte Begriff des secun-
dären Entoderms auf irrthümliche Ansichten gegründet zu sein 1).
K u p f f e r ist der Ansicht, dass die Blutkörperchen auf dem Dottersack
entstehen. G e n s c h, welcher unter K u p f f e r's Leitung gearbeitet hat,
gibt eine genauere Darstellung des Ursprungs der Blutkörperchen
beim Hecht und bei Zoarces viripar us. Er fand an der Oberfläche
des Dotters die Zellen des secundären Entoderms; es sind dies die
Kerne des Periblasts; sie zeigen die oben (p. 610) besprochenen
eigenthümlichen Gestalten. G e n s c h bildet ganz richtig einen
Schnitt ab (l. e. Fig. 7), welcher die Oberfläche der Dotterkugel

1) Nur aus diesem Grunde kann ich mit demselben nicht einverstanden
sein; es ist natürlich nichts dagegen einzuwenden, dass man das Entoderm
und den Periblast der Teleostier unter einem Namen zusammenfasst, da sie
zusammen dem Entoderm der Amphibien oder des Amphioxus entsprechen;
man könnte dafür den Ausdruck Entoderm beibehalten und bei Meroblastiern
für das Entoderm im engeren Sinne, d. h. für das epitheliale Blatt, welches
den Darm anlegt, den von G ö t t e eingeführten Ausdruck Enteroderm verwenden.

Archiv f. mikrosk. Anatomie. Bd. 30. 43
mit solchen Kernen, darüber Blutkörperchen und oben das Ectoderm zeigt. Aber allen Darlegungen, welche Gensch an die übrigen Abbildungen anknüpft, kann ich keine Beweiskraft einräumen; solche Bilder wurden dadurch gewonnen, dass Stücke der Dotterrinde mit den darüber liegenden Geweben von der Fläche betrachtet wurden; aus diesen Bildern wird abgeleitet, dass die „Zellen des secundären Entoderm“ durch ungleichmässige Theilung (Sprossung) Blutkörperchen erzeugen; da ich auf Querschnitten niemals Bilder gefunden habe, welche im Sinne der in Rede stehenden Ansicht gedeutet werden konnten, glaube ich nicht, dass beim Hecht auf dem Dottersack Blutkörperchen entstehen und bezweifle dies auch hinsichtlich Zoarees viviparus. Ich erkläre mir die Bilder von Gensch in der Weise, dass er die Periblastkerne sah, welche in direeter, häufig ungleichmässiger Theilung begriffen waren und dass er irrhümlicher Weise die kleineren Periblastkerne mit den darüberliegenden Blutkörperchen in Beziehung setzte.

Schliesslich will ich noch erwähnen, dass auch Götte die Ansicht vertrat, dass bei der Forelle die im Dotter gefundenen Kerne Protoplasma um sich sammelten und zu Blutzellen würden (Nr. 14 p. 196 und Nr. 15 p. 539).

Schliesslich möchte ich kurz angeben, welche Ansicht über die vielfach discutirte Classification der Gewebe der Wirbelthiere aus den vorliegenden Untersuchungen an Knochenfischen sich ergibt. Wie es von histologischen, wie auch von embryologischen Gesichtspunkten aus in ähnlicher Weise schon öfters geschehen ist, kann man das Mesoderm der Wirbelthiere eintheilen in Seiten-
platten (Pleuroperitonealepithel, Genitalepithel), Muskelpflatten (segmentierte Muskulatur und deren Derivate) und Bildungsgewebe; das letztere liefert die Gefässe, die Blutkörperchen, die lymphoiden Organe, das Bindegewebe, den Knochen, den Knorpel, die glatte Muskulatur und vielleicht auch einen Theil der quergestreiften Muskulatur. Das Bildungsgewebe ist im Hertwig'schen Sinne das Mesenchym. Die einzelnen Zellen desselben zeigen im Vergleich zu epithelialen Zellen früher oder später eine gewisse Selbständigkeit; sie hängen nur durch feine Ausläufer zusammen (primitives Bindegewebe, Wanderzellen) oder sind ganz isolirt (Blutkörperchen). Was die Herkunft des Bildungsgewebes betrifft, entsteht dasselbe am Vorderende der Mesodermstreifen (undifferenziertes Mesoderm des Kopfes), theils bleibt es bei der Differentiation der Mesodermstreifen als undifferenzierte Zellmasse zwischen Seitenplatten und Ursegmenten zurück (intermediäre Zellmasse), theils entstammt es den Ursegmenten (hervorwachsend aus denselben oder übrigbleibend, wenn die Muskelplatten sich differenziren), theils (zum kleinsten Theil) entwickelt es sich von den Seitenplatten aus; immer aber ist es (bei Knochenfischen) mesodermaler Natur und der Dotter ist in keiner Weise an seiner Entstehung betheiligt.

Freiburg i. B., Juni 1887.

Verzeichniss der durch Nummern citirten Litteratur.

5) K. E. von Baer, Entwicklungsgeschichte der Thiere. II. Theil. Königsberg 1837.

22) W. His, Untersuchungen über die Entwicklung von Knochenfischen. Zeitschrift für Anatomie und Entwicklungsgeschichte I. Bd. 1876.

25 a) C. K. Hoffmann, Zur Ontogenie der Knochenfische. Amsterdam 1883 (Verhandelingen d. K. Akademie der Wetenscht.).
Die Entstehung des Blutes bei Knochenfischembryonen.

Dr. H. Ernst Ziegler:

44 a) Rathke, Abhandlungen zur Bildungs- und Entwicklungsgesch. d. Menschen und der Thiere. 2. Th. 1832 u. 1833.

Folgende Arbeiten, welche sich auf das Thema beziehen, sind mir nicht zugänglich gewesen:
Die Entstehung des Blutes bei Knochenfischembryonen.

661

Erklärung der Abbildungen auf Tafel XXXVI—XXXVIII.

Durchgehende Bezeichnungen:

A Anus.
aar Analarterie.
Ab Augenblase.
am Arteria mesenterica.
ao Aorta.
ao₁, ao₂ erster und zweiter Aortenbogen.
abo Aortenbogen.
atr Vorkammer des Herzens.
Bf Brustflosse oder Anlage derselben.
bg Bildungsgewebe (Mesenchym).
blk Blutkörperchen.
cdv Caudalvene.
ch Chorda.
cv Cardinalvene.
D Darmcanal.
dfl dorsaler Flossensaum.
Do Dotter.
E Ectoderm.
En Entoderm.
Fh Furchungshöhle.
gz Genitalzelle.
Ib Harnblase.
hb Endothel des Herzens.
hh Herzöhle.
hw Pericardialblatt, die äussere Wand des Herzens bildend.
hz Zellen der Herzanlage (Endothel und Wanderzellen).
jg Jugularvene.
z intermediäre Zellenmasse.
ksp₁ und ksp₂ erste und zweite primitive Kiemenspalte.
L Leber.
Lh Leibeshöhle.
m Mesoderm.
Mr Medullarrohr.
Mrw weisse Substanz des Rückenmarks.
Ob Ohrbläschen.
ok Oelkugel.
Pe Pericardialplatten.
Ph Pericardialhöhle.
pgz Pigmentzellen.
pk Periblastkern.
Rg Riechgrube.
rv Randvene.
Sb Anlage der Schwimmblase.
sch Subchordalstrang.
siv Subintestinalvene.
smp Somatopleur.
sp Seitenplatten.
ssp Splanchnopleur.
stv Stammmvene.
Ug Urnierengang.
Us Ursegment.
Usa äusserste Zellschicht des Ursegments.
Vn Vorniere.
ventr Ventrikel des Herzens.
wz Wanderzellen.

Tafel XXXVI.

Fig. 1. Embryo von Belone acus in dem Stadium, in welchem reichlich Wanderzellen am Körper des Embryo auftreten. Man sieht um den Kopf des Embryo zahlreiche Wanderzellen; am Rande des Embryo bemerkt man die Seitenplatten (Pc). Vergrösserung 56.

Fig. 2. Embryo von Perca fluviatilis aus der Zeit, wenn sich schon viele Blutkörperchen im Blute befinden. Vergr. 37.
Fig. 3. Theil eines etwa ebensowei entwickelten Embryo von *Perea fluviatilis*; man sieht die auf der linken Seite des Dottersacks entwickelten Gefässe. Die an der Vorniere abgehende Arterie ist die Arteria mesenterica.

Fig. 4. Schematische Construction des Kopfes eines Embryo von *Salmo salar* vom 15. Tage; Stadium zur Zeit des Schlusses des Blastoporus. Die rothe Linie bedeutet die laterale Grenze des Darmrohres (Kiemendarms). Unter der Chorda sieht man, soweit das Endoderm den Dotter berührt, einen rothen Streifen, davor das Lumen des Herzens (hh schwarz) und seitlich von letzterem die unter der unteren Pericardialplatte liegenden Zellen, den lateralen Theil der Herzanlage (hz punctirt); vergl. den Querschnitt Fig. 35.

Fig. 5. Hinterende eines Embryo von *Perea fluviatilis* aus dem Stadium, wenn die Blutflüssigkeit ohne Blutkörperchen circulirt. Die durch die Caudalvene (cdv) nach vorn strömende Flüssigkeit fließt rechts und links um den Enddarm herum nach der Subintestinalvene und dem Dotter.

Fig. 6. Die zur Leber gehenden Gefässe bei einem Embryo von *Salmo salar* einige Tage nach dem Ausschlüpfen, von rechts gesehen. Die Organe sind etwas auseinander gezogen im Vergleich zur natürlichen Lage.

Fig. 7. Schemata zur Furchung der Teleostier. Bei A₁, A₂, A₃ ist eine Furchungshöhle vorhanden und die Zellen (A₃) oder Kerne (A₃) des Periblasts stammen vom Rande des Keims. Bei B₁, B₂ ist keine Furchungshöhle vorhanden und die Kerne des Periblastes stammen von der ganzen unteren Fläche des Keims. Die punktierten Linien in A₁ und B₁ bedeuten die theoretisch in den Dotter zu denkenden Zellgrenzen. Kerne des Periblastes sind mit den Kernen des Blastodermis, von welchen sie abstammen, durch eine Linie verbunden (vergl. p. 603).

Fig. 8. Schemata zur Keimbälterbildung der Teleostier. A₁ Blastula eines Amphibiums (vergl. Götte Nr. 15, Taf. II, Fig. 28, Hertwig Nr. 21, Fig. 1). A₂ Gastrula eines Amphibiums (vergl. Götte Nr. 15, Taf. II, Fig. 31, Hertwig Nr. 21, Fig. 3). B₁ Blastula und B₂ Gastrula eines Teleostiers; die rothen Punkte bedeuten die Kerne der Dotterzellen oder die Kerne des Periblasts.

Fig. 9. Periblastkerne von *Salmo salar.* a vom 21. Tage, b, d, e vom 19. Tage, c vom 17. Tage; e ist auf dem folgenden Schnitt dieselbe Stelle wie d.

Fig. 10. Embryo von *Salmo salar*, 24. Tag. Man sieht die vom Embryo auf den Dotter ausstrahlenden Venen, die sich in der Randvene vereinigen.

Fig. 11. Analogend eines Embryo von *Salmo salar* aus dem Stadium, wenn die Stammvene schon Blut führt und von der Caudalvene noch
eine auf der linken Seite des Darmes herabsteigende Verbindung zur Subintestinalvene geht.

Fig. 12. Embryo von *Esox lucius* kurze Zeit nach Schluss des Blastoporus. Links bilden die Seitenplatten einen dunklen Saum an der Seite des Embryo. Die rechte Seite entspricht einem etwas älteren Stadium und erscheint hier der vordere Teil des Pericardium heller, weil sich schon Flüssigkeit zwischen Somatopleur und Splanchnopleur befindet.

Fig. 13. Embryo von *Esox lucius* etwas älter als der in Fig. 12 gezeichnete. Zwei Tage von dem Auftreten der Blutkörperchen. Wanderzellen sind unter dem Pericardium und auf dem Dotter reichlich zu sehen. Auf der linken Seite, die einem etwas älteren Stadium entspricht, sind sie schon weiterhin auf dem Dotter verbreitet.

Tafel XXXVII.

Fig. 14 und 15. Querschnitte eines Embryo von *Salmo salar* vom 42. Tag; Fig. 14 hinterer Rumpftheil, eine kurze Strecke vor dem Anus. Der Schnitt hat die Analarterie getroffen; daher erscheint die Stammvene zweiseitig. Der Schnitt Fig. 15 liegt ein wenig weiter vorn als Fig. 14. Vergr. bei Fig. 14 70, bei Fig. 15 100.

Fig. 16. Embryo von *Esox lucius*; von der Seite gesehen. Stadium, in welchem die Wanderzellen sich auf dem Dotter verbreiten, vergl. Fig. 13. Vergr. 37.

Fig. 17 und 18. Querschnitte eines Embryo von *Esox lucius*; Stadium ein wenig jünger als das in Fig. 16 abgebildete (zwischen Fig. 12 und Fig. 13); vordere Rumpfgegend. Fig. 18 liegt um einige Schnitte weiter hinten als Fig. 17.

Fig. 19. Herz eines Embryo von *Esox lucius* von der Seite gesehen. Stadium, in welchem schon Blutkörperehen circuliren (einen Tag älter als das Stadium der Fig. 16). Auf dem Dotter sind Blutkörperchen, Wanderzellen und Pigmentzellen zu sehen. a, b, c, d siehe p. 638.

Fig. 20. Querschnitt eines Embryo von *Salmo salar* vom 20. Tage aus der hinteren Hälfte des Rumpfes. Der Schnitt hat eines der kleinen Gefässe getroffen, welche in diesem Stadium von der Stammvene nach dem Dotter gehen. Vergr. 100.

Fig. 21 a, b. Wanderzellen auf dem Dotter von Belone acus in dem Stadium, in welchem die Wanderzellen sich auf dem Dotter verbreiten.

Fig. 22, 23 und 24. Querschnitte eines Embryo von *Esox lucius* kurz bevor die Blutkörperchen im Blute zu erscheinen beginnen (etwas älter als das Stadium der Fig. 17 und 18). Fig. 22 und 23 vorderer Rumpf, eine kurze Strecke hinter der Vorniere; Fig. 23 um einige Schnitte hinter Fig. 22. Fig. 24 hintere Rumpfgegend.

Fig. 25 und Fig. 26. Querschnitte eines wenig älteren Embryo von *Esox lucius*. Fig. 25 aus dem vorderen Rumpftheil. Vergr. 100. Fig. 26 aus dem hinteren Theil des Rumpfes. Vergr. 80.
Fig. 27 und Fig. 28. Querschnitte eines etwas älteren Embryo von *Esox lucius*, bei welchem das circulirende Blut schon viele Blutkörperchen enthält. Fig. 27 aus dem vorderen Rumpftheil, zu vergleichen mit Fig. 22; Fig. 28 aus dem hinteren Rumpftheil, zu vergleichen mit Fig. 26 des früheren Stadiums.

Fig. 29. Theil eines Querschnitts durch den Rumpf eines 27 mm langen Embryo von *Salmo salar*. Gegend des Beginns der Rückenflosse. Vergr. 56; ub untere Bögen. gl ein Glomerulus der Urniere. wk ein Urnierenkanälchen angeschnitten. Die Stammvenen, die Glomeruli und die Urnierenkanälchen sind eingelagert in das lymphoidge Web der Urniere. g Gefäss im lymphoiden Gewebe. gn Genitalfalte des Peritoneums. f Fettstreifen im Mesenterium.

Tafel XXXVIII.

Fig. 30—51 beziehen sich auf *Salmo salar.*

Die Embryonen, von welchen Querschnitte abgebildet sind, haben die Bezeichnungen A, B, C u. s. w. Die Schnitte desselben Embryo folgen von vorn nach hinten, wie aus den beigefügten Indices ersichtlich ist.

Fig. 30. Querschnitt eines Lachseembryro (A) vom 13. Tage. Herzgegend; Stelle der ersten primitiven Kiemenspalte. Vergr. 78.

Fig. 31, 32, 32a, 33 und 34. Querschnitte eines Lachseembryro (B) vom 14. Tage; Stadium, in welchem die Keimscheibe 3/4 der Dotterkugel umwachsen hat. Vergr. 78. Fig. 31—33 Herzgegend. Der Schnitt Fig. 33 trifft das Ohrbläsen. Der Schnitt Fig 32 liegt etwas weiter vorn und enthält das vordere Ende der Chorda; Fig. 32a gehört dem nächstfolgenden Schnitt (nach vorn) an; wieder um einige Schnitte nach vorn gehend erhält man das Bild Fig. 31. Fig. 31 Schnitt aus dem Rumpftheil.

Fig. 35 und 36. Querschnitte eines Lachseembryro (C) vom 15. Tage; Stadium zur Zeit des Schlusses des Blastoporus. Herzgegend. Die Lage des Schnittes Fig. 35 ist in das Schema Fig. 4 eingezeichnet. Vergr. 78. Der Schnitt Fig. 36 liegt ein wenig weiter vorn als Fig. 35.

Fig. 37—45. Querschnitte eines Lachseembryro (D) vom 16. Tage; Stadium kurz nach Schluss des Blastoporus, abgebildet in Fig. 51; die Lage der Schnitte ist in Fig. 51 eingezeichnet. Vergr. 78. Fig. 37 wenige Schnitte vor dem vorderen Ende des Herzens, Gegend der ersten primitiven Kiemenspalte. Fig. 38 etwas weiter hinten, 3 Schnitte vor Fig. 39. Fig. 39 unmittelbar vor dem Ohrbläsen. Fig. 40 wenige Schnitte hinter dem Ohrbläschen. Gegend der dritten primitiven Kiemenspalte. Fig. 41 hinter der Kiemenhöhle, Gegend der vorderen Extremität, die rechte Seite der Fig. etwas weiter vorn als die linke. Fig. 42 einige Schnitte weiter hinten; kurze Strecke vor der Leber und der Vorniere. Fig. 43 aus der Mitte des Rumpfes.
Die Entstehung des Blutes bei Knochenfischembryonen.

Fig. 44 aus dem hinteren Theil des Rumpfes. Fig. 45 aus dem Schwanztheil.

Fig. 46 und Fig. 47. Querschnitte eines Lachsembryo (E) vom 19. Tage. Stadium, in welchem die Zellen der intermediären Zellmasse auf den Dotter übertreten. Die beiden Schnitte liegen nahe beisammen im Rumpfe. Vergr. bei Fig. 47 78; Fig. 46 ist stärker vergrössert.

Fig. 48, 49 und 50. Querschnitte eines Lachsembryo vom 15. Tage; Stadium zur Zeit des Schlusses des Blastoporus; Rumpfgegend; diese Fig. sollen das Verhältniss des Bildungsgewebes zu den Ursegmenten zeigen. Fig. 48 ist der vorderste Schnitt; Fig. 49 liegt um zwei Schnitte weiter hinten; von dem Ursegment Us(n), welches Fig. 48 zeigte, ist nur noch der nach unten hin gehende Theil zu sehen, während das folgende Ursegment Us(n+1) aufgetreten ist; in Fig. 50, welche den zweiten Schnitt nach hinten von Fig. 49 darstellt, erscheint das letztere grösser und von dem vorhergehenden Ursegment ist nur der hinterste unterste Theil zu sehen; dieser geht medianwärts continuirlich in das Bildungsgewebe über. Würde man noch um zwei oder drei Schnitte nach hinten gehen, so würde man wieder ein Bild wie Fig. 48 finden.

Fig. 51. Lachsembryo (D) vom 16. Tage. Stadium kurz nach Schluss des Blastoporus. Vergr. 14. Die Lage der Schnitte Fig. 37—45 ist eingezeichnet.

Fig. 52 a, b, c. Wanderzellen, auf dem Dottersack von Belone acus beobachtet; a und b enthalten feinkörniges gelbes Pigment, vergl. Fig. 21.
Einfacher Apparat zur Erwärmung und Abkühlung von Objecten unter dem Mikroskop.

Von

Dr. **H. Dewitz** in Berlin.

Gelegentlich einer mikroskopischen Untersuchung brauchte ich eine Vorrichtung zum Erwärmen und Abkühlen des Objects. Da die gebräuchlichen Apparate zu theuer waren, so liess ich den im Folgenden beschriebenen einfachen Apparat anfertigen, welcher nur zwei Mark kostet und in vielen Fällen vollkommen ausreicht.

Man denke sich an einer kreisrunden Schachtel aus Messingblech von etwa 0,08 m Durchmesser und 0,03 m Höhe den halben Deckel um 0,023 m herabgesetzt und die hierdurch entstehende 0,08 m lange und 0,023 m hohe Öffnung durch ein aufgelöthetes Blechstück (b) verschlossen. Die Schachtel besteht jetzt aus zwei mit einander communirenden Hälften, einer niedrigen (c) und einer höheren (d). Alles ist wasserdicht verlöthet.

In Decke und Boden der flacheren Hälfte sind zwei übereinanderstehende kreisrunde Öffnungen (e die in der Decke) angebracht, auf welche von aussen her je ein die Öffnung an Grösse überragendes Deckglas mit Siegellack oder irgend einem schnell erhärtenden Kitt aufgeklebt wird. Damit das untere Deckglas sich nicht am Tische des Mikroskopes reibt, lässt man unter den Boden des Apparats eine mit einem runden Loch versehene Blech scheibe von 0,08 m Durchmesser auflothen, sodass das untere Deckglas hohl liegt und auch beim Verschieben des Apparats auf dem Tisch des Mikroskops nicht beschädigt wird. In der Decke der höheren Hälfte ist ein grösseres Loch (g) geschlagen zum Eingießen des Wassers und Einbringen von Eisstückehen und ein kleines (k) zum Einführen eines Thermometers.

Endlich ist dicht über dem Boden an der höheren Abtheilung das eine Ende eines Messingrohres (h) von der Dicke eines Gänse-
Einfacher Apparat zur Erwärmung und Abkühlung von Objecten etc. 667

kiels eingelötet. Das frei abstehende Ende (i) desselben ist empor und dann mit der Spitze nach unten gebogen, wodurch das Ausfließen des in den Apparat gegossenen Wassers verhindert wird.

Vor dem Gebrauch wird derselbe durch die grosse Öffnung (g) zur Hälfte mit Wasser angefüllt und so gebogen, dass etwaige sich unter dem oberen aufgekitteten Deckglas befindenden Luftblasen in die höhere Abtheilung entweichen. Auf das Deckglas bringen wir einen Tropfen schwacher Kochsalzlösung oder derjenigen Flüssigkeit, welche das Object aufzunehmen bestimmt ist, legen letzteres hinein, bedecken mit einem Deckglase, welches durch Deckglasstückchen gestützt wird, klemmen den Apparat auf dem Mikroskop so fest, dass wir das Object im Gesichtsfeld haben

Will man sehen, wie Abkühlung auf ein Object wirkt, so füllt man den Apparat zu einem Drittel mit Wasser von Stubenwärme oder einer höheren Temperatur, legt das Object auf, klemmt den Apparat auf den Tisch des Mikroskopes fest und wirft durch die grosse Öffnung (g) Eisstückchen hinein. Es gelingt die Temperatur bis auf +2 R. herunterzubringen.
Sollte durch das schmelzende Eis das Wasser im Apparat zu hoch steigen, so giesst man es, das Mikroskop biegend, durch das Rohr ab, ohne den Apparat vom Mikroskop zu nehmen und das Object aus dem Gesichtsfeld zu verlieren. Ist es nöthig, das Object nach der Abkühlung zu erwärmen, so nimmt man mit einer Pinzette die grösseren Eisstückehen heraus und erwärmt durch eine unter das Rohr gesetzte Spirituslampe. So kann man ein und dieselbe Zelle bei den verschiedensten Temperaturen beobachten.

Da die zwischen den beiden aufgekitteten Deckgläsen befindliche Wasserschicht verhältnissmässig dünn ist, so wird die Lichtstärke auch nur sehr wenig vermindert.

Verbesserungen.

Seite 338 Zeile 17 v. u. lies: MZ₁ statt StZ₁₁.

" 339 " 10 v. o. lies: MZ₁ statt MZ.

" 344 " 20 v. o. lies: achroma statt chroma.

" 344 " 22 v. o. lies: Achromatin statt Chromatin.

" 347 " 4 v. o. lies nach "des Verbindungsstückes" "von grosser Wichtigkeit sei und dass die Spirale des letztern" etc.

Tafel XVIII Fig. 1 u. 6 lies: MZ statt StZ.

" XIX " 37 " " " "
Archiv
für
Mikroskopische Anatomie
herausgegeben.

von

v. la Valette St. George in Bonn

und

W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Dreissigster Band.

Erstes Heft.

Mit 10 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1887.

Ausgegeben 1. Juli 1887.
Inhalt.

Das Schicksal der embryonalen Schlundspalten bei Säugethieren. (Zur Entwicklungsgeschichte des mittleren und äusseren Ohres, der Thyreoidea und der Thymus. Carotidenanlage.)

Von Dr. med. N. Kastschenko, Privat-Docent an der Universität zu Charkow. (Aus dem anatomischen Institut zu Berlin.) 1

Hierzu Tafel I und II.

Über Thalassicolla caerulea.

Von C. J. Eberth in Halle. 27

Hierzu Tafel III.

Beiträge zur Kenntniss der Entwicklung des elastischen Gewebes im Ligamentum Nuchae und im Netzkoppel.

Von Dr. N. Kuskow aus St. Petersburg. (Aus dem anatomischen Institut in Berlin.) 32

Hierzu Tafel IV.

Über weitere Versuche, Farben auf dem Gewebe zu erzeugen und die chemische Theorie der Färbung.

Von P. G. Unna. 38

Untersuchungen über den Bau des funktionirenden Samenkanälen einiger Säugethiere und Folgerungen für die Spermatogenese dieser Wirbelthierklasse.

Von Dr. Carl Benda, Assistenten am physiologischen Institut zu Berlin 49

Hierzu Tafel V. VI. VII.

Neue Untersuchungen über die Copulation der Geschlechtsprodukte und den Befruchtungsvorgang bei Ascaris megalocephala.

Von Dr. Otto Zacharias in Hirschberg i. Schl. 111

Hierzu Tafel VIII. IX. X.
ERGEBNISSE
NATURWISSENSCHAFTLICHER
FORSCHUNGEN
AUF
CEYLON
IN DEN JAHREN 1884—86
VON
D. P. PAUL SARASIN UND D. F. FRITZ SARASIN.

Mit vielen Tafeln.

Wir haben die Absicht, unseren Fachgenossen die wissenschaftlichen Ergebnisse eines Aufenthaltes auf der Insel Ceylon vorzulegen und denken in Folgendem zum Verständnisse des Unternehmens eine kurze Darlegung unseres Planes zu geben, soweit wir jetzt schon dies zu thun in der Lage sind.

Als vor nunmehr drei Jahren die Frage an uns herantrat, was im Hinblick auf eine wissenschaftliche Ausbeute ersprießlicher sein würde, eine mehrjährige Reise um die Erde oder ein ebenso langer Aufenthalt an irgend einer Stelle unter den Tropen, entschieden wir uns, durch die Art der dem Zoologen heutzutage gestellten Aufgaben geleitet, für das Letztere und wählten Ceylon, als einen Ort, wo uns ein ruhiges Arbeiten unter nicht allzu ungünstigen äußeren Verhältnissen gesichert erschien.

Wir haben während der zwei und ein halb Jahre, welche wir von Europa abwesend waren, Ceylon nie verlassen und glauben nicht, dies
DIE

SCHMETTERLINGE

der

PHILIPPINISCHEN INSELN.

BEITRAG

ZUR

INDO-MALAYISCHEN

LEPIDOPTERENFAUNA

VON

GEORG SEMPER.

ERSTER BAND:

DIE TAGFALTER.

RHOPALOCERA.

Mit Adernetzen im Texte und vielen farbentafeln.

Erste Lieferung. Preis 24 Mark.

STUDIEN

ÜBER DIE

ENTWICKELUNGSGESCHICHTE

der Thiere

VON

DR. EMIL SELENKA,

Professor in Erlangen.

Erschienen sind bis jetzt:

Eben erschienen:

Allgemeine gynäkologische und geburtshülfliche DIAGNOSTIK.

Von

Dr. C. H. Stratz.

Friedegebet in Frankfurt a. M.
früher Assistent an der Kaiser Universität Frauenklinik in Berlin.

Mit einem Vorwort

von

Dr. Karl Schroeder.

gehr. Medizinrat und Prof. der geburtsh. Medizin in Berlin.

Mit 3 Tafeln und 2 Holzschnitten.

Hierzu zwei Situsphantome der inneren weiblichen Genitalien.

Grund 1. In eleganter Mappe. Preis 21/2 Mark.

Verlag von Max Cohen & Sohn (Fr. Cohen) in Bonn.

Verlag von August Hirschwald in Berlin.

Sodann erschienen die erste und zweite Abtheilung:

Jahresbericht

über die

Leistungen und Fortschritte

in der

gesammten Medicin.

Unter Mitwirkung zahlreicher Gelehrten

herausgegeben von

XXI. Jahrgang. Bericht für das Jahr 1886.

Universitäts-Buchdruckerei von Carl Georgi in Bonn.
Archiv
für
Mikroskopische Anatomie

herausgegeben

von

v. la Valette St. George in Bonn

und

W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Dreissigster Band.

Zweites Heft.

Mit 6 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1887.

Ausgegeben 12. August 1887.
Inhalt.

Untersuchungen über die Horngebilde der Säugetierhaut.
Von Friedrich Reinke, Assistent am anatomischen Institut in Kiel. (Aus dem anatomischen Institut in Kiel.) 181
Hierzu Tafel XI.

Über Theilungsvorgänge an den Wanderzellen, ihre progressiven und regressiven Metamorphosen.
Von Professor Dr. Julius Arnold in Heidelberg . 205
Hierzu Tafel XII—XVI.

Bemerkungen über den Bau der Bindehaut.
Von K. Zaluskowski. (Aus dem anatomischen Institut zu Berlin.) 311

Die grüne Drüse des Flusskrebses.
Von Professor Dr. Carl Grobben in Wien . . 323
Bei MAX COHEN & SOHN (FR. COHEN) in BONN ist erschienen:

Medianschnitt einer Hochschwangeren
bei Steisslage des Fötus
nebst
Bemerkungen über die Lage und Formverhältnisse des
Uterus gravidus
nach Längs- und Querschnitten

vom
Dr. W. Waldeyer,
Professor der Medizin und Director der anatomischen Anstalt in Berlin.

Mit 3 Holzschnitten und einem Atlas von 5 Tafeln.

Preis £ 40._

Eben erschien:

Allgemeine gynäcologische und geburtshülfliche DIAGNOSTIK.

Von
Dr. C. H. Stratz,
Frauenarzt in Frankfurt a. M.,
früher Assistent an der Königl. Universitäts-Frauenklinik in Berlin.

Mit einem Vorwort von
Dr. Karl Schroeder,
Geb. Medicinalrat und Professor der Geburtshülfe in Berlin.

Mit 3 Tafeln und 2 Holzschnitten.

Hierzu zwei Situsphantome der inneren weiblichen Genitalien.
Gross 4º. In eleganter Mappe. Preis £ 12._

Verlag von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Verlag von August Hirschwald in Berlin.

Soeben erschienen:
Die pathologische Anatomie und Physiologie
Ein monographischer Beitrag
zur Geschichte der theoretischen Heilkunde
von Kreisphysikus Prof. Dr. F. Falk.
1887. gr. 8. 2 M. 40 Pf.

Die Geschichte der Laryngologie
von den frühesten Zeiten bis zur Gegenwart
von Dr. Gordon Holmes.
Aus dem Englischen von Dr. Otto Koerner.
1887. gr. 8. 2 M.

Universitäts-Buchdruckerei von Carl Georgi in Bonn.
Archiv
für
Mikroskopische Anatomie
herausgegeben
von
v. la Valette St. George in Bonn
und
W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Dreissigster Band.

Drittes Heft.

Mit 10 Tafeln.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1887.

Ausgegeben 1. Oktober 1887.
Ueber die Beziehungen der quergestreiften Muskeln zum Papillärkörperform der Lippenhaut.
Von Dr. med. W. Podwyssozki (jun.), Privat-Dozenten d. Allg. Pathologie an d. militär-medizin. Akademie zu St. Petersburg
Hierzu Tafel XVII.

327

Seite

Ueber die Entwicklung der Samenkörperchen bei den Beuteltieren.
Von Dr. Carl M. Fürst in Lund
Hierzu Tafel XVIII—XX.

336

Enchytraeiden-Studien.
Von Dr. W. Michaelsen in Hamburg
Hierzu Tafel XXI.

366

Untersuchungen über die Samenkörper der Säugentiere, Vögel und Amphibien. I. Säugentiere.
Von O. S. Jensen, Stipendiat der Zoologie an der Universität Kristiania
Hierzu Tafel XXII, XXIII und XXIV.

379

Spermatologische Beiträge. Fünfte Mittheilung.
Von v. la Valette St. George
Hierzu Tafel XXV.

426

Beiträge zur Kenntniss des Baus der Nervenfasern.
Von Dr. P. Schiefferdecker
Hierzu Tafel XXVI.

435
Vergleichende Anatomie u. Zoologie.

LXX. Lager-Catalog

von

Max Cohen & Sohn (Fr. Cohen)

BUCHHANDLUNG U. ANTIQUARIAT

in

BONN
Kaiserplatz No. 18.

Preise in Deutscher Reichswährung:
1 Mark = 1 Fr. 25 c. = 1 sh.

BONN 1887.
Vergleichende Anatomie und Zoologie.

698 Willemoes-Suhm, R. v., biolog. Untersuch. üb. niedere Thiere. Leipz. 1871. mit 4 Kpfrt. 2.50
707 Ziegler, H. E., Bucephalus u. Gasterostionum. Leipz. 1883. mit 2 Taf. 2.—
712 Grassmann, R., das Thierleben oder die Physiologie d. Wirbelthiere. Mit vielen Holzschn. Stettin 1883. 7.—
714 — Anatomie u. Physiologie d. Pflanzen. Mit vielen Holzszhn. Pest 1855. 4.50
Zeitschriften.

1 Abhandlungen d. naturforschenden Gesellschaft zu Halle. Theil I—III. Mit Taf. Halle 1854—56. 4. Pp. 10.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.

35 Journal, the American, of Science and Arts, cond. by Silliman, James, Dana u. o. II. Series, vol. 9—13, 14, 2, 3. 15—50. III. Series, vol. 1—13, 14, 4—6. 15—17, 1—4, 6. 18—24, 1—3. With plates. New Haven 1850—82. Pp. 5 Bände in Heften.

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomie und Zoologie.

48 *Proceedings of the Zoological Society of London.* 1846—47, 1850—82 part. 1—3 and index 1848—80. With a great number of colour. and plain plates. Lond. Lwdbde. u. Ppbde. 1881—82 u. Index in Heften. 600.—

50 *Report,* annual of the Board of Regents of the Smithsonian Institution for 1856—80. Washington. Lwdb. 35.—

52 *Tijdschrift naturkundig voor Nederlandsch Indië,* uitg. door de natuurr. vereeniging in Nederland. Indië, Deel 8—37, 39—41. Batavia 1852—82. Mit vielen Kpfrt. Pp. 4 Theile broschirte. 80.—

LXX. Lager Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn. 1*
59 Vergleichende Anatomie und Zoologie.

61 Ymer. Tidskrift utgifr. af Svenska Sällskapet för Anthropologi och Geografi. 1.—III. Jahrg. 1.—4. Heft. Stockh. 1881—84. 10.—

Vergleichende Anatomie und Zoologie.

67 Abbott, C. C., Primitive Industry; or Illustrat. of the Handiwork in Stone, Bone and Clay, of the Native Races of the North, Atlant. Seaboard of Amerika. With 429 fig. Salem 1881. Hlwd. 10.—

68 Aebi, Chr., ib. d. leitende Princip bei d. Differenzierung d. Gelenke. Mit Holzsn. Bonn 1882. 4. 2.50

69 — die Schädelformen d. Menschen u. Affen. Mit 7 Taf. Leipz. 1867. 4. Hfrz. 8.—

70 Adam, H. Ph., le microscope. Avec pl. Brux. 1873. Hlwd. 2.—

72 Agassiz, A., the Development of Lepidosteus. I. Camb. 1878. with 5 pl. 3.—

73 — on the young stages of a few Annelides. New York 1866. with 6 pl. 4.—

74 — embryology of the Ctenophorae. Camb. 1874. 4. with 5 plates. 6.—

75 — embryology of the Starfish. Cambridge 1864. gr. — 4. with 8 plates. 8.—

76 — on the Young Stages of Osseous Fisches, II, III. Philadelphia 1878 u. 82. with 28 plates. 9.—

77 — North American Starfishes. Camb. 1877. 4. with 20 plates. 12.—

79 Agassiz and Pourtales, Echini, Crinoids and Corals of the Hassler Expedition. Camb. 1874. 4. with 10 plates. 12.—

80 Agassiz, L., on the Nacked-eyed Medusae of the Shores of Massachusetts, in their perfect state of development. Camb. 1849. 4. mit 8 Taf. cart. 4.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
82 contributions to the natural history of the Aculephae of North America. 2 parts. Cambr. 1849. 4. with 16 partly col. plates. Pp. 10.—
83 Albini, B., S., academic. annotationes. Liber I—VI. Cum tabb. Leidae 1754—64. 4. Pp. 4.—
85 Allen, J. A., the American Bisons, living and extind. Cambr. 1876. 4. with a map and 12 plates. 12.—
89 Arnold, J., Beitr. z. Entwicklungsgeschichte d. Auges. Mit 4 Taf. Heidelb. 1874. 3.—
90 Auge im Allgemeinen. 10 Abhandlungen v. His, H. Müller, Rollet, Mauthner, Maier u. And. mit Kpfrt. 6.—
91 Auge. Physiologie desseben. 7 Abhandl. v. Kussmaul, Czermak, Meissner, Rueto u. A. 2.—
93 Balfour and Parker, on the structure and development of Lepidosteus. Lond. 1882. 4. with 9 pl. 8.—
94 Baelz, E., d. körperl. Eigenschaften d. Japaner. I. Yokohama 1883. 4. mit 4 Taf. 2.—
95 Baer, C. E. de, crania selecta e thesauris anthropol. acad. Petropol. 1859. 4. cum 16 tab. Hilwd. 3.50
97 Barkow, J. C. L., Monstra animalium duplicia, per anat. indagata. 2 voll. Lips. 1828—36. 4. mit 15 Tafeln. cart. 3.—
98 Barrois, J., recherches sur l'embryologie des Nemertes. Avee 12 planches. Lille 1877. 4. 10.—
99 Bartels, M., üb. abnorme Behaarung beim Menschen. 2 Thle. Berl. 1876. mit 4 Kpfrt. 2.—
100 Bary, A. de, die Myeotozoen. Beitr. z. Kenntniss d. niedersten Thiere. Leipzig 1859. mit 5 Kpfrt. 3.—
102 die heil. Sage der Polynesier. Kosmogonie und Theogonie, Leipzig 1881. cart. 3.—
104 Beck, R., a treatise on the construction, proper use and capabilities of Smith, Beck and Beck's achromatic microscopes. With 28 pl. Lond. 1865, gr. - 8. cloth. 4.—
106 Beneden, P. J. van, recherches s. l'embryogénie d'histoire naturel. des Turbulaires de la côte d'Ostende. Brux. 1844. 4. avec 6 plches. color, et noires. Pp. 2.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
107 Beneden, P. J. van, recherches s. la faune littorale de Belgique. Polypes. Brux. 1866. 4. av. 19 plches. color. 8.—
110 Bergh, R. S., die Marseniaden. Jena 1886. 1.—
111 — Beitr. z. Kenntniss d. Gattung d. Melibe Rang. Leipzig 1884. m. Taf. 1.20
114 — üb. d. Metamorphose von Neophelis. Leipzig 1884. mit 2 Taf. 1.80
115 Bernardi, A. C., monogr. des genres Galatea et Fischeria. Paris 1860. gr. - 4. av. 9 plches col. 16.—
116 Bertkau, Ph., üb. d. Generationsapparat d. Araneiden. Berl. 1875. m. Taf. 1.—
117 Bidder, F. H., üb. d. männliche Geschlechts- u. Harnwerkzeuge d. naeckten Amphibien. Dorpat 1846. 4. mit 3 Kpfrt. 4.—
118 Bidder, F. u. C. Kupfer, Untersuch. üb. d. Textur d. Rückenmarks. Mit 5 Taf. Leipzig 1857. 4. 3.—
120 Bindegewebe. 7 Abhandl. v. Rollett, Baur, Kölliker, Machik, H. Müller u. Pallucci. Mit Taf. 4.—
122 Binney, W. G., notes on American Land-Shells. On the anatomy, embryology and ling. dentition of Pulmonata, 3 parts. Burling. 1874—75. with 34 pl. 15.—
126 — Lepidosiren Paradox, anatom. untersucht u. beschri. Mit 7 Taf. Leipzig 1840. gr. - 4. cart. 8.—
129 Blanc, H., contribut. a l'hist. nature, des Aseleotes Hétéropodes. Genève 1884. av. 3 plches. 3.—
134 Blutgefässdrüsen. Sammelband enth. 15 Abhandl. v. Luschka, Henle, Ecker, Holm, Jendrassik, Paulizky u. And. Mit Taf. 6.—
135 Boas, J. E. V., kl. carcinolog. Mittheilungen. Jena 1886. 1.—
136 Bochenek, J., d. männl. u. weibl. Normal-Gestalt. Berl. 1875. m. 2 Taf. 2.—
138 Böhmig, L., üb. rhadocöle Turbellarien. I: Genus Graffii. Leipzig. 1886. mit 2 Taf. 2.50
140 Boll, Fr., Beiträge z. vergleich. Histologie d. Molluskentypus. Bonn 1869. mit 4 Kpfrt. 4.—
141 Bonsdorff, E. J., beskrifn. af luftvskalsbenen hos Laken, Gadus Lota. Helsingf. 1847. 4. mit 4 Kpfrt. 2.—
142 descript. anatomi. nervorum cerebral. Corvi cornicos et Gruis cineraceae, 2 pros. Helsingf. 1850—51. 4. cum 5 tab. 2.50
143 Born, G., d. Nasenlöhlen u. d. Thrhämmassengang d. annioten Wirbelthiere. Leipzig. 1879. mit 3 Kpfrt. 2.—
144 Boucher de Perthes, antiquités celtiques et antédiluviennes. Vol. 1 et II. Av. 106 piches. Paris 1847—57. Hfrz. 18.—
146 Brandt, J F., symbolae sirenologicae, praec. ad Rythiae hist. nat. illustr. Fasc. 2 et 3. Petropoli 1861—63. 4. cum 9 tab. 3.—
147 descript. et icones avium Rossicorum nov. Fasc. I. (unicus.) Petropol. 1865. 4. cum 6 tabb. color. 6.—
150 Breschet, G., recherches anatom. et physiol. s. l'organe de l'ouie et s. l'audition e. l'homme et les animaux vertébrés. 2. éd. Paris 1836. 4. av. 15 piches. 4.—
151 Brock, J., d. Männchen d. Sepioloida lineolata. Leipzig. 1883. 1.—
152 zur Anatomie u. Systematik d. Cephalopoden. Leipzig. 1882. m. 4 Taf. 4.—
154 üb. d. interssstitiellen Bindesubstanzen d. Molusken. Leipzig. 1883. mit 4 Taf. 4.—
159 Vorles. üb. Physiologie. Bd. II: Nervensystem. Wien 1873. Lwd. 4.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
168 Bütschli, O., Beitr. z. Kenntnis d. Fischförospermien. Leipz. 1881. m. Taf.
171 Cailliaud, F., sur les Mollusques perforants. Harl. 1856. 4. av.3 plches.
174 Camper, A. G., s. les differ, réelles que prés. les traits du visage chez les hommes. Av. 10 pl. — Le même, s. le moyen de représenter d'une manière s. les div. passions qui se manif. s. le visage. Av. 11 pl. Utr. 1791—92. 4. Pp.
175 Camper, P., observat. anatôm. s. l. structure et le squelette de plusieurs espèces de Cétacés. Paris 1820. 4. av. 53 plches. Hfrz.
177 Capellini, G., l'étà di Pietra nella Valile della Vibrata. Bologna 1871. 4. con 3 tav.
186 Charpentier, T., de Orthoptera. Cum60 tabb. color. Lips.1841—45. 4. cart.

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Chen) in Bonn.

Cope, E. D., the Vertebrata of the Cretaceous Formations of the West. Washington. 1875. 4, with 57 plates.

Cruveilhier, Czermak, Debever, Davis, —

Crommelinck. —

Dali,

Cuvier

Coues

Cohn,

LXX.

Cruveilhier, J., traité d'anatomie descriptive. 3. éd. 4 vols. Paris 1851—52. Hfrz.

Davis, J. B., on the osteology and peculiarities of the Tasmanians. With 4 plates. Haarl. 1874. 4.

Davis, J. B., on the osteology and peculiarities of the Tasmanians. With 4 plates. Haarl. 1874. 4.

— on synostotic crania among aboriginal races of man. Haarl. 1865. 4, with 11 plates.

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.

217 Des Moulins, Ch., études s. les Echinides. Partie I. (la seul publ.) Bordeaux 1835—37. av. 5 pl. Hldr.

219 Dieffenbach, O., anatom. u. systemat. Studien an Oligochaetae limicolae, Giessen 1885. mit Taf.

225 Du Chaillu, P. B., a journey to Ashango-Land, and further penetra, into Equatorial Africa. Mit map a. many illustr. Lond. 1867. Lwd.

230 Duvernoy, G. L., mém. s. le sysême nerveux des Mollusques acéphales lamellibranches ou bivalves. Paris 1853. 4. av. 13 pl.

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
241 Ehrenberg, C. G., über noch zahlreich jetzt lebende Thierarten d. Kreide-
Kpfrt. fol. eleg. Hfrz.

22.—

mit 3 Kpfrt.

2.50

243 Elliot, H. W., a monograph of the Pribilow group, or the Seal-Islands

20.—

244 Entwicklungsgeschichte d. Wirbel- u. Wirbellosen Thiere. Samml. v.
46 Abhandl. v. Frantzius, Landzert, Remak, Dursy, Bruch, Oellacher,
Selenka, Kölliker, Wecker, Steenestrup, Carus, Joh. Müller, Schwelbe
u. And. mit Kpfrt.

12.—

4. mit 10 Kpfrt.

8.—

246 Expedition, die preuss., nach Ost-Asien. Zoologischer Theil, bearb.

20.—

247 Fauna, quaternäre. Sammelbd. enth. 8 Abhandl. v. Rehmann, Hensel,
Rütimeyer, Gandry, Naumann. 4. mit Kpfrt.

10.—

248 Festschrift zur Feier des 100-jähr. Bestehens d. Gesellschaft natur-

9.—

249 Festschrift zur Feier d. 50-jähr. Doctorjubiläums am 22. April 1875 Prof.
Zoologie. Prachttausgabe auf Vellupapier, m. d. Bildnisse v. Siebold's,
seiner Biographie (von Kölliker) u. d. Verzeichniss der Mitarbeiter.
Leipzig 1878. Hlwd.

25.—

250 Fewkes, J. W., studies of the Jelly-Fishes of Narragansett Bay.
Cambr. 1881. mit 10 pl.

6.—

12.—

252 Fischer, P. et H. Croz, études s. les mollusques terrestres et fluvial,
av. 6 pl. ches. color.

20.—

6.—

1.—

mit 2 Kpfrt.

2.—

gr.-4. mit 3 Kpfrt.

3.50

257 Focke, G. W., über schalenlose Radiolarien des süßen Wassers,
Leipzig 1868. mit Taf.

1.50

258 Fohmann, V., s. les vaisseaux lymphat. de la peau, Bonn 1840.
av. 10 pl. ches.

1.80

259 Forbes, E., monograph of the british naked-eyed Medusae. Lond.,
Ray Soc., 1848. fol. with 13 coloured plates.

18.—

260 Fornander, A., an account of the polynesian race its origin and
migrations and the ancient history of the Hawaiian people to the times

5.—

261 Fossati, L. L., A., questions philosoph., sociales et polit. traitées d'après

2.50

262 Foster u. Balfour, Grundzüge d. Entwicklungsgeschichte der Thiere.

3.—

1.80

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.

274 Galton, Ch., Muscles of the Fore and Hind Limbs in Dasyopus sexcinetus. Lond. 1869. 4. with pl. 3.

275 — the Myology of the Upper and Lower Extremities of Orycteropus Capens. Lond. 1869. 4. with pl. 3.

276 Gallicier, Th., vie de l'univers ou études de physiologie générale et philosoph. appliquée à l'univers. Paris 1873. 2.

277 Garman, S., the Reptiles and Batrachians of North America. With 10 pl. Cambr. 1883. 4. 15.

293 — Anatomie d. Chaetoderma nitiulum. Leipzig 1876. mit 3 Taf. 2.80

<table>
<thead>
<tr>
<th>Seite</th>
<th>Titel</th>
<th>Verlag</th>
<th>Jahr</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
<td>Greeff, R., Typhloscolex Mülleri W. Busch. Leipz. 1879. mit Taf.</td>
<td>Leipz.</td>
<td>1879</td>
<td>1.20</td>
</tr>
<tr>
<td>296</td>
<td>— Reise nach d. Canarischen Inseln. Bonn 1868.</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>299</td>
<td>— zur Entwicklungsgeschichte d. Cephalopoden. Leipz. 1872. mit 4 Kpfrt.</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>300</td>
<td>Gros, G., de l'embryogénie ascend. des espèces et métamorphoses de cert. animaux et végétaux infér. Mosc. 1851. av. 15 plches.</td>
<td></td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>301</td>
<td>Gruber, A., Infusorien. Leipz. 1880. mit 2 Taf.</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>302</td>
<td>— d. Theilung d. monothalamen Rhipizoden. Leipz. 1881. mit 2 Taf.</td>
<td></td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>306</td>
<td>— Studien üb. Amöben. Leipz. 1884. mit 3 color. Taf.</td>
<td></td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>307</td>
<td>Günther, A., contrib. to the knowl. of the British Charrs. 2 pts. London 1862—63. with 5 col. plates.</td>
<td>Lond.</td>
<td>1862</td>
<td>3.00</td>
</tr>
<tr>
<td>308</td>
<td>— account of the Fishes of the States of Central America. Lond. 1867. 4. with col. map and 25 plates.</td>
<td></td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>309</td>
<td>— catalogue of the fishes in the british museum. 8 vols. Lond. 1859—70. Lwd.</td>
<td></td>
<td></td>
<td>38.00</td>
</tr>
<tr>
<td>310</td>
<td>Habel, S., the sculptures of Santa Lucia Cosumalwhuapa in Guatemala. Washingt. 1879. with 8 plates.</td>
<td></td>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>312</td>
<td>— zur Entwicklungsgeschichte d. Siphonophoren. Mit 14 Taf. Utrecht 1869. 4.</td>
<td></td>
<td></td>
<td>10.00</td>
</tr>
<tr>
<td>313</td>
<td>Hannover, A., rech. microsc. s. le système nerveux. Av. 7 pl. Copen. 1844. 54. Pp.</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>314</td>
<td>Harris, Th. W., Entomological Correspondence ed. by S. H. Scudd. Boston 1869. with 4 col. plates, portr. and wooodc. Lwd.</td>
<td></td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>315</td>
<td>— treatise on some of the insects injurious to vegetation. 3. ed. With 8 col. plates and very num. woodc. Boston 1862. Lwd.</td>
<td></td>
<td></td>
<td>8.00</td>
</tr>
<tr>
<td>316</td>
<td>Harting, P., le plan médian de la tête naerlandaise masculine. Amsterd. 1874. 4. av. 6 plches.</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>318</td>
<td>— Leerbock van de Grondbedinselen der Dierkunde. 1.—3. deel 2. afdeel. 1.—3. stuck. Tiel 1862—74. mit vielen Holzschn.</td>
<td></td>
<td></td>
<td>30.00</td>
</tr>
<tr>
<td>320</td>
<td>— Beobacht. üb. d. Entstehung d. Sexualzellen bei Obelia. Leipz. 1884. mit 2 Taf.</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>321</td>
<td>— Beitr. z. Kenntniss d. Manatus-Arten. Jena 1886. mit 4 Taf.</td>
<td></td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>325</td>
<td>Hasse, C., d. Schnecke d. Vögel. Leipz. 1866. mit 3 Taf.</td>
<td></td>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>326</td>
<td>— d. fossilen Wirbel. Die Squatinnae. Leipz. 1876. mit 2 Kpfrt.</td>
<td></td>
<td></td>
<td>2.50</td>
</tr>
</tbody>
</table>

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomie und Zoologie.

331 Heider, A. R. v., Korallenstudien. Leipzig 1886. mit 2 Taf. 2.50.—
332 Heitzmann, C., Untersuch. üb. d. Protoplasma. 5 Thle. Wien 1873. mit 5 Kpfrt. 3.—
334 Heimholtz, H., d. Mechanik d. Gehöknöchelchen u. d. Trommelfelles. Bonn 1869. 1.—
335 — üb. d. Sehen d. Menschen. Leipzig 1855. 1.80.—
336 — populäre wissenschaftl. Vorträge. Heft 1, 2. Brunschw. 1865—71. 4.—
339 Henke, W., zur Topographie d. Beweg. am Halse bei Drehung des Kopfes auf d. Seite. Mit 6 Taf. Bonn 1882. 4. 1.—
341 Henle, J., Theodor Schwann. Bonn 1882. —60.—
343 Hensen, V., üb. das Auge einiger Cephalopoden. Leipzig 1865. mit 10 Kpfrt. 4.—
345 Hérod, M., von d. Erzeugung d. Spinne im Eie. Marb. 1824. fol. mit 4 Taf. cart. 4.—
347 His, W., Beitr. z. normalen u. pathol. Histologie d. Cornea. Mit 6 Taf. Basel 1856. 2.—
348 — neue Untersuch. üb. d. Bildung d. Hühnerembryo. I. Leipzig 1877. 2.50.—
349 — unsere Körperform u. d. physiolog. Problem ihrer Entstehung. Leipzig 1874. Lwd. 3.—
350 Histologie, Samml. v. 15 Abhandl. v. v. Ebner, Hering, Exner, Biesiadecki, Rizzozero, Heynold, Reich, Berger u. And. mit Kpfrt. 3.—
351 Hoffmann, C. E., die Körperhüllen d. Menschen u. ihr Inhalt. 2. Aufl. Mit 16 col. Taf. u. Holzschn. Erl. 1873. 4. 6.—
352 Hoffmann, C. K., zur Anatomie der Echinen u. Spathangien. Mit 8 Taf. Haarl. 1871. 4.—
354 — Crustacés et Echinoderms de Madagascar et de l’ile de la Réunion. Av. 10 plch. Leide 1874. 4. 9.—
355 Hollard, H., s. le squelette des poissons plecognathes. Paris 1860. av. 2 pl. 2.—
356 Home, E., lectures on comparative anatomy. 6 vols. Lond. 1814—28. 4. with portr. and 371 plates. Hlwd. 35.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomic und Zoologie.

362 Humphry, G. A., observations in myology, includ. the myology of Cryptobranch, Lepidosiren, Dog-fish. With 8 pl. Cambr. 1872. Lwd. 3.——

363 Hunter, J., observations on animal development and his illustrations of that process in the bird described by R. Owen. With 12 engr. plates. Lond. 1841. fol. Lwd. Beigefügt ist ein zweizeitig. Originalbrief R. Owen's worin ders. anzeigt, dass nur 50 Exempl. gedruckt sind. 30.—

364 Huxley, T. H., the oceanic Hydrozoa, descript. of Calycophoridæ. Lond. 1859. fol. with 12 plates. 12.—

366 — observat. on Polyzoa suborder Phylactolacunata. Salem 1866. with 9 pl. 8.—

367 Hyrtl, J., die Bulbi d. Placental-Arterien. Mit 5 col. Taf. Wien 1869. 4. 2.—

368 — Chlamydophori truncati e. Dasypode gymnuro compar. examen anat. Cum 6 tab. Vienne 1855. 4. 3.—

370 — Cranium cryptae Metelicensis, Vindob, 1877. gr.-4. cum 2 tab. cart. 4.—

375 Jäger, G., in Sachen Darwins insbesond. contra Wigand. Stuttgart. 1874. Lwd. 2.—

377 Jay, catalogue of the Shells in his collection. 4. ed. With suppl. New York 1852. 4. Hpgt. 20.—

378 Jensen, O. S., Turbellaria ad Litora Norvegæae Occidentalia. Turbellaria ved Norges Vestkyst. Bergen 1878. 4. med 8 tav. 15.—

380 — Grafillamuriciola, eine parasit. Rhabdocole. Leipz. 1880. mit col. Taf. 1.50

384 Kelaart, E. F., prodromus faunae Zeylanicae. Ceylon 1852. Lwd. 4.—

386 Kennel, J., üb. ein. Landblutegel d. tropischen America, Jena 1887. mit 2 Taf. 2.—

388 Kerschner, L., zur Zeichnung d. Vogelfedern. Leipz. 1886. 1.—

LXX. Lager-Katalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomie und Zoologie.

389 Knoll, P., Beitr. z. Lehre v. d. Atmungsnervation. 4 Thle. Wien 1882—83. mit 15 Kpfrt. 4.—

393 — die embryonalen Keimblätter u. d. Gewebe. Leipzig 1884. mit 2 Taf. 2.50

394 — histolog. Studien an Batracierlarven. Leipzig 1885. mit 2 Taf. 2.50

396 — Entwicklungsgeschichte d. Menschen u. d. höheren Thiere. Mit vielen Holzschn. Leipzig 1861. Hldr. 3.—

397 — üb. d. Lage d. weibl. inneren Geschlechtsorgane. Bonn 1882. mit 3 Kpfrt. 3.—

398 — der feinere Bau d. Knochengewebes. Leipzig 1886. mit 4 Taf. 4.—

405 Kossmann, R., Studien über Bopyriden. 1. II. Leipzig 1881. mit 4 Taf. 3.50

411 — d. terminalen Körperchen d. einfach sensiblen Nerven. Mit 4 Kpfrt. Hann. 1860. Hfrz. 3.—

414 Krohn, A., Beiträge zur Entwicklungsgeschichte der Pteropoden und Heteropoden. Leipzig 1860. mit 4. 2 Kpfrt. 2.—

415 Krueg, J., üb. d. Furchen auf d. Gresshirrinde d. zoonplaceutalen Säugerthiere. Leipzig 1881. mit 5 Kpfrt. 2.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
141 Kupfer, C., d. Stammverwandtschaft zwischen Ascidien u. Wirbelthieren. Mit 3 Kpfrt. Bonn 1870. 2.—
142 Laing, S., pre-historic remains of Caithness, with notes on the human remains by Th. Huxley. With 68 figg. London. 1866. Lwd. 1.—
144 Landzert, Th., Beiträge z. Anatomie u. Histologie. Heft I. St. Petersb. 1872. mit 9 Kpfrt. 6.—
146 — Lehrbuch d. Anatomie d. Menschen. Wien 1865. Hldr. 3.—
150 — observations on the genus Unio, together with descript. of new species in the family Unioidea. Vol. IV—V, VI, 2, VII—XII and 3 parts of index. Philad. 1846—74. gr. - 4. with numerous plates. 100.—
151 Leidy, J., Contributions to the Extinct Vertebrata Fauna of the Western Territories. Washington 1873. 4. with 37 plates. 29.—
154 — Bau u. Entwicklungsgeschichte d. Pentaustomen. Leipzig. 1860. 4. mit 6 Kpfrt. 3.—
155 — die Blasenbandwürmer u. ihre Entwicklung. Giessen 1856. 4. mit 3 Kpfrt. Hlwd. 3.50
156 — zoolog. Untersuchungen. 3 Hefte. Mit 7 Kpfrt. Giessen 1853—54. 4. Pp. 8.—
158 Leydig, F., zur Anatomie u. Entwicklungsgeschichte d. Lacinularia socialis. Leipz. 1851. mit Taf. 1.50
159 — üb. d. allgemeinen Bedecknugen d. Amphibien. Bonn 1876. 2.—
162 — d. Hautdecke u. Schale d. Gastropoden. Berlin 1875. mit 8 Kpfrt. cart. 3.—
163 — die amuren Batracher d. deutschen Fauna. Bonn 1877. mit 9 Kpfrt. cart. 7.50
164 — die angenähmten Organe der Fische. Mit 10 Taf. Bonn 1881. Hlwd. 8.—
165 — über Organe eines sechsten Sinnes. Mit 5 Taf. Dresd. 1868. 4. — 10.—
167 LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn. 2.

455 Leven, S., Beiträge z. Entwicklung d. Mollusca Apechala Lamellibranchiata. Stockh. 1879. mit 6 Kpfrt.

458 Lucæ, J. C. G., die Sutura Tranzversa Squamine Occipitis. Mit 4 Taf. Frkfrt. 1883. 4.

461 — die Robbe u. die Otter (Phoca vitulina et Lutra vulgaris) in ihrem Knochen- u. Muskeln-Skelet. 2 Thle. Frkfrt. 1873—74. 4. mit 32 Kpfrt.

466 Lütken, Chr., bidrag til nordisk ichthyographie. 5 Theile. Kopenhagen. 1876—82.

467 — ichthyograph. bidrag. 6 Thle. Kopenhagen. 1874—76. mit 3 Kpfrt.

469 Lyman, Th., Ophiuridae und Astrophytidae, new and old. Cambr. 1874. mit 7 plates.

474 — les caractères physiques de la population de la Galicie. Cracovie 1876. (En langue polonaise.)

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomie und Zoologie.

19

478 Marcy, R. B., exploration of the Red River of Louisiana in the year 1852. Washington, 1853, with 20 plates. Pp. 3.—

479 Marenzeller, E., üb. die Sarcopthytum benannt. Aleyonüden. Jena 1886. mit Taf. 1.—

482 — die Ontogenie v. Reniera filigrana O. Schm. Leipz. 1882. mit 2 col. Taf. 2.—

483 — a phrenologist amongst the Todas, or the study of a primitive tribe in South India. With 26 illustrat. Lond. 1873. Lwd. 8.—

484 Marty, A., d. Frage nach d. geschichtl. Entwicklung d. Farbensinnes. Wien 1879. 2.—

486 Mawe, J., the Linnean system of conchology. Lond. 1823. with 36 col. plates. Hfrz. 6.—

489 — zur Anatomie d. Entozoen. (Leop. Akad.) 1841. mit 3 Kpfrt. 1.50

492 — Beitr. z. Anatomie d. Elephanten u. üb. Pachydermen. (Leop. Akad.) 1847. 4. mit 9 Kpfrt. 3.—

495 Meissner, G., Beitr. z. Anatomie u. Physiologie d. Haut. Leipz. 1853. 4. mit 2 Kpfrt. 2.—

496 Merkel, Fr., Beitr. z. Kenntniss d. postembryonalen Entwicklung d. Schädels. Bonn 1882. 4. mit 7 Kpfrt. 4.50

497 — Untersuch. a. d. anatom. Institut zu Rostock. Mit 3 Kpfrt. Rost. 1874. 4.—

498 Mestschikow, E., üb. ein. wenig bekannte niedere Thierformen. Leipz. 1865. mit Taf. 1.50

499 — die Embryologie von Planaria polychra, I. Leipz. 1883. mit 3 Taf. 2.50

500 — vergleich. embryolog. Studien. I—IV. Leipz. 1882—85. mit 5 Taf. 3.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn, 2*
Meyer, P., études histolog. s, le labyrithne membraneux et plus spécial. s, le limaçon chez les reptiles et les oiseaux. Av. 5 pl. Strasb. 1876. 11v.
Möbius, K., die Bewegungen d. flieg. Fische durch die Luft. Leipz. 1878. mit Taf.
Moulinié, J. J., de la réproduction chez les Trématodes endo-parasites. Genève 1856. 4. av. 9 plches.
Murie and Mivart, on the Lemuroidea. With 6 plates. Lond. 1869. 4. cart.
Natale, G. de, ricerche anatom. sullo Scincus variegato in rapp. ai princip. tipi d’organizzaz. dei Rettili. Torino 1852. 4. con 2 tav.
Owen, R., on parthenogenesis. With plate. Lond. 1849. Lwd.

LXX. Lager-Catalog von Max Cohen & Sohn (F. Cohen) in Bonn.
Vergleichende Anatomie und Zoologie.

532 Owen, R., descript. of some species of the extinct genus Nesodon. Lond. 1853. 4. with 4 pl. 2.—
533 — lectures on the comparat. anatomy and physiology of the Invertebrate Animals. With wood. Lond. 1834. Lwd. 4.—
534 — osteolog. contrib. to the natural hist. of the Chimpanzees. Lond. 1849. 4. with 6 plces. 4.—
536 Packard, A. S., a monograph of the Geometrid Moths or Phalaenidae. Washington. 1876. 4. with 13 pl. Lwd. 15.—
537 Pagenstecher, A., allg. Zoologie. Theil 1—3. Mit Holzschn, Berl. 1875—78. 15.—
538 Panceri, P. 17 Abhandlungen a. d. Gebiet d. vergl. Anatomie. 4. 3.—
539 Panizza, B., s. Lampreda marina. Con 2 tav. Milano 1844. 4. 3.—
541 — supra il sistema linfatico dei Rettili, Con 6 tav. Pavia 1833. Imp. fol. Hldr. 15.—
542 Parker, W. K. and G. T. Bettany, the morphologie of the skull. With fgg. Lond. 1877. Lwd. 8.—
543 Pelletan, J., le microscope son emploi et ses applications. Av. 4 pl. et 278 fgg. Paris 1876. 6.—
544 Pfeiffer, L., monographia Heliceorum viventium. Sistens descriptiones systemat. et crit. omnium hujus familiae generum et specierum hodie cognitarum. Leipzig 1845—68. 50.—
547 Pisces. Samml. v. ca. 120 Abhandl. v. Bleeker, Baird, Agassiz, Steinadaehner, Baer, Steenstrup, Canestrini, Gill, Ramorino, Kner, Girard, Jeitteles, Lütken, Fitzinger u. And. in 8. u. 4. 12.—
548 Pitt Rivers, on the Discovery of Chert Implements in Stratified Gravel in the Nile Valley near Thebes. Lond. 1882. with 10 pl. 4.—
549 Plate, L., Untersuch. ein. an d. Kiemenblättern d. GAMMARAUS pulex leb. Ektoparasiten. Leipzig 1886. mit 2 Taf. 2.50.—
551 Portal, histoire de l'anatomie et de la chirurgie. I—VI, 1, Paris 1770—75. Ldr. 1. 6.—
552 Poutrelles, L. F. de, illustr. catalogue of Deep-Sea Corals. Cambr. 1871. 4. with 8 plates. 8.—
553 Praehistorie. Samml. v. 30 Abhandl. v. Schaffhausen, Fraas, Ecker, Winkel, Schwendener, Much, Desor, Uhmann, Mehlis u. And. mit Abbild. 8.—
554 Protoplasma. 7 Abhandlungen von Max Schultze, Brücke, Eimer, Engel, Oeffinger. 2.—
555 Quain, J., elements of anatomy. 6. ed. by W. Sharpey and G. V. Ellis. 3 vols. London 1856. 8.—
557 Rath, Otto v., Beiträge zur Kenntniss d. Chilognathen. Mit 4 Taf. Bonn 1856. 4.—
558 Rathke, H., Vorträge zur vergleichenden Anatomie der Wirbelthiere, Leipzig. 1862. Hldr. 9.—
559 — Entwicklungsgeschichte d. Wirbelthiere. Leipzig. 1861. Hldr. 3.—
560 — Beiträge z. vergleich. Anatomie u. Physiologie. Reisebemer. aus Skandinavien. Dauz. 1842. 4. mit 6 Kpfrt. 4.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomic und Zoologie,

Rau, Ch., articles on anthropolog. subjects contrib. to the annual reports of the Smithsonian Institut. from 1863 to 1877. Washington 1822. 2.—

— observat. on cup-shaped and other, lapidarian sculptures in the old world and in America. Washington. 1881. 4. with 35 pl. 12.—

— üb. d. contractile Substanz u. ihre Bewegungs-Erschein. bei Polythalamien u. ein. and. niederer Thieren. Mit 7 Taf. Berl. 1867. 4. cart. 3.50

Reissner, E., d. Bau d. centralen Nervensystems d. ungeschwänzten Batrachier. Dorpat 1864. 4. mit 12 Kpfrt. Pp. 4.—

Reischreiter, C., zur Morphologie d. Sinus maxillar. Mit 2 Taf. Stuttg. 1878. 2.—

Retina. Samml. v. 14 Abhandl. v. Pacini, Kölliker, H. Müller, Welecker, Hyrtl, Krause, Salzer u. And. mit Kpfrt. 6.—

Reubold, W., zur Entwicklungs geschichte d. menschl. Gehirns. Leipzig. 1882. gr.-4. mit 2 Kpfrt. 2.—

Robineau-Desvoidy, J. B., essai sur les Myodaires. Paris, Acad., 1830. 4. 15.—

— die Muskeln d. vorderen Extremitäten d. Reptilien und Vogel. Mit 15 Taf. Haarlem 1868. 4. cart. 6.—

Vergleichende Anatomie und Zoologie.

592 Schäffer, J. Ch., elementa entomologica (Lat.-Germ.) Cum append. Edit. III. Cum 140 tabb. color. Ratisb. 1780. 4.

603 — über die Anlage der Geschlechtsorgane bei den Insekten. Bresl. 1884. mit Taf.

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
616 Schultze, F. E., Tiarella singularis, neuer Hydroidpolyp. Leipz. 1876. mit 2 Taf. 3.—
619 — Untersuch. üb. d. Lymphbahnen d. Auges u. ihre Begrenz. II. Bonn 1870. mit 3 Kpfrt. 2.50
620 Solater, P. L., on certain species of Deer (Cervidae.) living in the societys menagerie. Lond. 1870. 4. with 12 color. pl. 10.—
621 Solater and Salvin, nomenclator avium neotropicalium. Lond. 1873. fol. Ilwd. 8.—
622 Solater and Salvin, Ornithologica. Samml. v. 120 Abhandl. a. d. Jahren 1864—81. Mit 141 sehr fein colorirten Kpfrt. 75.—
625 Semper, C., Beitr. z. Anatomie u. Physiologie d. Pulmonaten. Leipz. 1856, mit 2 Taf. 2.—
626 — Entwicklungsgeschichte d. Ampullaria Polita Deshayes. Mit 4 Taf. Utrecht 1862. 4. 3.—
627 — üb. Generationswechsel bei Steinkorallen. Leipz. 1872. mit 6 Kpfrt. 3.—
628 Serres, E., principes d'embryogénie, de zoogénie et de tératogénie. Paris 1860. 4. mit 25 plchs. in fol. Hfrz. 16.—
629 Serres, Dubreuill et Jeanjean, rech. s. les ossements humatiles des cavernes de Lunel-Viel. Montpellier 1839. 4. mit 21 plches. 8.—
630 Short, J. T., the North-Americans of Antiquity, their origin, migrations and type of Civilization. 2. ed. New York 1850. 544 pg. with many illustr. Lwd. 8.—
633 Simmermacher, G., Untersuch. üb. Haftapparate an Tarsalgliedern von Insekten. Leipz. 1884. mit 3 color. Taf. 3.—
634 Simon, J., physiolog. essay of the thymus gland. With illustr. Lond. 1845. 4. Lwd. 6.—
635 Sitgreaves, L., report of an expedition down the Zuni and Colorado Rivers. With maps, views and illustr. Washingt. 1853. Lwd. 3.—
637 Sömmering, S. Th., vom Baue d. menschl. Körpers. 2. Ausg. 5 Thle. in 6 Bde. Frkfrt. 1800. 3.—
641 — Beiträge z. Kenntniss d. Polynesier-Schädel. Hamb. 1877. 4. mit 5 Taf. 4.—

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomie und Zoologie.

645 — ichthyologische Beiträge. 12 Hefte. Wien 1874—82, mit vielen Kpfrt.

646 Steur, Ch., ethnographie des peuples de l'Europe avant Jésus-Christ. II, 1, 2. Brux. 1872.

650 — die Controversen d. indirekten Kerntheilung. Mit 2 Taf, Bonn 1884.

658 — the Haidah Indians of Queen Charlotte's Islands, Brit. Columbia. With 7 partly color. plates. Washingt. 1874. 4.

659 Taplin, G., the Narrinyeri. An account of the Tribes of South Australian Aborigines. Adelaide 1874.

663 thurnam, J., the Ancient British Barrows especial. those of Wiltshire and the adjoining counties. 2 parts. With many illustr. a. 10 pl. Lond. 1869—73. 4. Hlwd.

664 Torsyth Major, C. J., materiali p. servire ad una storia degli Stambecechi, Pisa 1879. gr.-8. con 7 tav.

667 Turner, W., on the placentaion of the Apes. With a comparais. of the structure of their placenta with that of the human female. Lond. 1878. 4. mit 2 pl.

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Vergleichende Anatomie und Zoologie.

678 — recherches d'anatomie comparée sur le Chimpanse. Amsterd. 1841. gr. in fol. avec 7 plchs. cart.

679 — tabule ad illustr. embryogenesin hominis et mammalium tam natur. quam abnorm. Amstelod. 1840. gr.-4. cum 100 tab. Lwd.

690 Wiedersheim, R., die Kopfützen d. geschwänzten Amphibien. Mit 4 Taf. Leipz. 1876.

LXX. Lager-Catalog von Max Cohen & Sohn (Fr. Cohen) in Bonn.
Bei MAX COHEN & SOHN (FR. COHEN) in BONN ist erschienen:

Allgemeine gynäkologische und geburtshülfliche DIAGNOSTIK.

Von
Dr. C. H. Stratz,
Frauenarzt in Frankfurt a. M.,
früher Assistent an der Königl. Universitäts-Frauenklinik in Berlin.

Mit einem Vorwort
von
Dr. Karl Schroeder,
Geh. Medicinalrat und Professor der Geburtshilfe in Berlin.

Mit 3 Tafeln und 2 Holzschnitten.

Hierzu zwei Situsphantome der inneren weiblichen Genitalien.

Verlag von Max Cohen & Sohn (Fr. Cohen) in Bonn.

Verlag von August Hirschwald in Berlin.

Soeben erschienen:

Anatomische Untersuchungen
über die
menschlichen Rückenmarkswurzeln
von
Dr. E. Siemerling.
1887. gr. 8. Mit 2 chromolithogr. Tafeln. M 2,60

Ein Objectiv 1/12 von Zeiss (Oel-Immersion) Nr. 242

Prof. Marchand, Marburg.

Universitäts-Buchdruckerei von Carl Georgi in Bonn.
Archiv
für
Mikroskopische Anatomie
herausgegeben
von
v. la Valette St. George in Bonn
und
W. Waldeyer in Berlin.

Fortsetzung von Max Schultze's Archiv für mikroskopische Anatomie.

Dreissigster Band.

Viertes Heft.

Mit 12 Tafeln und 1 Holzschnitt.

Bonn
Verlag von Max Cohen & Sohn (Fr. Cohen)
1887.

Ausgegeben 18. November 1887.
Inhalt.

Beiträge zur Anatomie der Oberhaut.
Von Dr. A. Blaschko in Berlin. (Aus dem anatomischen Institut zu Berlin.) 495
Hierzu Tafel XXVIII—XXX.

Ueber das Verhältniss zwischen Zellkörper und Kern während der mitotischen Theilung.
Von Franz Tangle, cand. med. aus Budapest. (Aus dem anatomischen Institute in Kiel.) 529
Hierzu Tafel XXXI.

Von Prof. S. M. Lukjanow 545
Hierzu Tafel XXXII und XXXIII.

Zwei junge menschliche Embryonen.
Von Prof. Dr. J. Janošík an der böhm. Universität in Prag 559
Hierzu Tafel XXXIV und XXXV.

Die Entstehung des Blutes bei Knochenfischembryonen.
Von Dr. H. Ernst Ziegler, Privatdocent in Freiburg i. Br. 596
Hierzu Tafel XXXVI—XXXVIII.

Einfacher Apparat zur Erwärmung und Abkühlung von Objecten unter dem Mikroskop.
Von Dr. H. Dewitz in Berlin 666
Mit einem Holzschnitt.
Prachtvolle Festgeschenke:

La Madonna di San Sisto (Sixtina).

Nach Rafael’s Gemälde in der Königlichen Gallerie in Dresden gezeichnet und in Kupfer gestochen

von

Joseph Keller.

Epreuve d’Artiste \(M \text{ 300} \) Avant la lettre chines. \(M \text{ 195} \)
Avant la lettre weiss \(M \text{ 150} \) Mit der Schrift chines. \(M \text{ 105} \)
Mit der Schrift weiss \(M \text{ 75} \)

Von allen Nachbildungen der Sixtinischen Madonna unbedingt die dem Original am Nächsten kommende, der glänzendste und dekorativste aller vorhandenen Kupferstiche.

La Vierge au Linge
(Madonna mit dem Schleier).

Nach Rafael’s Gemälde in der Gallerie des Louvre in der Grösse des Originals gezeichnet und in Kupfer gestochen

von

J. Kohlschein.

Epreuve de Remarque \(M \text{ 600} \) Epreuve d’Artiste \(M \text{ 240} \)
Avant la lettre chines. \(M \text{ 150} \) Avant la lettre weiss \(M \text{ 135} \)
Mit der Schrift chines. \(M \text{ 75} \) Mit der Schrift weiss \(M \text{ 60} \)

Aufträge übernehmen zu obigen Preisen alle in- und ausländischen Buch- und Kunsthändlungen, wie auch die Verlagshandlung, welche ausdrücklich garantiert, dass nur tadellose Abdrücke zur Versendung kommen.
Im Verlag von MAX COHEN & SOHN (FR. COHEN) in BONN erschienen:

Medianschnitt einer Hochschwangeren bei Steisslage des Fötus
nebst
Bemerkungen über die Lage und Formverhältnisse des Uterus gravidus nach Längs- und Querschnitten
von
Dr. W. Waldeyer,
Professor der Medizin und Director der anatomischen Anstalt in Berlin.

Mit 3 Holzschnitten und einem Atlas von 5 Tafeln.
Preis M 40

Der schwangere und kreissende Uterus.
Beiträge zur Anatomie und Physiologie der Geburtskunde.
Unter Mitwirkung von
Dr. M. Hofmeier, Dr. C. Ruge und Dr. C. H. Stratz,
Assistenten an der Kgl. Universitäts-Frauenklinik zu Berlin,
herausgegeben von
Dr. Karl Schroeder,
Geheimer Medicinalrat und Professor der Geburthilfe in Berlin,
Director der Universitäts-Frauenklinik und Mitglied der wissenschaftlichen Deputation für das Medicinalwesen.

Mit 52 in den Text gedruckten Holzschnitten und einem Atlas von 6 Tafeln.
Preis M 48

Universitäts-Buchdruckerei von Carl Georgi in Bonn.